
Heliyon 10 (2024) e36158

Available online 13 August 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Development of a diagnostic model based on glycolysis-related 
genes and immune infiltration in intervertebral disc degeneration 

Jian Gao a, Liming He b, Jianguo Zhang b, Leimin Xi b, Haoyu Feng b,* 

a Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, 
Taiyuan, China 
b Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji 
Shanxi Hospital, 030032, Taiyuan, China  

A B S T R A C T   

Background: The glycolytic pathway and immune response play pivotal roles in the intervertebral disc degeneration (IDD) progression. This study 
aimed to develop a glycolysis-related diagnostic model and analyze its relationship with the immune response to IDD. 
Methods: GSE70362, GSE23130, and GSE15227 datasets were collected and merged from the Gene Expression Omnibus, and differential expression 
analysis was performed. Glycolysis-related differentially expressed genes (GLRDEGs) were identified, and a machine learning-based diagnostic 
model was constructed and validated, followed by Gene Set Enrichment Analysis (GSEA). Gene Ontology functional enrichment and Kyoto Ency
clopedia of Genes and Genomes pathway enrichment analyses were performed, and mRNA-miRNA and mRNA-transcription factor (TF) interaction 
networks were constructed. Immune infiltration was analyzed using single-sample GSEA (ssGSEA) and cell-type identification by estimating relative 
subsets of RNA transcripts (CIBERSORT) algorithm between high- and low-risk groups. 
Results: In the combined dataset, samples from 31 patients with IDD and 55 normal controls were analyzed, revealing differential expression of 16 
GLRDEGs between the two groups. Using advanced machine learning techniques (LASSO, support vector machine, and random forest algorithms), 
we identified eight common GLRDEGs (PXK, EIF3D, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, and, SSR1) and developed a diagnostic model, which 
demonstrated high accuracy in distinguishing IDD from control samples (area under the curve, 0.935). We identified 42 mRNA-miRNA and 33 
mRNA-TF interaction pairs. Using the RiskScore from the diagnostic model, the combined dataset was stratified into high- and low-risk groups. 
SsGSEA revealed significant differences in the infiltration abundances of the four immune cell types between the groups. The CIBERSORT algorithm 
revealed the strongest correlation between resting natural killer (NK) cells and ZNF185 in the low-risk group and between CD8+ T cells and SSR1 in 
the high-risk group. 
Conclusions: Our study reveals a potential interplay between glycolysis-associated genes and immune infiltration in IDD pathogenesis. These findings 
contribute to our understanding of IDD and may guide development of novel diagnostic markers and therapeutic interventions.   

1. Introduction 

Lower back pain (LBP) is the leading cause of productivity loss and disability worldwide [1]. Various multifactorial causes and risk 
factors contribute to the pathogenesis of LBP, with intervertebral disc degeneration (IDD) emerging as the predominant underlying 
factor [2]. IDD is an increasingly common health problem and poses significant economic and social burdens in countries with rapidly 
aging populations [3]. Moreover, the clinical management of IDD that in place today is not ideal. The original biology of the disc 
cannot be fundamentally restored by pharmacological or physiological treatments for early degenerative changes, or by disc resection, 
fusion, or replacement for advanced degenerative changes [4]. 
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The intervertebral disc (IVD) is a critical component of the spine and is made up of fibrous cartilage. It is composed of the nucleus 
pulposus (NP), annulus fibrosus, and cartilaginous endplates. The IVD plays a vital role by providing flexibility, acting as a shock 
absorber, and ensuring vertebral stability [5]. The pathogenesis of IDD is complex and overlapping, and is associated with the loss of 
homeostatic balance in the disc environment, leading to a catabolic and hypoxic microenvironment, a senescent cell profile, and 
consequent immunometabolic alterations [6]. However, the specific mechanism and pathogenesis of disc degeneration remain 
unclear. 

Glycolysis is a fundamental cellular metabolic pathway that efficiently converts glucose into lactate to produce energy [7]. It plays 
a vital role as a major energy source, particularly in cells under hypoxic conditions. Increased levels of glycolysis promote the pro
liferation, invasion, and migration of certain cancer cells by activating various signaling pathways and increasing drug resistance [8]. 
Researchers have found that by intervening in the glycolytic process, the energy production and metabolic activity of chondrocytes can 
be significantly regulated, slowing down the progression of osteoarthritis (OA) [9]. Other bone and joint disorders, including rheu
matoid arthritis [10], osteoporosis [11], and IDD [12], have also shown significant alterations in the glycolytic metabolic processes. 

The IVD tissues exhibit unique metabolic characteristics. Owing to its limited blood supply and lack of neural innervation, the IVD 
primarily receives blood through capillaries in the outer layers of the disc, whereas nutrient exchange in the central NP relies on 
diffusion from nearby blood vessels in the endplates, facilitated by the porous structure of the cartilaginous endplates [13]. Compared 
to plasma, less oxygen and glucose are available for use. In such a low-oxygen environment, the glycolytic metabolic pathway serves as 
a key energy source for the NP [14]. However, disruptions in this pathway can result in a progressive decline in the number of IVD cells 
and extracellular matrix, along with structural changes in the fibrous ring and accelerated disc degeneration [15]. 

The IVD is traditionally considered an immunologically privileged organ that shields NP tissue from the host immune system [16]. 
However, when the blood-NP barrier is breached, an immune response is triggered, which plays a significant role in IVD degeneration 
and the subsequent pathological processes. Immune cells such as macrophages [17] and T cells [18] are involved in the inflammatory 
response of the disc tissue and regulate the inflammatory process and cellular metabolism through the release of cytokines such as 
tumor necrosis factor-α and interleukin-1β [19]. However, few studies have reported on the role of immune infiltration in the 
development of disc degeneration, and the relationship between disc degeneration and immune infiltration requires further research to 
be fully understood. 

The objective of this study was to identify glycolysis-related biomarkers and potential therapeutic targets for IDD management 
using bioinformatics. Initially, three distinct disc degeneration datasets retrieved from the Gene Expression Omnibus (GEO) database 
were amalgamated, resulting in a combined dataset. Subsequently, we conducted differential expression analysis and Gene Set 
Enrichment Analysis (GSEA) of samples from the combined dataset. This analysis intersected with glycolysis-related genes (GLRGs) to 
yield glycolysis-related differentially expressed genes (GLRDEGs). We then constructed GLRDEG diagnostic models using Logistic- 
Least Absolute Shrinkage and Selection Operator (Logistic-LASSO), support vector machine (SVM), and random forest (RF) algo
rithms to identify common GLRDEGs. Subsequent steps included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses and construction of mRNA-miRNA and mRNA-transcription factor (mRNA-TF) interaction networks. 
Finally, based on the RiskScore derived from the diagnostic model, the combined dataset samples were divided into high- and low-risk 
groups. Differential analysis and GSEA enrichment analysis were performed, followed by single-sample GSEA (ssGSEA) and CIBER
SORT immune signature differential analysis. In summary, our study uncovered new perspectives on the interplay between glycolysis- 
associated genes and immune cell infiltration in IDD pathogenesis. 

2. Materials and methods 

2.1. Data download 

Data retrieval was performed from GEO datasets using the keywords “intervertebral disc degeneration” and “Homo sapiens”. The 
following selection criteria were used for data retrieval: 1) gene expression profile of human intervertebral disc tissue samples; 2) 
Samples were divided into normal controls and IDD group; 3) At least 15 samples were included in the dataset. A total of three datasets 
met the screening criteria. We downloaded the gene expression profile datasets (GSE70362 [20], GSE23130 [21], and GSE15227 [22]) 
of patients with IVD from the GEO database [23] using the R package GEOquery [24]. The source species for the three GEO datasets 
was Homo sapiens. The annotations of the probe names in the dataset used the chip GPL platform file (see Table 1 for detailed 
information). 

For the analysis, we selected 20 degenerated IVD samples (Grade: IV, V; group: IDD) and 28 normal control samples (Grade: I, II, III; 
group: Control) from the GSE70362 dataset; a total of 23 samples from the GSE23130 dataset, including 15 normal control samples 

Table 1 
Intervertebral Disc Degeneration Datasets Information list.   

GSE70362 GSE23130 GSE15227 

Platform GPL17810 GPL1352 GPL1352 
Species Homo sapiens Homo sapiens Homo sapiens 
Tissue disc tissue - annulus fibrosus and nucleus pulposus Disc Disc 
Samples in Control group 28 15 12 
Samples in IDD group 20 8 3  
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(Grade: I, II, III; grouping: Control) and eight degenerated IVD samples (Grade: IV, V; grouping: IDD); and a total of 15 samples from 
the GSE15227 dataset, including 12 normal control samples (Grade: I, II, III; group: Control) and three degenerated IVD samples 
(Grade: IV; group: IDD). 

We collected GLRGs from the GeneCards [25] database (https://www.genecards.org/), which provides comprehensive information 
on human genes. We used “glycolysis” as the search keyword to obtain the GLRGs in the GeneCards database and obtained a total of 
2661 GLRGs. The specific gene names are listed in Supplement Table 1. 

2.2. Data Preprocessing and differential expression analysis 

We merged the three datasets (GSE70362, GSE23130, and GSE15227), used the ComBat function of R’s sva package [26] to batch 
the data, and then used the ControlizeBetweenArrays function of the limma package [27] to standardize, thus obtaining the combined 
dataset (31 IDD group samples, 55 control group samples). 

Subsequently, we used the limma package in R to conduct expression analysis of all genes between the IDD group samples and 
control group samples from the combined dataset, identifying differentially expressed genes (DEGs) based on the stringent criteria of | 
logFC| > 0.3 and P.adj <0.05 for further investigation. A volcano map was generated using the R package ggplot2, and the results are 
presented. We then intersected the GLRGs and DEGs to obtain GLRDEGs. 

Fig. 1. Technology roadmap.  

J. Gao et al.                                                                                                                                                                                                             

https://www.genecards.org/


Heliyon 10 (2024) e36158

4

2.3. GSEA enrichment analysis 

GSEA [28] is commonly used to estimate changes in pathway and biological process activities in expression datasets. In this study, 
based on the positive and negative sorting of the logFC values of the genes, all genes in the different groups of the combined dataset 
were divided into two groups. The clusterProfiler package was used to analyze positive and negative logFC values in the two groups. 
For GSEA of all genes, the parameters are as follows: the seed is 2022, the number of calculations is 1000, each gene set contains at least 
10 genes, the maximum number of genes is 500, and the p-value correction method is Benjamini-Hochberg (BH). We obtained the “c2. 
cp.all.v2022.1.Hs.symbols.gmt [All Canonical Pathways] (3050)" gene set from the Molecular Signatures Database (MSigDB) [29]. 
The screening criteria for significant enrichment were P.adj <0.05 and false discovery rate (FDR) value (q.value) < 0.05. 

2.4. Construction of diagnostic model 

In this study, we employed GLRDEGs to develop an SVM model. This was achieved by applying the SVM algorithm [30] to the 
expression matrix and grouping the data in the combined dataset. The model was refined to identify genes with the highest accuracy 
and lowest error rates based on GLRDEGs to ensure optimal gene selection for diagnostic purposes. 

The RF [31] is an algorithm that integrates multiple decision trees using ensemble learning. The randomForest package was used to 
construct a model based on the expression of GLRDEGs in the expression matrix of the combined dataset. The parameters were set.seed 
(234) and ntree = 1000. 

To develop a logistic diagnostic model for the combined dataset, we conducted logistic regression analysis of GLRDEGs, differ
entiating between the IDD and control groups. GLRDEGs with a p-value <0.05 were selected to construct the model. Molecular 
expression data for this model were visualized using forest plots. Further, we applied the R package glmnet [32] (with set.seed set to 
500 and family to “binomial”) for LASSO [33] regression analysis on the GLRDEGs. This process aimed to refine the logistic regression 
model (termed Logistic-LASSO) and mitigate overfitting, with a run period of 500. LASSO regression, which is an extension of linear 
regression with a penalty term (lambda times the absolute value of the coefficient), reduces overfitting and enhances the generaliz
ability of the model. The outcomes of the LASSO regression analysis were illustrated using the diagnostic model and variable trajectory 
diagrams, providing a comprehensive view of the model’s performance and the variable selection process. 

Fig. 2. Dataset standardization processing. 
Boxplot (A) and PCA plot (B) of the combined dataset prior to batch effect removal and normalization. Combined dataset removes the batch effect, 
normalized boxplot plot (C) and PCA plot (D). 
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We then intersected the GLRDEGs identified in the logistic (Logistic-LASSO) regression, SVM, and RF models. This intersection was 
visualized using a Venn diagram to identify common GLRDEGs. Subsequently, we combined the coefficients of common GLRDEGs 
from the Logistic-LASSO regression model with their expression levels in the combined dataset. This approach enabled us to develop a 
comprehensive GLRDEGs diagnostic model and calculate corresponding risk scores. 

In our analysis, we utilized nomograms [34], which employ a series of disjoint line segments in a Cartesian coordinate system to 
represent the functional relationship between multiple independent variables. Specifically, genes identified in the GLRDEGs diagnostic 
model were analyzed using the R package ’rms’ based on Logistic-LASSO regression. We performed logistic regression on the 
expression levels of these genes within the combined dataset and constructed a nomogram to visually represent the results of the 
GLRDEGs analysis. 

Additionally, to assess the accuracy and resolution of our GLRDEGs diagnostic model, we conducted a calibration analysis and 
generated a calibration curve. Moreover, decision curve analysis (DCA) [35], a method for evaluating clinical prediction models, 
diagnostic tests, and molecular markers, was employed. We used the R package ‘ggDCA’ to create DCA diagrams specifically for our 
GLRDEGs, thereby evaluating the accuracy and resolution of the diagnostic model. 

2.5. Gene Function enrichment analysis (GO) and pathway enrichment (KEGG) analysis 

GO [36] analysis is a common method for large-scale functional enrichment research, including biological process (BP), molecular 
function (MF), and cellular components (CC). The KEGG [37] is a widely used database that stores information on genomes, biological 
pathways, diseases, drugs, etc. We used the R package clusterProfiler [38] to perform GO and KEGG annotation analyses of GLRDEGs. 
The item selection criteria were P.adj <0.05 and FDR value (q.value) < 0.05 is statistically significant, and the BH method was used for 
p-value correction. 

Fig. 3. Expression difference analysis and correlation analysis of GLRDEGs. 
A. Venn diagram showing the intersection of differentially expressed genes and glycolysis-related genes between the disease and control groups in 
the combined dataset. B. Correlation heat map based on the expression matrix of 16 GLRDEGs in the combined dataset. C. Volcano map drawn 
according to the difference analysis results between the disease and control groups in the combined dataset, and the marked genes are GLRDEGs. D. 
Group comparison chart of 16 GLRDEGs between disease group and control group in combined dataset. ns is equal to P ≥ 0.05, which is not 
statistically significant; *P < 0.05, statistically significant; **P < 0.01, highly statistically significant; and ***P < 0.001, very statistically significant. 
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2.6. Construction of mRNA-miRNA, mRNA-TF interaction network 

The ENCORI [39] database (https://starbase.sysu.edu.cn/) is version 3.0 of the starBase database, and the miRNA-mRNA in
teractions in the ENCORI database are based on CLIP-seq and degradome sequencing (for plants). Data mining provides a variety of 
visualization interfaces for exploring miRNA targets. We used the ENCORI database to predict miRNAs interacting with GLRDEGs and 
then constructed an mRNA-miRNA interaction network in Cytoscape. 

The CHIPBase database (version 3.0) [40] (https://rna.sysu.edu.cn/chipbase/) identified thousands of binding motif matrices and 
their binding sites from the ChIP-seq data of DNA-binding proteins and predicted the transcriptional regulatory relationship between 
millions of TFs and genes. The hTFtarget [41] database (http://bioinfo.life.hust.edu.cn/hTFtarget) is a comprehensive database 
containing information on human TFs and their corresponding regulatory targets. We searched for TFs binding to key genes using the 
CHIPBase (version 3.0) and hTFtarget databases and visualized them using Cytoscape software. 

2.7. Identification and correlation analysis of immune infiltrating cells 

We used the ssGSEA algorithm to quantify the relative abundance of each immune cell infiltrate; mark various infiltrating immune 
cell types, such as CD8+ T cells, dendritic cells, macrophages, regulatory T cells, and other human immune cell subtypes; and use the 
enrichment fraction calculated by ssGSEA analysis to represent the relative abundance of each immune cell infiltration in each sample 
[42,43]. We analyzed the ssGSEA algorithm in the R package GSVA [44] and calculated the enrichment scores of the high- and low-risk 
grouping samples to represent the infiltration levels of different types of immune cells in each sample. The difference in the infiltration 
abundance of immune cells between samples from the high- and low-risk groups is displayed in a boxplot. The correlation was 
calculated using the Spearman algorithm and visualized using a correlation point diagram. 

CIBERSORT [45] is an immune infiltration analysis algorithm that deconvolutes a transcriptome expression matrix based on the 
principle of linear support vector regression, thereby estimating the composition and abundance of immune cells in mixed cells. We 
uploaded the expression matrix data of different groups of samples in the combined dataset to CIBERSORT, combined with the LM22 
characteristic gene matrix; screened out data with immune cell enrichment scores greater than zero; and finally obtained and displayed 
the specific results of the immune cell infiltration abundance matrix. 

The differences in the infiltration abundance of immune cells in the samples between the different groups of the combined dataset 
are displayed in a stacked histogram. The correlation between different immune cells in the combined dataset was calculated using the 
Spearman algorithm and visualized using the R package ggplot2. We then combined the gene expression matrix of the combined 
dataset to calculate the correlation between immune cells and GLRDEGs and drew a correlation dot plot using the R package ggplot2. 

2.8. Statistical analysis 

All data processing and analyses in this study were performed using R software (Version 4.1.2). For the comparison of two groups of 
continuous variables, the statistical significance of normally distributed variables was estimated using the independent Student’s t-test, 
and the Mann–Whitney U test was used (i.e., Wilcoxon rank sum test) to analyze the differences among non-normally distributed 
variables. If not specified, the results were calculated using Spearman correlation analysis to determine the correlation coefficients 
between different molecules; all statistical p-values were two-sided, and P < 0.05 is considered statistically significant. 

3. Results 

3.1. Dataset processing 

The mRNA expression profile of IDD was downloaded from GEO, and the data were analyzed as in the roadmap (Fig. 1). We merged 
three IDD datasets (GSE70362, GSE23130, and GSE15227) and applied the ‘ComBat’ function from R’s ‘sva’ package [26] for batch 
normalization, followed by standardization using the ‘ControlizeBetweenArrays’ function of the limma package [27]. This resulted in a 
combined dataset comprising 31 IDD and 55 control samples. 

Boxplots and principal component analysis (PCA) diagrams of the combined dataset were generated to illustrate the data distri
bution before (Fig. 2A and B) and after (Fig. 2C and D) processing, categorized by sample sources. Post-processing results indicated a 
more uniform expression pattern across samples in the combined dataset, suggesting the successful mitigation of batch effects. 

Table 2 
GSEA enrichment analysis results of Combined dataset Control-IDD group genes.  

ID enrichmentScore NES pvalue p.adjust qvalue 

KEGG OXIDATIVE PHOSPHORYLATION 0.520952 2.111817 0.001927 0.029484 0.024768 
REACTOME HEDGEHOG LIGAND BIOGENESIS 0.547656 2.02681 0.002058 0.029484 0.024768 
REACTOME SIGNALING BY NOTCH4 0.467794 1.831013 0.002024 0.029484 0.024768 
WP IL9 SIGNALING PATHWAY 0.660696 1.828353 0.002141 0.029484 0.024768 
REACTOME MAPK6 MAPK4 SIGNALING 0.473459 1.861385 0.002016 0.029484 0.024768 
REACTOME SIGNALING BY NOTCH 0.356717 1.570358 0.001876 0.029484 0.024768  
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Fig. 4. GSEA of combined dataset. 
(A) Six main biological characteristics from the GSEA of genes between different groups (IDD/control) in the combined dataset. B-G. Genes in the 
IDD dataset were significantly enriched in Notch signaling (B), MAPK6 MAPK4 signaling (C), the IL9 signaling pathway (D), Notch4 signaling (E), 
Hedgehog ligand biogenesis (F), and oxidative phosphorylation (G). The significant enrichment screening criteria for GSEA enrichment analysis 
were P. adj <0.05 and FDR value (q. value) < 0.05. 
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Subsequent analyses were conducted on the batch-effect-corrected dataset. 

3.2. Identification of glycolysis-related DEGs 

We used the limma package to analyze the differential expression between the IDD group samples and the control group samples in 
the combined dataset, with 44 genes that met the threshold of |logFC| >0.30 and P.adj <0.05. Under this threshold, in the high 
RiskScore group, 20 genes showed high expression and 24 genes showed low expression. We intersected these 44 DEGs with 2661 
GLRGs; as shown in Fig. 3A, a total of 16 GLRDEGs were obtained, including CKAP4, IGFBP3, ASPH, RPN1, PXK, SSR1, RPL15, FTL, 
HDGF, EIF3D, ZNF185, RPL22, WSB1, SH3P XD2A, GLA, and CALR. 

We then generated a correlation heatmap using the expression matrix of the 16 GLRDEGs in the combined dataset (Fig. 3B). The 
results revealed two distinct correlation patterns among these genes. The first group, comprising ASPH, IGFBP3, SH3PXD2A, GLA, 
CKAP4, FTL, SSR1, HDGF, CALR, and RPN1, exhibited positive correlations. The second group, which included EIF3D, PXK, RPL15, 
RPL22, WSB1, and ZNF185, also showed positive correlations within its members. However, the second group displayed a negative 
correlation with the first group of GLRDEGs. 

We also used a volcano map (Fig. 3C) to show the results of the difference analysis between the disease and control groups of the 

Fig. 5. Construction of diagnostic model. 
A. Forest Plot of logistic regression model of GLRDEGs. B. The number of genes with the lowest error rate obtained by the SVM algorithm. C. The 
number of genes with the highest accuracy obtained by the SVM algorithm. D. Model training error plot for the RF algorithm. E. RF model showing 
GLRDEGs (in descending order of IncNodePurity). F. Diagnostic model diagram of the LASSO regression model. G. Variable trajectory plot of the 
LASSO regression model. H. GLRDEGs and SVM models in Logistic-LASSO regression model, GLRDEGs Venn diagram in RF model. 
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Fig. 6. Verification of diagnostic model. 
A. The ROC curve of the GLRDEGs diagnostic model in the combined dataset. B. Nomogram of eight common GLRDEGs in the GLRDEGs logistic 
regression model. C. Calibration curve of nomogram of GLRDEGs logistic regression model. D. Decision curve (DCA) in GLRDEGs logistic regres
sion model. 

Table 3 
GO and KEGG enrichment analysis results of GLRDEGs.  

ONTOLOGY ID Description pvalue p.adjust qvalue 

BP GO:0002181 cytoplasmic translation 0.00088 0.039614 0.020386 
BP GO:1905214 regulation of RNA binding 0.003824 0.048303 0.024858 
BP GO:0032780 negative regulation of ATP-dependent activity 0.007002 0.048303 0.024858 
BP GO:0045663 positive regulation of myoblast differentiation 0.007319 0.048303 0.024858 
BP GO:0043567 regulation of insulin-like growth factor receptor signaling pathway 0.007636 0.048303 0.024858 
CC GO:0033290 eukaryotic 48S preinitiation complex 0.006109 0.035413 0.019281 
CC GO:0005788 endoplasmic reticulum lumen 0.006601 0.035413 0.019281 
CC GO:0016282 eukaryotic 43S preinitiation complex 0.006921 0.035413 0.019281 
CC GO:0042599 lamellar body 0.006921 0.035413 0.019281 
CC GO:0070993 translation preinitiation complex 0.007327 0.035413 0.019281 
MF GO:0031994 insulin-like growth factor I binding 0.005636 0.047455 0.02389 
MF GO:0072542 protein phosphatase activator activity 0.006933 0.047455 0.02389 
MF GO:0019211 phosphatase activator activity 0.009953 0.047455 0.02389 
MF GO:0001968 fibronectin binding 0.013394 0.047455 0.02389 
MF GO:0003779 actin binding 0.014443 0.047455 0.02389 
KEGG has04141 Protein processing in endoplasmic reticulum 0.002546 0.017819 0.013398  
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combined dataset and marked the positions of the 16 GLRDEGs in the volcano map. A group comparison chart was generated to 
illustrate the differences in expression of the 16 GLRDEGs between the IDD and control groups (Fig. 3D). The chart revealed significant 
differential expression of ASPH, IGFBP3, SH3PXD2A, GLA, CKAP4, FTL, SSR1, HDGF, CALR, and RPN1, which were markedly upre
gulated in the IDD group, whereas EIF3D, PXK, RPL15, RPL22, WSB1, and ZNF185 were significantly downregulated in the IDD group 
compared to those in the controls. 

3.3. GSEA enrichment analysis between IDD and control groups based on combined dataset 

To assess the impact of differential gene expression between IDD and control groups in the combined dataset, we conducted GSEA. 
We set the significance threshold for enrichment screening with an adjusted p-value (P. adj) and FDR, q. value) below 0.05. Our 
analysis revealed that in the combined dataset, genes from the different groups (IDD/control) were significantly enriched in pathways 
such as oxidative phosphorylation, hedgehog ligand biogenesis, and Notch4 signaling, as detailed in Table 2 (Fig. 4B–G). The GSEA 
results are visually summarized in a mountain plot (Fig. 4A). 

3.4. Construction of diagnostic model 

To identify 16 GLRDEGs in the combined dataset, we performed logistic regression using the expression levels of these genes and 
grouping information (IDD/control). A logistic regression model was constructed, selecting genes with P < 0.05 as the inclusion 
criterion. This model encompasses all 16 GLRDEGs. Subsequently, we visualized their expression levels using a Forest Plot (Fig. 5A). 

We then constructed the SVM model based on 16 GLRDEGs and the SVM algorithm and obtained the number of genes with the 
lowest error rate (Fig. 5B) and the highest accuracy rate (Fig. 5C). The results showed that the accuracy of the SVM model was the 
highest when the number of genes was 10. 

We applied the RF algorithm to analyze the expression levels of the 16 GLRDEGs in the combined dataset (Fig. 5D). ’IncNodePurity’ 
was used to indicate the increase in node purity, with higher values signifying fewer impurities (i.e., a lower Gini coefficient). Setting 
an IncNodePurity threshold >0.5, we identified 16 diagnostic markers from the GLRDEGs using the RF algorithm (Fig. 5E). These 
markers included CKAP4, IGFBP3, ASPH, RPN1, PXK, SSR1, RPL15, FTL, HDGF, EIF3D, ZNF185, RPL22, WSB1, SH3PXD2A, GLA, and 
CALR. 

The outcomes of the LASSO regression analysis are depicted in a LASSO regression model diagram (Fig. 5F) and a LASSO variable 
trajectory diagram (Fig. 5G). This process led to the identification of 10 GLRDEGs in the model: ASPH, CKAP4, EIF3D, IGFBP3, PXK, 
RPL15, RPN1, SSR1, WSB1, and ZNF185. 

To identify commonly diagnosed GLRDEGs (common GLRDEGs), we intersected the GLRDEGs from the Logistic-LASSO regression, 
SVM, and RF models. This intersection revealed eight common GLRDEGs, which are visualized in a Venn diagram (Fig. 5H). These 
genes include PXK, EIF3D, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, and SSR1. 

Next, we developed a new diagnostic model based on the expression levels of eight common GLRDEGs in the combined dataset in 
conjunction with the coefficients of these genes in the diagnostic model constructed through LASSO regression analysis. 

To further validate the value of the GLRDEGs diagnostic model, we plotted the receiver operating characteristic curve based on the 
RiskScore of the GLRDEGs diagnostic model and the group information (IDD/control) of the combined dataset (Fig. 6A). As shown in 
Fig. 6A, the GLRDEGs diagnostic model exhibited high accuracy in diagnosing the two groups, with an area under the curve (AUC) of 
0.935. 

We also constructed a GLRDEGs logistic regression model and drew a nomogram to show the contribution of eight common 
GLRDEGs to the GLRDEGs logistic regression model (Fig. 6B). The results showed that the expression levels of EIF3D, PXK, and IGFBP3 
had significantly higher effects on the GLRDEGs logistic regression model than other variables. 

Calibration analysis was performed, and a calibration curve was drawn (Fig. 6C). The optimal theoretical probability (solid line) 
and model prediction under different conditions were determined. The fit of the probabilities (dashed line) indicated how well the 
model predicted the outcome (Fig. 6C). In addition, we used DCA to evaluate the role of the GLRDEGs diagnostic model in terms of 
clinical utility. The results are presented in Fig. 6D. In the DCA diagram, when the line of the model is stably higher than all positive 
and all negative values within a certain range, the larger the range, the higher the net income and the better the model effect. From the 
results, we can see that the constructed model has a higher diagnostic value for the occurrence of IDD. 

3.5. Functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis 

To analyze the relationships of the eight common GLRDEGs, we conducted GO functional enrichment analysis and KEGG pathway 
enrichment analysis. The results show that the eight common GLRDEGs were significantly enriched in various BPs such as cytoplasmic 
translation, regulation of RNA binding, negative regulation of ATP-dependent activity, and positive regulation of myoblast 

Fig. 7. Functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis of GLRDEGs. 
A. Histogram display of GO enrichment analysis and KEGG pathway enrichment analysis results of GLRDEGs. B-E. The circular network diagram 
display of BP (B), CC (C), MF (D), and KEGG pathways (E) in the GO functional enrichment analysis of GLRDEGs and the circular network diagram of 
KEGG enrichment results exhibit (E). The abscissa in the histogram (A) is GO terms, and the height of the bar indicates the Padj value of GO or KEGG 
terms. The blue dots in the network diagram (B, C, D, E) represent specific genes, and the pink dots represent specific pathways. 
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differentiation, including the insulin-like growth factor receptor signaling pathway. Additionally, these genes were associated with 
CCs such as the eukaryotic 48S and 43S pre-initiation complexes, endoplasmic reticulum lumen, lamellar body, and translation pre- 
initiation complex. In terms of MFs, enrichment was noted for insulin-like growth factor I binding, protein phosphatase activator 

Fig. 8. GSEA enrichment analysis of combined dataset. 
A. Combined dataset of different groups (high/low RiskScore group) GSEA of genes among the main six biological characteristics. B-G. REAC
TOME_SIGNALING_BY_WNT (B), REACTOME_BETA_CATENIN_INDEPENDENT_WNT_SIGNALING (C), REACTOME_MAPK6_MAPK4_SIGNALING (D), 
REACTOME_FCERI_MEDIATED_NF_KB_ACTIVATION (E), REACTOME_SIGNALING_BY_NOTCH 4 (F), and REACTOME_NEGATIVE_R
EGULATION_OF_NOTCH4_SIGNALING (G). The significant enrichment screening criteria for GSEA were P.adj <0.05 and FDR value (p-value) 
< 0.05. 
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activity, fibronectin binding, and actin binding. Moreover, these genes were implicated in the KEGG pathway for protein processing in 
the endoplasmic reticulum (see Table 3 for pathway details). 

The results of GO functional enrichment analysis and KEGG pathway enrichment analysis are displayed using histograms (Fig. 7A). 
In addition, we displayed the BP (Fig. 7B), CC (Fig. 7C), MF (Fig. 7D), and KEGG (Fig. 7E) pathway enrichment results of the GO gene 
functional enrichment analysis in the form of a circular network diagram. 

3.6. GSEA enrichment analysis between high- and low-risk groups based on combined dataset 

Using the RiskScore from the previously established GLRDEGs diagnostic model, we divided the samples into high- and low-risk 
groups using the combined dataset. Differential analysis between these groups was conducted using the ‘limma’ package. We 
assessed the expression of all genes across these groups, focusing on their involvement in BPs, impact on CCs, and exertion of MFs. For 
significant enrichment, we set stringent criteria with P.adj <0.05 and an FDR (q.value) < 0.05. We presented the results of the GSEA of 
genes between different groups using a ridge plot (Fig. 8A). The results show that the different groups in the combined dataset data 
(high/low RiskScore group) were significantly enriched in Wnt signaling (Fig. 8B), beta catenin independent Wnt signaling (Fig. 8C), 
MAPK6 MAPK4 signaling (Fig. 8D), fceri-mediated NF-kB activation (Fig. 8E), NOTCH4 signaling (Fig. 8F), negative regulation of 
NOTCH4 signaling (Fig. 8G), and other pathways (See Table 4 for details). 

3.7. Construction of mRNA-miRNA, mRNA-TF interaction network 

Using the mRNA-miRNA data from the miRDB database, we predicted the miRNAs interacting with the eight identified GLRDEGs, 
retaining only those interactions that were reported in at least five different sources. Subsequently, we used the Cytoscape software to 
construct and visualize the mRNA-miRNA interaction network (Fig. 9A). Within this network, mRNAs are represented by red nodes 
and miRNAs are represented by blue nodes. Analysis of the mRNA-miRNA interaction network revealed that our network comprised 
seven hub genes (PXK, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, and SSR1) and 38 miRNA molecules, collectively forming 42 mRNA- 
miRNA interaction pairs. Detailed information on these mRNA-miRNA interactions is provided in Table 5. 

We identified TFs that bind to eight GLRDEGs (PXK, EIF3D, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, and SSR1) using the CHIPBase 
(version 3.0) and hTFtarget databases. We filtered the results with the criteria “Number of samples found (upstream) > 0” and 
“Number of samples found (downstream) > 0”. Finally, we obtained data for 33 interaction pairs involving four hub genes (PXK, 
RPL15, WSB1, and ZNF185) and 29 TFs. These interactions were visualized using the Cytoscape software (Fig. 9B), where red nodes 
represent mRNAs and blue nodes represent TFs. Details of the mRNA-TF interactions are provided in Table 6. We also conducted a 
functional similarity analysis on the eight datasets and presented the results using cloud and rain diagrams. Using the R package 
GOSemSim, we calculated the semantic similarity between GO terms, sets of GO terms, gene products, and gene clusters. During this 
process, we retained only those genes that were annotated to pathways in terms of BPs, MFs, and CCs for similarity analysis. Ulti
mately, we obtained functional similarity analysis results for six GLRDEGs (PXK, EIF3D, WSB1, IGFBP3, RPL15, and SSR1) and 
visualized them using a raincloud diagram (Fig. 9C). The results demonstrated that WSB1 had the highest functional similarity value 
with other GLRDEGs (Fig. 9C; the x-axis represents the similarity score, where a larger value denotes higher functional similarity with 
other genes). 

3.8. Difference analysis of ssGSEA immune signature between high- and low-risk groups 

We used the median RiskScore of the GLRDEGs diagnostic model to divide IDD samples from the combined dataset into low- and 
high-risk groups. To explore the differences in immune infiltration between the high- and low-risk groups, we used the ssGSEA al
gorithm to calculate the infiltration abundance of 28 types of immune cells in the high- and low-risk group samples. The Man
n–Whitney U test was used to analyze the degree of difference in the infiltration of 28 types of immune cells between the low- and high- 
risk groups. The results are displayed in the group comparison chart (Fig. 10A). The results showed that in the combined dataset data, 
there were statistically significant differences (P < 0.05) in the infiltration abundance of four types of immune cells between the low- 
and high-risk groups: activated dendritic cells, monocytes, type 2 T helper cells, and activated CD8 T cells. 

We further calculated the correlation between the infiltration abundances of the four types of immune cells with group statistical 
differences in the samples of the low- and high-risk groups and displayed the results (Fig. 10B–C). In the low-risk group, the infiltration 
abundances of the four types of immune cells were mostly positively correlated, among which the relationship between activated CD8 

Table 4 
GSEA enrichment analysis results of Combined dataset Low-High RiskScore group genes.  

ID enrichmentScore NES pvalue p.adjust qvalue 

REACTOME_NEGATIVE_REGULATION_OF_NOTCH4_SIGNALING − 0.63081 − 2.30816 0.002075 0.044564 0.040247 
REACTOME_SIGNALING_BY_NOTCH4 − 0.49719 − 2.02722 0.002179 0.044564 0.040247 
REACTOME_FCERI_MEDIATED_NF_KB_ACTIVATION − 0.55319 − 2.23626 0.002128 0.044564 0.040247 
REACTOME_MAPK6_MAPK4_SIGNALING − 0.53807 − 2.19342 0.002183 0.044564 0.040247 
REACTOME_BETA_CATENIN_INDEPENDENT_WNT_SIGNALING − 0.41536 − 1.85468 0.002364 0.044564 0.040247 
REACTOME_SIGNALING_BY_WNT − 0.30205 − 1.46246 0.002506 0.044564 0.040247  
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T cells and type 2 T helper cells was the most significant (Fig. 10B), whereas in the high-risk group, except type 2 T helper cells and 
monocytes, type 2 T helper cells and activated CD8 T cells were negatively correlated, and all the other cells were positively correlated. 
Among all correlations, the strongest were between type 2 T helper cells and activated CD8 T cells (negative correlation) and activated 
CD8 T cells and monocytes (positive correlation) (Fig. 10C). 

At the same time, we also calculated the infiltration abundance of four types of immune cells and eight GLRDEGs (correlation 
between the expression levels of PXK, EIF3D, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, and SSR1) (Fig. 10D–E). Most of the genes were 
positively correlated, among which the correlation between activated CD8 T cells and EIF3D was the strongest (positive correlation). In 
the high-risk group of the combined dataset data (Fig. 10 E), four types of cells were positively correlated with eight genes and among 

Fig. 9. mRNA-miRNA and mRNA-TF interaction networks and functional similarity analysis diagram of GLRDEGs. 
A-D. mRNA-miRNA (A) and mRNA-TF (B) interaction networks of eight GLRDEGs. C. Functional similarity analysis between eight GLRDEGs. The 
red circles in the mRNA-miRNA (A) interaction network are mRNAs, and the blue circles are miRNAs. (B) The red circles in the mRNA-TF interaction 
network are mRNAs, and the blue circles are the TFs. 
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the negative correlations, monocytes showed the strongest correlation (negative correlation) with WSB1. 

3.9. 3.9CIBERSORT immune signature difference analysis between high-risk group and low-risk group of combined dataset 

Subsequently, we employed the CIBERSORT algorithm to calculate the infiltration abundance of 22 types of immune cells in the 
high- and low-risk groups. A proportional representation of the immune cell infiltration in the dataset samples is depicted in stacked 
bar charts (Fig. 11A). The results showed that of the 22 types of immune cells, 21 had a non-zero infiltration abundance in the 
combined dataset samples. These 21 immune cell types are naïve B cells, memory B cells, plasma cells, CD8 T cells, CD4 memory 
resting T cells, CD4 memory activated T cells, follicular helper T cells, regulatory T cells (Tregs), gamma delta T cells, resting NK cells, 
activated NK cells, monocytes, M0 macrophages, M1 macrophages, M2 macrophages, resting dendritic cells, activated dendritic cells, 
resting mast cells, activated mast cells, eosinophils, and neutrophils. 

We then used the “spearman” algorithm to calculate the correlation between the infiltration abundance of 21 types of immune cells 
in the samples of the combined dataset data for high- and low-risk groups (low/high RiskScore group) whose infiltration abundance is 
not all 0 (Fig. 11B and C). The results showed that in the combined dataset data, the low-risk group (low RiskScore group, infiltration 
abundance of M2 macrophages in the low-risk group is all 0, leaving 20 types of cells) (Fig. 11C) and the high-risk group (high 
RiskScore group) (Fig. 11D), the expression levels of immune cells (Fig. 11D) were mostly negatively correlated. 

We also calculated the low-risk group (low RiskScore group) (Fig. 11D) and high-risk group (high RiskScore group) (Fig. 11E) in the 
patient samples of 21 types of immune cell infiltration abundance and 8 GLRDEGs (correlation between the expression levels of PXK, 

Table 5 
mRNA-miRNA interaction network nodes.  

node1 node2 node1 node2 

hsa-miR-27a-3p CKAP4 hsa-miR-135a-5p SSR1 
hsa-miR-129-5p CKAP4 hsa-miR-152-3p SSR1 
hsa-miR-129-5p CKAP4 hsa-miR-196b-5p SSR1 
hsa-miR-7-5p CKAP4 hsa-miR-495-3p SSR1 
hsa-miR-27b-3p CKAP4 hsa-miR-455-3p SSR1 
hsa-miR-133a-3p CKAP4 hsa-miR-1323 SSR1 
hsa-miR-153-3p CKAP4 hsa-miR-548o-3p SSR1 
hsa-miR-200c-3p CKAP4 hsa-miR-15a-5p WSB1 
hsa-miR-133b CKAP4 hsa-miR-16-5p WSB1 
hsa-miR-429 CKAP4 hsa-miR-27a-3p WSB1 
hsa-miR-19a-3p IGFBP3 hsa-miR-15b-5p WSB1 
hsa-miR-19b-3p IGFBP3 hsa-miR-27b-3p WSB1 
hsa-miR-197-3p IGFBP3 hsa-miR-128-3p WSB1 
hsa-miR-9-5p IGFBP3 hsa-miR-190a-5p WSB1 
hsa-miR-24-3p PXK hsa-miR-195-5p WSB1 
hsa-miR-92a-3p RPL15 hsa-miR-424-5p WSB1 
hsa-miR-367-3p RPL15 hsa-miR-497-5p WSB1 
hsa-miR-1323 RPL15 hsa-miR-503-5p WSB1 
hsa-miR-196a-5p SSR1 hsa-miR-190b WSB1 
hsa-miR-148a-3p SSR1 hsa-miR-1321 ZNF185 
hsa-miR-147a SSR1 hsa-miR-4739 ZNF185  

Table 6 
mRNA-TF interaction network nodes.  

mRNA Transcription factor mRNA Transcription factor 

PXK FOXA1 WSB1 HIF1A 
PXK FOXA2 WSB1 KLF1 
RPL15 EP300 WSB1 MAX 
RPL15 GLIS1 WSB1 MAZ 
RPL15 GRHL2 WSB1 MNT 
RPL15 BRD4 WSB1 MXI1 
RPL15 SPI1 WSB1 MYC 
RPL15 TEAD4 WSB1 POLR2A 
RPL15 CREB1 WSB1 SPI1 
WSB1 ATF1 WSB1 SRF 
WSB1 BHLHE40 WSB1 STAT1 
WSB1 BRD2 WSB1 TFAP2A 
WSB1 BRD4 WSB1 TFAP2C 
WSB1 CREB1 WSB1 YY1 
WSB1 E2F1 WSB1 ZBTB7A 
WSB1 GTF2B ZNF185 MAX 
WSB1 HDAC1    
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EIF3D, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, SSR1) (Fig. 11D–E), were screened with P < 0.05 as the standard and the results were 
displayed by the correlation dot plot. The results showed that there were significant correlations between four types of cells (eosin
ophils, resting NK cells, plasma cells, and focal helper T cells) and five genes (CKAP4, IGFBP3, PXK, WSB1, and ZNF185) in the low-risk 
group of combined dataset data (Fig. 11D). Among them, the correlation between resting NK cells and ZNF185 was the strongest 
(positive correlation) in the high-risk group of combined dataset data (Fig. 11E). There was a significant correlation between CD4 
memory activated T cells, CD8 T cells, focal helper T cells, regulatory T cells, and six genes (CKAP4, EIF3D, PXK, RPL15, SSR1, and 
ZNF185), among which T cell CD8 and SSR1 showed the strongest correlation (negative correlation). 

4. Discussion 

IDD is a prevalent cause of LBP, resulting in significant social and economic burdens [1]. The high prevalence of LBP makes it a 
common reason for seeking medical attention. Considering the increasing incidence of IDD in the aging population, there is an urgent 
need to uncover its underlying causes and identify effective therapies. Currently, IDD diagnosis primarily relies on symptoms and 
imaging, which hampers early detection and timely intervention [46]. Therefore, the identification of potential biomarkers for the 
prediction of IDD is crucial. In recent years, advances in machine learning techniques and the availability of gene expression data in 
public databases have provided new approaches for identifying biomarkers for disease detection [47]. Despite extensive research 
efforts, the precise mechanisms underlying IDD remain elusive, and effective treatment options are still lacking. Therefore, our study 
aimed to explore potential glycolysis-associated gene signatures associated with IDD and investigate their correlation with immune 
cell infiltration using a comprehensive analytical approach. 

In this study, we comprehensively investigated the association among GLRGs, immune cells, and IDD using various machine 
learning techniques and the CIBERSORT algorithm. Our study established a strong link between these elements, providing a novel 
perspective for understanding the molecular mechanisms underlying IDD and identifying potential therapeutic targets. 

We identified eight GLRDEGs—PXK, EIF3D, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, and SSR1—by Logistic-LASSO regression, 
SVM, and RF models. These GLRDEGs not only provide insight into the pathogenesis of IDD but also constitute a promising diagnostic 
model for IDD. Previous studies have implicated some of these genes in different physiological and pathological contexts, partially 
confirming our findings. 

For instance, IGFBP3, also known as insulin-like growth factor binding protein 3 in yeast, suppresses apoptosis and improves cell 
survival in several cell systems when calorie intake is restricted [48–50]. IGFBP3, which is essential for cell differentiation, prolif
eration, apoptosis, and cell aging, deacetylates several apoptosis-associated nonhistone proteins [49,51]. Patients with disc degen
eration show higher levels of IGFBP3 expression, which may protect against NP cell apoptosis [20]. EIF3D (eukaryotic translation 
initiation factor 3, subunit D) is an mRNA cap-binding protein required for specialized translation initiation [52]. EIF3D is associated 
with tumor development and is widely expressed in a variety of tumor tissues, regulating the cycle of tumor cells and dysregulating 
apoptotic and anti-apoptotic signaling by increasing apoptosis [52–54]. WSB1 is a member of the SOCS box family and plays a key role 
in mediating the degradation of substrate proteins via the ubiquitin-proteasome pathway as a central component of the E3 ubiquitin 
ligase complex of ECS (Elongin B/C-Cullin 2/5-SOCS box protein) [55]. Recent research has indicated that WSB1 regulates thyroid 
homeostasis, immunological response, glycolysis, and hypoxia, and possibly influences the onset or progression of cancer. It has been 
shown that WSB1 affects cell invasion, survival, and proliferation [56]. However, further experimental and clinical studies are required 
to verify whether EIF3D and WSB1 regulate the proliferation of NP cells during IDD. 

Enrichment analyses (GO and KEGG) provided deeper insight into the functional roles and pathways related to the identified 
GLRDEGs. These analyses revealed that the identified genes are significantly involved in the glycolysis pathway, which has been 
extensively implicated in several disorders including IDD [57–59]. Therefore, it is plausible to assume that modulation of the glycolysis 
pathway may provide new opportunities for IDD therapeutic strategies. 

Our constructed mRNA-miRNA and mRNA-TF interaction networks provide a comprehensive map of the potential regulatory 
relationships among the identified genes, miRNAs, and TFs. This regulatory network aids in understanding the intricacies of the 
molecular mechanisms underlying IDD and their contributions to the disease pathology. 

Finally, RiskScore based on the diagnostic model divided the samples in the combined dataset into two groups of high/low risk for 
differential analysis and GSEA, further ssGSEA, and CIBERSORT immune signature differential analysis between the groups. To the 
best of our knowledge, studies on GLRDEGs and immune responses related to IDD are scarce, and our study examining the cross-talk 
between hub GLRGs and immune cells may provide new insights into the etiology of IDD. 

Considering the physical and biological barriers, such as an avascular microenvironment, high proteoglycan concentration, intense 
physical pressure, notochordal cells, and apoptosis inducers such as Fas ligand, the IVD is perceived as an immunologically privileged 
site [16]. Nonetheless, during IDD, immune cells within the IVD have unique properties. Certain immune cells secrete substances that 
promote angiogenesis and inflammatory responses in the disc, thus playing a vital role in the progression of IDD. Macrophages exhibit 

Fig. 10. Difference analysis of ssGSEA immune characteristics between different groups (low/high RiskScore groups) of combined dataset data. 
A. Combined dataset data: high- and low-risk group (low/high RiskScore group). SsGSEA immune infiltration analysis results in group comparison 
chart display. The results of correlation analysis of immune cell infiltration abundance in the low RiskScore group (B) and high RiskScore group (C) 
of BC. Combined dataset data are shown. D, E. Combined dataset data of low-risk group (D) and high-risk group (E). Correlation dot plot of immune 
cells and 27 GLRDEGs. ns is equal to P ≥ 0.05, which is not statistically significant; *P < 0.05, statistically significant; **P < 0.01, highly statistically 
significant; and ***P < 0.001, very statistically significant. 
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Fig. 11. Difference analysis of CIBERSORT immune signature among different risk groups of combined dataset data. 
A. Stacked histogram display of CIBERSORT immune infiltration analysis results between different risk groups of the combined dataset data. B–C. 
Combined dataset data: low-risk group (B) and high-risk group (C). Correlation heat map between immune cells with infiltrating abundance not 0. 
D-E. Combined dataset data: low-risk group (D) and high-risk group (E). Correlation dot plot of immune cells with infiltration abundance not zero 
and GLRDEGs. ns is equal to P ≥ 0.05, which is not statistically significant; *P < 0.05, statistically significant; **P < 0.01, highly statistically 
significant; and ***P < 0.001, very statistically significant. 
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a higher pro-inflammatory profile in degenerate IVDs, as evidenced by the elevated expression of pro-inflammatory markers (such as 
CCR7, IL-6, CD86, and iNOS) [60]. A novel lineage of Th17 lymphocytes expressing substantial amounts of IL-17 has been discovered 
in surgical tissues obtained from patients with deteriorated IVDs [61]. IL-17 not only promotes chemokine synthesis, but also or
chestrates the migration of neutrophils and monocytes to the inflammation site, thereby instigating chemokine production and 
attracting immune cells [62]. 

However, this study has some limitations. First, the database used had a very small sample size, which calls for additional research 
using larger samples. Second, there were insufficient experiments to validate these claims. Therefore, extensive biological research on 
immune cell infiltration and glycolysis is necessary. 

5. Conclusions 

Our study provides novel insights into the role of glycolysis and the immune response in IDD. The identified GLRGs and immune 
cells can potentially serve as biomarkers or therapeutic targets for IDD. Despite the need for further experimental validation, these 
findings pave the way for future research on the molecular mechanisms underlying IDD and have potential implications for improving 
diagnostic accuracy and developing new therapeutic strategies. 
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[29] A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo, J. Mesirov, Molecular signatures database (MSigDB) 3.0, Bioinformatics 27 (12) 

(2011 Jun 15) 1739–1740 [Internet]. 
[30] H. Sanz, C. Valim, E. Vegas, J.M. Oller, F. Reverter, SVM-RFE: selection and visualization of the most relevant features through non-linear kernels, BMC Bioinf. 

19 (2018) 1–18. 
[31] Y. Liu, H. Zhao, Variable importance-weighted random forests, Quantitative Biology 5 (2017) 338–351. 
[32] S. Engebretsen, J. Bohlin, Statistical predictions with glmnet, Clin. Epigenet. 11 (1) (2019) 123. 
[33] W. Cai, M. van der Laan, Nonparametric bootstrap inference for the targeted highly adaptive least absolute shrinkage and selection operator (LASSO) estimator, 

Int. J. Biostat. 16 (2020). 
[34] S.Y. Park, Nomogram: an analogue tool to deliver digital knowledge, J. Thorac. Cardiovasc. Surg. 155 (2018) 1793. 
[35] T. Tataranni, C. Piccoli, Dichloroacetate (DCA) and cancer: an overview towards clinical applications, Oxid. Med. Cell. Longev. 2019 (2019). 
[36] G. Yu, Gene ontology semantic similarity analysis using GOSemSim, Stem Cell Transcriptional Networks: Methods and Protocols (2020) 207–215. 
[37] M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res. 28 (2000) 27–30. 
[38] G. Yu, L.-G. Wang, Y. Han, Q.-Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS A J. Integr. Biol. 16 (2012) 

284–287. 
[39] J.-H. Li, S. Liu, H. Zhou, L.-H. Qu, J.-H. Yang, starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale 

CLIP-Seq data, Nucleic Acids Res. 42 (2014) D92–D97. 
[40] J. Huang, W. Zheng, P. Zhang, Q. Lin, Z. Chen, J. Xuan, C. Liu, D. Wu, Q. Huang, L. Zheng, ChIPBase v3. 0: the encyclopedia of transcriptional regulations of 

non-coding RNAs and protein-coding genes, Nucleic Acids Res. 51 (2023) D46–D56. 
[41] Q. Zhang, W. Liu, H.-M. Zhang, G.-Y. Xie, Y.-R. Miao, M. Xia, A.-Y. Guo, hTFtarget: a comprehensive database for regulations of human transcription factors and 

their targets, Dev. Reprod. Biol. 18 (2020) 120–128. 
[42] P. Charoentong, F. Finotello, M. Angelova, C. Mayer, M. Efremova, D. Rieder, H. Hackl, Z. Trajanoski, Pan-cancer immunogenomic analyses reveal genotype- 

immunophenotype relationships and predictors of response to checkpoint blockade, Cell Rep. 18 (2017) 248–262. 
[43] D.A. Barbie, P. Tamayo, J.S. Boehm, S.Y. Kim, S.E. Moody, I.F. Dunn, A.C. Schinzel, P. Sandy, E. Meylan, C. Scholl, Systematic RNA interference reveals that 

oncogenic KRAS-driven cancers require TBK1, Nature 462 (2009) 108–112. 
[44] S. Hänzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data, BMC Bioinf. 14 (2013) 1–15. 
[45] B. Chen, M.S. Khodadoust, C.L. Liu, A.M. Newman, A.A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, Cancer Systems Biology: Methods 

and Protocols (2018) 243–259. 
[46] A. Kamali, R. Ziadlou, G. Lang, J. Pfannkuche, S. Cui, Z. Li, R.G. Richards, M. Alini, and S. Grad, Small molecule-based treatment approaches for intervertebral 

disc dege neration: current options and future directions. Theranostics 11 27-47. 
[47] O. Aromolaran, D. Aromolaran, I. Isewon, and J. Oyelade, Machine learning approach to gene essentiality prediction: a review. Brief Bioinform 22 bbab128. 
[48] F. D’Addio, A. Maestroni, E. Assi, M. Ben Nasr, G. Amabile, V. Usuelli, C. Loretelli, F. Bertuzzi, B. Antonioli, F. Cardarelli, B. El Essawy, A. Solini, I.C. Gerling, C. 

Bianchi, G. Becchi, S. Mazzucchelli, D. Corradi, G.P. Fadini, D. Foschi, J.F. Markmann, E. Orsi, J. ̌Skrha, Jr., M.G. Camboni, R. Abdi, A.M. James Shapiro, F. Folli, 
J. Ludvigsson, S. Del Prato, G. Zuccotti, and P. Fiorina, The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat. Commun. 13 684. 

[49] D. Hu, Y. Ge, Y. Cui, K. Li, J. Chen, C. Zhang, Q. Liu, L. He, W. Chen, J. Chen, C. Hu, H. Xiao, Upregulated IGFBP3 with aging is involved in modulating 
apoptosis, oxi dative stress, and fibrosis: a target of age-related erectile dysfunct ion, Oxid. Med. Cell. Longev. (2022) 6831779. 

[50] M. Li, W. Wu, S. Deng, Z. Shao, and X. Jin, TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and pro liferation of osteosarcoma by promoting 
KANK1 degradation. Cell Death Dis. 12 767. 

[51] Y. Liu, H. Lv, X. Li, J. Liu, S. Chen, Y. Chen, Y. Jin, R. An, S. Yu, and Z. Wang, Cyclovirobuxine inhibits the progression of clear cell renal cell carc inoma by 
suppressing the IGFBP3-AKT/STAT3/MAPK-Snail signalling pathwa y. Int. J. Biol. Sci. 17 3522-3537. 

[52] A.M. Lamper, R.H. Fleming, K.M. Ladd, and A.S.Y. Lee, A phosphorylation-regulated eIF3d translation switch mediates cellular adaptation to metabolic stress. 
Science 370 853-856. 

[53] H. Huang, Y. Gao, A. Liu, X. Yang, F. Huang, L. Xu, X. Danfeng, and L. Chen, EIF3D promotes sunitinib resistance of renal cell carcinoma by interac ting with 
GRP78 and inhibiting its degradation. EBioMedicine 49 189-201. 

[54] C. Li, K. Lu, C. Yang, W. Du, and Z. Liang, EIF3D promotes resistance to 5-fluorouracil in colorectal cancer throu gh upregulating RUVBL1. J. Clin. Lab. Anal. 37 
e24825. 

[55] M. Haque, J.K. Kendal, R.M. MacIsaac, and D.J. Demetrick, WSB1: from homeostasis to hypoxia. J. Biomed. Sci. 23 61. 
[56] J.J. Kim, S.B. Lee, J. Jang, S.-Y. Yi, S.-H. Kim, S.-A. Han, J.-M. Lee, S.-Y. Tong, N.D. Vincelette, B. Gao, P. Yin, D. Evans, D.W. Choi, B. Qin, T. Liu, H. Zhang, M. 

Deng, J. Jen, J. Zhang, L. Wang, and Z. Lou, WSB1 promotes tumor metastasis by inducing pVHL degradation. Genes Dev. 29 2244-2257. 
[57] L. Zhang, Z. Zhang, and Z. Yu, Identification of a novel glycolysis-related gene signature for predic ting metastasis and survival in patients with lung 

adenocarcinoma. J. Transl. Med. 17 423. 
[58] Q. Xu, D. Miao, X. Song, Z. Chen, L. Zeng, L. Zhao, J. Xu, Z. Lin, and F. Yu, Glycolysis-related gene signature can predict survival and immune stat us of 

hepatocellular carcinoma. Ann. Surg Oncol. 29 3963-3976. 

J. Gao et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S2405-8440(24)12189-5/sref16
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref16
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref20
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref20
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref22
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref22
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref23
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref23
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref24
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref26
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref26
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref27
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref27
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref28
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref28
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref29
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref29
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref30
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref30
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref31
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref32
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref33
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref33
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref34
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref35
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref36
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref37
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref38
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref38
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref39
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref39
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref40
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref40
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref41
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref41
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref42
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref42
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref43
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref43
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref44
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref45
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref45
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref49
http://refhub.elsevier.com/S2405-8440(24)12189-5/sref49


Heliyon 10 (2024) e36158

21

[59] Z. Liu, Z. Liu, X. Zhou, Y. Lu, Y. Yao, W. Wang, S. Lu, B. Wang, F. Li, and W. Fu, A glycolysis-related two-gene risk model that can effectively predict the 
prognosis of patients with rectal cancer. Hum Genomics 16 5. 

[60] X.-C. Li, S.-J. Luo, W. Fan, T.-L. Zhou, D.-Q. Tan, R.-X. Tan, Q.-Z. Xian, J. Li, C.-M. Huang, and M.-S. Wang, Macrophage polarization regulates intervertebral disc 
degeneration by modulating cell proliferation, inflammation mediator secretion, and ex tracellular matrix metabolism. Front. Immunol. 13 922173. 

[61] L. Cheng, W. Fan, B. Liu, X. Wang, and L. Nie, Th17 lymphocyte levels are higher in patients with ruptured than non-r uptured lumbar discs, and are correlated 
with pain intensity. Injury 44 1805-1810. 

[62] W. Li, P. Chen, Y. Zhao, M. Cao, W. Hu, L. Pan, H. Sun, D. Huang, H. Wu, Z. Song, H. Zhong, L. Mou, S. Luan, X. Chen, and H. Gao, Human IL-17 and TNF-α 
additively or synergistically regulate the expre ssion of proinflammatory genes, coagulation-related genes, and tight J unction genes in porcine aortic 
endothelial cells. Front. Immunol. 13 857311. 

J. Gao et al.                                                                                                                                                                                                             


	Development of a diagnostic model based on glycolysis-related genes and immune infiltration in intervertebral disc degeneration
	1 Introduction
	2 Materials and methods
	2.1 Data download
	2.2 Data Preprocessing and differential expression analysis
	2.3 GSEA enrichment analysis
	2.4 Construction of diagnostic model
	2.5 Gene Function enrichment analysis (GO) and pathway enrichment (KEGG) analysis
	2.6 Construction of mRNA-miRNA, mRNA-TF interaction network
	2.7 Identification and correlation analysis of immune infiltrating cells
	2.8 Statistical analysis

	3 Results
	3.1 Dataset processing
	3.2 Identification of glycolysis-related DEGs
	3.3 GSEA enrichment analysis between IDD and control groups based on combined dataset
	3.4 Construction of diagnostic model
	3.5 Functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis
	3.6 GSEA enrichment analysis between high- and low-risk groups based on combined dataset
	3.7 Construction of mRNA-miRNA, mRNA-TF interaction network
	3.8 Difference analysis of ssGSEA immune signature between high- and low-risk groups
	3.9 3.9CIBERSORT immune signature difference analysis between high-risk group and low-risk group of combined dataset

	4 Discussion
	5 Conclusions
	Funding statement
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	References


