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Abstract

Background & Objective: Genome-wide profiles of tumors obtained using functional genomics platforms are being
deposited to the public repositories at an astronomical scale, as a result of focused efforts by individual laboratories and
large projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium. Consequently,
there is an urgent need for reliable tools that integrate and interpret these data in light of current knowledge and
disseminate results to biomedical researchers in a user-friendly manner. We have built the canEvolve web portal to meet
this need.

Results: canEvolve query functionalities are designed to fulfill most frequent analysis needs of cancer researchers with a
view to generate novel hypotheses. canEvolve stores gene, microRNA (miRNA) and protein expression profiles, copy
number alterations for multiple cancer types, and protein-protein interaction information. canEvolve allows querying of
results of primary analysis, integrative analysis and network analysis of oncogenomics data. The querying for primary
analysis includes differential gene and miRNA expression as well as changes in gene copy number measured with SNP
microarrays. canEvolve provides results of integrative analysis of gene expression profiles with copy number alterations and
with miRNA profiles as well as generalized integrative analysis using gene set enrichment analysis. The network analysis
capability includes storage and visualization of gene co-expression, inferred gene regulatory networks and protein-protein
interaction information. Finally, canEvolve provides correlations between gene expression and clinical outcomes in terms of
univariate survival analysis.

Conclusion: At present canEvolve provides different types of information extracted from 90 cancer genomics studies
comprising of more than 10,000 patients. The presence of multiple data types, novel integrative analysis for identifying
regulators of oncogenesis, network analysis and ability to query gene lists/pathways are distinctive features of canEvolve.
canEvolve will facilitate integrative and meta-analysis of oncogenomics datasets.

Availability: The canEvolve web portal is available at http://www.canevolve.org/.
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Introduction

At the 10th anniversary of the human genome, high throughput

experimental data explosion fueled by various functional genomics

technologies is expected to overwhelm genomics data analysis [1].

This explosion is most evident in oncogenomics, where a vast

number of tumors profiled by individual laboratories, together

with data from large-scale projects such as the Cancer Genome

Atlas (TCGA) [2] and the International Cancer Genome

Consortium [3] is overwhelming the researchers. On the positive

side, this data deluge has the potential to allow cancer researchers

to address the second grand challenge outlined by Collins et al. [4]:

translating genome-based knowledge into human health benefit.

Meta-analysis and integrative analysis of these data and dissem-

ination of results are essential for the scientific community engaged

in basic cancer biology and translational research.

A few analysis questions frequently arise from the quest of

extracting meaningful knowledge from oncogenomic profiles. For

example, is the expression of my gene or miRNA of interest

significantly altered in a cancer type compared to normal tissue? Is

the copy number of my gene of interest altered in a cancer type?

Can the expression changes of genes or proteins explained by
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underlying copy number alterations (CNAs) and mutations?

Which genes and alterations are regulators of tumorigenesis?

What are the genes whose expression changes have prognostic

implications in a given tumor type? Which pathways or modules

change their overall expression, and which functional categories

are enriched above chance in altered genes?

A web portal that allows researchers to query results of different

types of analysis with a view to generate novel hypotheses is an

ideal platform for obtaining and disseminating such knowledge.

However, generating such a portal is a challenging task. The

tumor profiles have been generated in different laboratories using

a variety of functional genomics platforms. They harbor ‘‘noise’’

from experimental variation along with true biological variation,

and lack consistent annotations. Expert knowledge in oncology is

required to frame appropriate analysis questions. Understanding

of statistics and machine learning is required to select appropriate

methodology for pre-processing, normalizing and integrating these

data. Our recent work suggests that methods for integrating

diverse data types are still evolving and face unique challenges due

to ultra-high dimensionality of oncogenomic data [5]. Finally,

knowledge of procedural, statistical and web programming is

required to establish analysis pipelines and build user-friendly web

interface. There are several databases that store and provide

knowledge from oncogenomic profiles. GEO [6,7] and ArrayEx-

press [8] are large public repositories of functional genomics

datasets that include oncogenomic profiles. Although there have

been some attempts to organize these data in resources such as

Oncomine [9] and Genevestigator [10], both focus on analyses of

limited data types and neither fully addresses the problem of

integration across multiple data types generated from the same

patients.

To address these challenges, we have developed the canEvolve

web portal with the following aims. The portal should store

functional genomics and other large-scale data on cancer. This

includes gene and miRNA expression profiles, and copy number

changes. The portal should provide stored knowledge in database

as well as generate analysis results from oncogenomic profiles in

response to user queries. This includes primary, integrative and

network analysis of oncogenomic profiles. It should allow

visualization of knowledge and analysis results in an appropriate

manner and let the user download query results and related

information from the portal. Finally, it should let the user compare

multiple datasets. We have designed the canEvolve query

functionalities to fulfill most frequent analysis requirements of

cancer researchers towards generating novel biological hypotheses.

System and Methods

canEvolve architecture and data storage capabilities
The canEvolve web portal is implemented using mySQL open

source system. The schema includes 44 tables divided into multiple

modules (Figure S1 and Figure S2). The database can store

information derived from functional genomics profiles from

microarray and next generation sequencing platforms downloaded

from GEO [6,7]. Specifically, it stores normalized data in which

experimental variation has been removed, and data on which

primary and higher order analysis has been carried out. The

processed data and analysis results stored at the portal include

differential gene expression, differential miRNA expression,

protein expression, copy number alterations and survival analysis.

The network-based data stored at the portal include gene co-

expression clusters, regulatory network clusters and protein-

protein interactions. Integrative analysis results include gene set

enrichment analysis (GSEA) [11] and integrative analysis of gene

expression profiles with copy number alterations [12] and miRNA

profiles [13]. Finally, canEvolve also stores thousands of human

protein-protein interactions from STRING [14], 287 transcription

factor-gene target information derived from TRANSFAC [15]

and 885 miRNA-gene target information derived from PICTAR

[16] The canEvolve web interface is implemented using Javascript

and PHP.

Software packages used for generating data analysis
pipelines

The majority of analysis framework is written in the R

programming language utilizing Bioconductor [17] modules and

other open source packages. The genomics profiling datasets

processed by the canEvolve pipeline have been curated from

published studies. Thus, the selected datasets are already

publication quality. They are processed and normalized using

standard analysis methods. Specifically, microarray data and

associated annotations are downloaded using the GEOquery

package [18]. The Bioconductor affy [19] and simpleaffy packages

are used to pre-process and normalize the data. Raw data (CEL)

files from experiments run on the Affymetrix GeneChip platform

are processed with the RMA normalization in the ‘affy’ package

for each experimental group (study). For each GeneChip platform,

probe set definition and other annotations are obtained from chip

description files (CDF) supplied by Affymetrix, and sample

information accompanying genomic profiles is parsed and

manually curated. Normalization of miRNA studies is done in a

similar fashion. LIMMA R package is used to identify differential

expression [20]. Copy number profiling data are processed as

described in Cao et al. [21]. The TCGA data incorporated into

canEvolve are downloaded from Broad Institute’s Genome Data

Analysis Center (GDAC) at https://confluence.broadinstitute.

org/display/GDAC/Home. For the TCGA data, the RNA-Seq

data are normalized using the RSEM algorithm [22], thresholded

copy number information is identified using GISTIC 2.0 [23], and

protein expression data are normalized using SuperCurve method

[24] by the Broad GDAC.

The MSigDB 3.0 curated gene sets are used to run Gene Set

Enrichment Analysis [11]. The WGCNA [25] package is used to

identify unsigned gene co-expression modules and the ARACNE

[26] algorithm is used to infer regulatory networks from

microarray data. A manually curated list of 2000 transcription

factors (Shah PK et al., unpublished) is used as input for

ARACNE. The list was generated using protein domain annota-

tions from InterPro [27], gene ontology terms and literature

searches. The DR-Integrator [12] package is used for integrative

Table 1. The number of datasets for different data types in
canEvolve.

Data Type Total Datasets Total Patients

Gene Expression 55 6677

Copy Number Alterations 43 6537

miRNA Expression 7 466

Mutation 14 2867

Protein Expression 8 2190

Protein-Protein Interactions NA NA

doi:10.1371/journal.pone.0056228.t001

canEvolve for Integrative Oncogenomics
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analysis of gene expression profiles with copy number alterations.

The GemiNI [28] method is used for integrative analysis of gene

expression profiles with miRNA profiles. Multiple hypothesis

testing is adjusted using Benjamini-Hochberg correction as

implemented in multtest R package [29]. We have utilized many

of these pipelines in the past and compared our results to

published studies, and have found that these pipelines are error

free and generate reproducible results for each analysis type.

Table 2. Data analysis algorithms and total analyzed datasets in canEvolve.

Analysis type Analysis method Software/algorithm Analyzed datasets

Primary Differential Gene Expression LIMMA 68

Primary Differential miRNA Expression LIMMA 19

Primary Copy Number Alterations dChipSNP 32

Network Regulatory Networks ARACNE 13

Network Co-expression Networks WGCNA 16

Integrative Gene Set Enrichment GSEA 16

Integrative Gene Expression and miRNA Integration GemiNI 6

Integrative Gene Expression and Copy Number Alterations DR-Integrator 6

Integrative Genomic Changes and Gene Expression RSEM/GISTIC 2.0 14

Integrative Genomic Changes and Protein Expression SuperCurve/GISTIC 2.0 8

Survival Survival analysis R package Survival 22

Literature references to the analysis algorithms are provided in the main text.
doi:10.1371/journal.pone.0056228.t002

Figure 1. Query interface and visualization of primary analysis. (A) Visualization of differential gene expression for B-Cell Activation pathway
members in normal versus multiple myeloma (MM) comparison using the GSE6477 data. (B) Heatmap of differential miRNA expression in normal
versus MM comparison using the GSE16558 data. The MM samples are a subset that has no cytological abnormalities.
doi:10.1371/journal.pone.0056228.g001

canEvolve for Integrative Oncogenomics
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Results

canEvolve database content
The canEvolve web portal 1.0 is available at http://www.

canevolve.org. It is designed to answer primary and integrative

analysis questions frequently asked by cancer biologists. The

current version provides different types of information extracted

from 90 studies profiling more than 10,000 patients (Table 1),

including 15 TCGA datasets containing 4800 patient profiles. In

addition to information on differential gene and miRNA

expression and changes in gene copy number, it stores hundreds

of thousands of instances of co-expression, protein-protein

interaction, and metabolic and signaling pathways for the human

proteome. It also stores transcription factor-target and miRNA-

target information. The number of different analysis types for

different cancer types is summarized in Table 2 and Figure S3. We

are continuously adding new datasets of various cancer types into

canEvolve and the updated information is at the ‘‘About/

Statistics’’ section of the portal.

canEvolve web interface
The canEvolve web interface is designed to be simple and

uniform for querying different types of analysis. The query page at

http://www.canevolve.org/ lets a user retrieve the stored

knowledge and analysis results in easy steps (Figure 1A). First,

the user selects an analysis type at the left panel. Second, the user

selects a cancer type and studies stored in the database. Third, the

user inputs a gene name, a list of genes or select pathways, and

clicks ‘‘Get Results’’ to query the database and obtain results. The

query interface accepts official gene symbols. Depending on the

analysis type, query results can be visualized as heatmaps

(Figure 1A), plots or networks. The ‘Help’ tab located at the top

of the query page provides step-by-step instructions to effectively

use canEvolve. The query results can also be downloaded in the

form of tables and R data objects.

In the following we show examples of canEvolve capabilities

and how the stored knowledge and analysis results can be useful

for cancer researchers to generate biological hypotheses. We take

examples of genes and gene sets that may play important roles in

Figure 2. Query interface and visualization of survival analysis. (A) The Kaplan-Meier plot on the lower-right shows the survival impact of
E2F2 gene expression in the multiple myeloma dataset GSE2658. Two expression groups are defined using the median E2F2 gene expression across
all samples as the splitting value, and log-rank test is used to compute the p-value. Higher expression of E2F2 leads to high-risk (red) while lower
expression leads to lower risk (blue).
doi:10.1371/journal.pone.0056228.g002

canEvolve for Integrative Oncogenomics
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pathogenesis of multiple myeloma (MM) [30] and lung cancer

[31].

Examples of canEvolve query and visualization
The primary analysis capabilities include abilities to query

differential gene and miRNA expression as well as changes in copy

numbers (Figure 1). As a response to user queries canEvolve portal

creates an output page with four tabs providing query summary,

visualization, tabular data output and a data download option.

The gene set ‘‘B Cell Activation Pathway’’ as defined by MSigDB

version 3 [11] was used to generate Figure 1A, and a list of 7

miRNAs was used to generate Figures 1B.

The ‘‘Survival analysis’’ module carries out a univariate survival

analysis, showing that the gene expression of transcription factor

(TF) E2F2 significantly correlates with overall patient survival in

MM (Figure 2A), and the gene expression of MAP2K4 signifi-

cantly correlates with overall survival in breast cancer (Figure 2B).

These two genes are involved in cell cycle checkpoint and signaling

Figure 3. Network visualization by interfacing Cytoscape from canEvolve. (A) ARACNE reconstructed gene regulatory network for the
transcription factor SP1 using the multiple myeloma dataset GSE6477. (B) Experimentally validated and predicted Human protein-protein interaction
network of SP1 derived from the STRING database at the threshold of 0.993. The three lines connecting SP1 to different proteins show distinct
evidence types as used by STRING.
doi:10.1371/journal.pone.0056228.g003

Figure 4. Visualization of the association between genomic abnormality and gene or protein expression. (A) Boxplots of the expression
of gene MAP2K4 (X-axis) is plotted against groups of samples with different levels of copy number alteration of the MAP2K4 gene (Y-axis). Different
mutation types of the BRCA gene in these samples are also indicated. (B) Similar to (A), but Y-axis represents the protein expression of gene ACC1,
and X-axis and mutation points are represent the copy number abnormalities and mutation of TP53. Both (A) and (B) use the TCGA LUAD dataset.
doi:10.1371/journal.pone.0056228.g004

canEvolve for Integrative Oncogenomics
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transduction pathways, respectively, and their correlation with

survival outcomes suggests their roles in pathogenetic pathways

and potential as prognosis markers.

The TF SP1 [32] is used to query and visualize ARACNE

reconstructed transcriptional regulatory network in MM

(Figure 3A) and human protein-protein interaction network for

the gene (Figure 3B). These examples also show the ability of

canEvolve portal to generate high quality images.

The portal allows users to inspect the association between

genomic abnormalities and gene or protein expression levels for

TCGA patient profiles (Figure 4). This is accomplished by

visualizing the relationship between copy number alterations (X-

axis of Figure 4), gene expression levels (Y-axis) and mutations of

the same gene or of two different genes across patients. Moreover,

canEvolve provides opportunity to integrate information derived

from TCGA profiles to the publicly available profiles. For

example, users can infer the differential gene expression

(Figure 4A) and survival impact (Figure S4) of MAP2K4

differential gene expression in breast cancer using information

from TCGA and GSE7390.

Integrative analysis capabilities
The canEvolve portal allows researchers to query and retrieve

results from different types of integrative analysis. The simplest

integrative analysis is the ability to query differential expression

and survival impact of mSigDB curated gene sets (Figure 1A). The

canEvolve also provides pre-calculated GSEA results that allows

integration of gene expression information with mSigDB curated

gene sets, such as chromosome-position based gene sets, compu-

Figure 5. dChip-GemiNI analysis integrating gene expression with miRNA expression. The summary bubble-bar plot from GemiNI analysis
using the lung cancer dataset GSE18805 to identifies candidate transcription factors, miRNAs, and TF-miRNA feed-forward loops (FFL) involved in
cancer pathogenesis. TFs and miRNAs are ranked by the percentage of normal-cancer differentially expressed genes explained by all the significant
FFLs involving a TF or miRNA (the height of bars). The top 20 TFs and miRNAs are displayed. The bubble size indicates the number of differentially
expressed FFL target genes, and color indicates the FFL significance. For more details on the figure and the methodology see [28].
doi:10.1371/journal.pone.0056228.g005

canEvolve for Integrative Oncogenomics
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tationally identified gene sets that share a cis-regulatory motif, or

gene ontology terms.

The canEvolve portal also identifies genes that are putative

drivers or regulators tumorigenesis. We recently reported the

GemiNI (Gene and miRNA Network-based Integration) method

for integrating gene and miRNA expression profiles using feed-

forward loops consisting of TFs, miRNAs and their common

target genes [28]. GemiNI-identified TF and miRNAs regulators

are available for query at the canEvolve portal (Figure 5). For

example, GemiNI analysis of a lung cancer data set with paired

gene/miRNA expression (GSE18805, [33]) identified top TFs

(CREB1, SP1 and STAT3) and miRNAs (miR-15a, miR-195 and

miR-497) that are dysregulated in lung cancer. These TFs and

miRNAs have either known roles in lung cancer and other cancer

types or are potential new targets for experimental validation [34]

[35] [36,37].

In addition, researchers can access gene sets with highly

concordant gene expression changes and copy number alterations

based on DR-Integrator analysis [12]. These genes are likely to be

enriched of oncogenes and tumor suppressor genes [38]. For

example, BIRC2 and FAF1 are among the top 10 genes identified

using DR-Integrator analysis of a paired copy number and gene

expression dataset for myeloma (Table 3) [39]. These genes have

also been found to be often homozygous deleted and with survival

impact for myeloma by another independent study [40].

Meta-analysis of multiple studies
The canEvolve ‘‘Compare Studies’’ function allows meta-

analysis of pathways across multiple studies for differentially

expressed genes. The function allows users to select multiple

Table 3. Top 10 genes identified from integrative analysis of
copy number profiles with gene expression profiles from the
multiple myeloma dataset GSE26863 [39].

Gene Symbol Rank
Gene/copy
Correlation FDR

BIRC2 1 0.8666 0

PSMD4 2 0.7784 0

SDHC 3 0.7614 0

UBAP2L 4 0.75 0

MRPL9 5 0.7386 0

JTB 6 0.736 0

FAF1 7 0.7358 0

GPR89A 8 0.7352 0

WHSC1L1 9 0.7351 0

GSTT1 10 0.7346 0

doi:10.1371/journal.pone.0056228.t003

Figure 6. Meta-analysis of multiple studies in canEvolve. (A) The colors in the heatmap show the Fisher’s Exact test p-value for the enrichment
of differentially expressed genes between normal-cancer comparisons (X-axis) in a KEGG or Biocarta pathway (Y-axis). (B) Similar to (A), but gene sets
on the X-axis are selected for their significant correlation with survival using the cox proportional hazards model.
doi:10.1371/journal.pone.0056228.g006

canEvolve for Integrative Oncogenomics
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studies and check the enrichment of MSigDB derived gene sets in

differentially expressed or survival-related genes from these

studies. Figure 6A shows such a comparison for 21 gene sets

across 9 different cancer types. The figure suggests that pathways

such as cell cycle and apoptosis are more commonly dysregulated

across multiple cancer types, while the dysregulation of other

pathways such as IL5 is cancer type specific. Similarly, Figure 6B

reveals pathways that have survival correlations only in specific

cancer types, such as the cell cycle pathway in breast cancer but

not non-small cell lung cancer [41].

Identifying putative regulators of multiple myeloma
evolution

Meta-analysis of multiple studies not only provides insights into

differential pathway utilization or prognosis but also allows us to

model the evolution of different cancer types and candidate

regulators responsible for the process. At present, such analysis is

difficult due to the lack of suitable functional genomics profiles

covering all the stages of cancer evolution from the same patients.

Here we provide modeling of myeloma (MM) evolution as an

example of mining GSEA results stored in canEvolve. MM evolves

from a pre-malignant stage called monoclonal gammopathy of

undetermined significance (MGUS) at the rate of 1% per year

[42]. With response rate of about 40% with individual drugs,

many treated MM patients relapse. Currently, little is known

about this process of MM evolution [43,44], specifically about the

changes in regulatory networks and signaling pathways responsible

for it.

To model the evolution of MM with canEvolve, we carried out

gene set enrichment analysis of normal-MGUS, normal-MM,

normal-relapsed MM [45], with regulatory and pathways gene sets

from MSigDB (Figure 7). We identified transcription factors,

miRNA, metabolic and signaling pathways whose targets/mem-

bers significantly change their overall expression compared to

normal plasma cells at different stages of cancer progression. For

example, the targets of MYC, FOXO, NF-kB [46], miR-17 [47]

and let-7 [48] family members significantly change expression as

MGUS turns to MM. In contrast, the targets of miR-484 and

CREL (a member of the NF-kB family, [49]) significantly change

as MM patients relapse. These results suggest experimental

directions that target cancer evolution for therapeutics.

Discussion

We have created the canEvolve portal to help cancer biologists

easily access the knowledge and analysis results derived from

primary, integrative and network analysis of oncogenomic data

generated using various functional genomics platforms. The

algorithms for the analysis pipelines are selected from our

experiences in creating and utilizing such tools for generating

biologically relevant hypotheses. The focus of this work is the

generation of the database framework capable of storing multiple

data types and the user-friendly web interface.

The portal functionalities are developed with the analysis

requirements and feedback from multiple myeloma researchers.

We have now standardized those requirements and developed

rules for selecting and analyzing datasets for different cancer types

from public repositories to be added into canEvolve. canEvolve is

currently actively being used for research and has had more than

150 unique visitors from 15 different countries and some of them

have provided important feedback. Users can contact us at help@

Figure 7. Modeling of multiple myeloma evolution. Identification of transcription factors and miRNAs whose target genes significantly change
their overall expression compared to normal plasma cells during the evolution of myeloma from MGUS to relapsed stages by gene set enrichment
analysis. The X-axis shows different evolutionary stages of myeloma. The Y-axis shows the –log10 (p-value) from the gene set enrichment analysis
using the target genes of a TF or a miRNA based on MSigDB.
doi:10.1371/journal.pone.0056228.g007
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canevolve.org for help, feature suggestions and dataset requests, or

follow us on Facebook and Twitter.

Several existing databases and web portals allow researchers to

query oncogenomic data. Most of them focus only on one data

type (e.g. GCOD [50], CaSNP [21] and PrognoScan [51]).

canEvolve allows users to query larger number of data types when

suitable. It also allows visualization of regulatory and protein-

protein interaction networks. The recently published cBio cancer

genomics portal [52] allows access to level 3 TCGA data from the

Broad Institute’s genome data analysis center and provides query

capabilities similar to canEvolve. Unlike the cBio portal,

canEvolve provides higher-level analysis and allows users to

integrate TCGA data with other publicly available data. The

research edition of Oncomine provides standard analysis such as

comparison of cancer vs. normal, multi-cancer analysis, co-

expression, cancer outlier profile analysis and molecular concept

map analysis. Other Oncomine functionalities require subscrip-

tion. Unlike Oncomine, all canEvolve functionalities are available

for free. Moreover, neither the cBio portal nor Oncomine provides

network-based as well as integrative analysis of multiple data types

provided by canEvolve. While the canEvolve query functionalities

are general-purposed, the choice of analysis algorithms (e.g.

ARACNE, GemiNI) makes canEvolve a useful tool to extract

inference on regulators of gene expression such as transcription

factors and miRNAs. Also, canEvolve facilitates pathway-level

inference of abnormal gene expression and copy number changes,

and their survival impact. None of the existing portals have such

focus.

At present, many canEvolve processing and visualization

functions compute in real time. This design decision has resulted

in a substantial savings of disk space but it has slowed the response

time to user queries. This will be remedied in the next version of

canEvolve that will be based on cloud computing. Cloud

computing can accelerate the processing time by providing on-

demand resources for queries and Hadoop-based distributed

computing for running analysis. Currently we are redesigning

some of the processing and visualization pipelines to use R with

the Hadoop framework. The next version of canEvolve will better

integrate regulatory and protein-protein interaction information.

It will also allow researchers to analyze their own datasets in light

of current knowledge, stored analysis results and state-of-the-art

methodologies available at the portal in the form of automated

workflows. Finally, we will regularly insert level 3 TCGA data and

develop functions for further analysis of these data.

Supporting Information

Figure S1 Overall organization of canEvolve.

(TIF)

Figure S2 Modules in the canEvolve database schema.

(TIF)

Figure S3 Number of data sets, comparisons for
different analysis types for different cancer types in
canEvolve.

(TIF)

Figure S4 Survival curves for MAP2K4. See figure 4
legend for more information.

(TIF)
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