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Transcranial photobiomodulation (tPBM) has been considered a safe and effective brain

stimulation modality being able to enhance cerebral oxygenation and neurocognitive

function. To better understand the underlying neurophysiological effects of tPBM in

the human brain, we utilized a 111-channel functional near infrared spectroscopy

(fNIRS) system to map cerebral hemodynamic responses over the whole head to

8-min tPBM with 1,064-nm laser given on the forehead of 19 healthy participants.

Instead of analyzing broad-frequency hemodynamic signals (0–0.2 Hz), we investigated

frequency-specific effects of tPBM on three infra-slow oscillation (ISO) components

consisting of endogenic, neurogenic, and myogenic vasomotions. Significant changes

induced by tPBM in spectral power of oxygenated hemoglobin concentration (1[HbO]),

functional connectivity (FC), and global network metrics at each of the three ISO

frequency bands were identified and mapped topographically for frequency-specific

comparisons. Our novel findings revealed that tPBM significantly increased endogenic

1[HbO] powers over the right frontopolar area near the stimulation site. Also, we

demonstrated that tPBM enabled significant enhancements of endogenic and myogenic

FC across cortical regions as well as of several global network metrics. These findings

were consistent with recent reports and met the expectation that myogenic oscillation

is highly associated with endothelial activity, which is stimulated by tPBM-evoked nitric

oxide (NO) release.

Keywords: transcranial photobiomodulation, functional near-infrared spectroscopy, functional connectivity,

cortical infra-slow oscillation, endogenic oscillation, myogenic oscillation

1. INTRODUCTION

Over the past decade, photobiomodulation (PBM) has gained considerable interest as an innovative
modality for various disease treatments. This technique uses low-dose light from red to near-
infrared (630–1,100 nm) to modulate tissue function. A large number of PBM studies on different
conditions and diseases has shown positive outcome, including wound healing (Mester et al.,
1971; Conlan et al., 1996; Yasukawa et al., 2007; Peplow et al., 2010), pain relief (Fulop et al.,
2010), traumatic brain injury (Choi et al., 2012), Parkinson’s disease (Quirk et al., 2012), and
Alzheimer’s disease (Grillo et al., 2013). Transcranial PBM (tPBM), which refers to PBM applied on
the cerebral cortex, has also been demonstrated to enhance neural function and human cognition
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(Eells et al., 2004; Barrett and Gonzalez-Lima, 2013). tPBM
mechanism has been suggested in relation to cytochrome
c oxidase (CCO), a biological agent absorbing light in
the NIR range (Chance et al., 1997; Karu, 1999). CCO
is an essential enzyme associated with energy generation
within the mitochondria and thus a biological mediator of
PBM. Light absorption by CCO leads to an increase of
CCO activity, release of nitric oxide (NO), and thus an
increase of ATP production (Pastore et al., 1996; Hu et al.,
2007). As a consequence, tPBM enhances cerebral blood flow
(CBF) (Nawashiro et al., 2012; Lee et al., 2017) and brain energy
metabolism (Rojas et al., 2012; Purushothuman et al., 2014).

Different imaging modalities have been utilized concurrently
with tPBM administration to investigate its effects on the
brain, such as electroencephalography (EEG) (Wang et al., 2019;
Ghaderi et al., 2021), functional magnetic resonance imaging
(fMRI) (Vargas et al., 2017; Dmochowski et al., 2020), broadband
near-infrared spectroscopy (bbNIRS) (Tian et al., 2016; Wang
et al., 2017b; Pruitt et al., 2020; Saucedo et al., 2021), or
functional near-infrared spectroscopy (fNIRS) (Holmes et al.,
2019; Urquhart et al., 2020b). Among them, NIRS (both fNIRS
and bbNIRS) has been considered as an effective and non-
invasive tool for assessing the hemodynamic (Villringer et al.,
1993; Boas and Franceschini, 2011; Quaresima et al., 2012;
Boas et al., 2014; Scholkmann et al., 2014) and metabolic state
of the brain (Villringer et al., 1993; Smith, 2011; Tian et al.,
2016; Wang et al., 2017b). The level of near-infrared light
attenuation in tissue can be used to quantify the changes in
chromophore concentrations of the investigation site and hence
monitor tissue hemodynamic and metabolic state in real time.
Both bbNIRS and fNIRS have advantages and disadvantages.
The former is able to monitor changes in CCO metabolism
but limited with the number of bbNIRS channels, especially for
applications that require multi-channel monitoring. On the other
hand, fNIRS can provide regional or global mapping of cerebral
hemodynamics (Chen et al., 2020; Wanniarachchi et al., 2021),
which helps better understand the influence of any intervention,
including tPBM, on different cortical regions.

One primary source of cerebral activity is the
vasomotion (Brown et al., 2002; Aalkjær and Nilsson, 2005;
Vermeij et al., 2014; Bosch et al., 2017), which is associated to
spontaneous oscillations derived from the blood vessel wall.
There are three main intrinsic infra-slow oscillation (ISO)
components of cerebral activity, including endogenic oscillation
(0.003–0.02 Hz) relating to the vascular endothelial metabolic
activity (Rubanyi, 1991), neurogenic oscillation (0.02–0.04 Hz)
of the intrinsic neuronal activity, and myogenic oscillation
(0.04–0.15 Hz) reflecting the vascular smooth muscle activity.
ISO can be estimated using fNIRS, followed by appropriate
frequency-domain analysis methods (Cao et al., 2018; Urquhart
et al., 2020a). Analyzing cerebral ISO activities facilitates to better
understand the neurophysiological responses under different
stimulation conditions or diseases.

This work shared the data reported earlier (Urquhart
et al., 2020b) that utilized a 111-channel fNIRS system
concurrently with tPBM delivered on the right prefrontal
cortex (rPFC) of 19 healthy participants to investigate the

cerebral hemodynamic activity over the whole cortex. Compared
to our previous work (Urquhart et al., 2020b), this paper
reports several new analysis methodology and novel findings.
First, the cluster-based permutation test (CBPT) (Maris and
Oostenveld, 2007; Oostenveld et al., 2011; Pellegrino et al.,
2016; Benavides-Varela and Gervain, 2017) was applied to the
111-channel fNIRS data to identify tPBM-evoked, brain-wide
changes of oxygenated hemoglobin concentration (1[HbO]).
Second, we analyzed frequency-specific hemodynamic signals
by quantifying three ISO-based metrics under the active/sham
tPBM conditions. The novel findings of this publication
included (1) quantification of ISO powers of 1[HbO], (2) ISO-
specific functional connectivity (FC) across the whole cortex,
and (3) global topographical network metrics at three ISO
frequency bands. A few existing tPBM-related studies assessed
FC computed from EEG (Zomorrodi et al., 2019; Ghaderi
et al., 2021), fMRI (Dmochowski et al., 2020; Naeser et al.,
2020), or broad-frequency fNIRS (Urquhart et al., 2020b),
but not frequency-specific fNIRS. Therefore, the current work
would help answer two key questions: Does tPBM modulate
FC differently at different ISO frequencies? If so, which ISO
frequency bands are more responsive to tPBM?We hypothesized
that tPBM would enhance FC at specific frequency bands,
depending on molecular mechanisms of tPBM. By the end of this
work, our results would show significant increase in ISO powers
of1[HbO], FC and global network metrics for endogenic or/and
myogenic oscillations, which confirmed our hypothesis.

2. MATERIALS AND METHODS

2.1. Participants
A total of 19 healthy adults (14 men, 5 women), mean age ±

standard deviation (SD) of 31.7 ± 9.5 years, were recruited for
this study. All participants were healthy and did not have any
history of psychiatric or neurological disorders. The experimental
protocol was approved by the Institutional Review Board (IRB) of
the University of Texas at Arlington (IRB # 2017-0859). Informed
consent was required prior to all experiments. Of the original 19
participants, two were excluded due to significant noise during
the fNIRS acquisition, which left 17 subjects for further analysis.

2.2. Experimental Procedures
We employed a multichannel continuous-wave (CW) fNIRS
system (LABNIRS OMM-3000, Shimadzu Corporation, Kyoto,
Japan) with laser diodes at three near-infrared wavelengths
(780, 805, and 830 nm) to measure cerebral hemodynamic
responses. LABNIRS utilized Multialkali photomultiplier tubes
as photodetectors, which have a very low quantum yield and
have non-detectability at 1,064 nm used in our tPBM. Therefore,
the interference from the tPBM laser to fNIRS measurements
was minimal. Detected signals were sampled at 10.1 Hz. Thirty-
two emitters and thirty-four detectors were arranged over the
entire head, resulting in a 111-channel layout (Figure 1A).
Anatomical optode locations with respect to the standard cranial
reference points (nasion, inion, left and right preauricular) were
determined for each subject using a 3D digitizer (FASTRAK,
Polhemus VT, USA). TheMontreal Neurological Institute (MNI)
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FIGURE 1 | Experimental setup and protocol. (A) fNIRS source-detector configuration. The source and detector optodes are denoted as the red and blue circles,

whereas squares represent the functional channels. (B) The distribution of 111 functional channels over different brain cortices: frontopolar area (FP) (red), dorsolateral

prefrontal cortex (DLPFC) (green), Broca’s area (purple), BA8 (orange), BA44/45 (pink), premotor cortex (PMC) (blue), primary motor and somatosensory cortices

(M1/S1) (yellow), temporal gyrus (cyan), Wernicke’s area (olive), somatosensory association cortex (SAC) (teal), and BA39 (gray). The flashlight represents the laser

beam delivered to the right forehead of the subject. The yellow-shaded area corresponds to the right prefrontal cortex (rPFC). (C) Schematic diagram of the

experimental protocol. Nineteen subjects were randomly divided into two groups: active-sham or sham-active stimulation. A minimum 1-week waiting period between

two visits was required to avoid potential effects from active tPBM.

coordinates and the corresponding Brodmann Area (BA) for
each channel were determined using the NIRS-SPM software (Ye
et al., 2009). One hundred and eleven fNIRS channels covered
eleven main cortical areas as shown in Figure 1B: frontopolar
area (FP) (red), dorsolateral prefrontal cortex (DLPFC) (green),
Broca’s area (purple), BA8 (orange), BA44/45 (pink), premotor
cortex (PMC) (blue), primary motor and somatosensory cortices
(M1/S1) (yellow), temporal gyrus (cyan), Wernicke’s area (olive),
somatosensory association cortex (SAC) (teal), and BA39 (gray).

An FDA-cleared 1,064-nm CW laser (Model CG-5000 Laser,
Cell Gen Therapeutics LLC, Dallas, Texas) was used for

non-invasive tPBM (Barrett andGonzalez-Lima, 2013; Tian et al.,
2016; Wang et al., 2016, 2017b, 2019; Blanco et al., 2017). The
laser’s irradiation area was 13.6 cm2, and the laser power was
set to 3.4 W. This laser power resulted in a power density of
0.25 W/cm2 and a total energy dose of 1,632 J over 8-min tPBM
duration (3.4 W × 60 s/min × 8 min = 1,632 J). The light
was applied by non-contact delivery over the right frontopolar
area near the Fp2 location according to the 10/20 international
standard system (Jurcak et al., 2007) (Figure 1B). For sham
stimulation, the laser power was set to 0.1 W, and a black cap
was placed in front of the laser aperture to further block the light.
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The reason to keep 0.1 W power was to keep all the electronic
components on while the light delivery was zero. The participants
would not be aware of the cap since it was put after they closed
their eyes. Experimental participants must wear a pair of laser
protection goggles throughout the experiment.

Each subject attended two study sessions: active tPBM and
sham tPBM. The orders of these two sessions were randomized
among nineteen subjects. A minimum 1-week waiting period
between two visits was required to avoid any carry-over
effects. During the experiment, subjects were instructed to sit
comfortably with their eyes closed. The resting-state fNIRS data
were recorded for 8 min of pre-stimulation, 8 min of active/sham
stimulation, and 4 min of post-stimulation (Figure 1C).

2.3. Data Preprocessing
Figure 2A depicts different steps of preprocessing the resting-
state fNIRS data collected in our study. We followed the typical
fNIRS data pre-processing pipeline to process our resting-state
fNIRS data (Pinti et al., 2019; Hou et al., 2021). The raw voltage
data were first converted into optical density data and then
into the concentration changes of oxy-hemoglobin (1[HbO])
and deoxy-hemoglobin (1[HHb]) using the modified Beer-
Lambert law (Liu et al., 2000; Sassaroli and Fantini, 2004)
with a differential pathlength factor of 6. These two steps
were done with the functions from the open-source Homer2
software package (Huppert et al., 2009). Since 1[HbO]) and
1[HHb] may suffer from the systematic drifts due to instrument
instability, the linear trend was first estimated using 8-min
baseline signals and then subtracted from the whole signals.
Subsequently,1[HbO] and1[HHb] were low-pass filtered using
a third-order Butterworth filter with a cut-off frequency of 0.2 Hz
to remove physiological noise, such as respiration (0.2–0.5 Hz),
heartbeat (1–15 Hz), and other instrument noise (Pinti et al.,
2019). Finally, motion correction using Principle Component
Analysis (PCA) filter (Zhang et al., 2005) was applied to remove
motion artifacts. The first two principal components, accounting
for the most significant proportion of the variance in the data,
were removed from the signals of all channels. Finally, we applied
the signal quality index (SQI) algorithm (Sappia et al., 2020) to
evaluate the quality of the fNIRS signals. Channels whose SQI was
equal to 1, indicating a very low-quality signal, were marked as
excluded and would not be considered in the statistical analysis.
Of the original 19 participants, two whose fNIRS data had more
than 10 rejected channels were excluded, leaving 17 subjects for
further analysis. Due to smaller amplitudes and similar inverse
patterns of 1[HHb], we considered only 1[HbO] for further
data analysis.

2.4. Data Analysis
2.4.1. Mapping Sites of tPBM-Induced Significant

Increases in 1[HbO]
As mentioned in Section 1, we first considered the whole-
head, broad-frequency 1[HbO] signals and sought to identify
cerebral regions responding significantly to tPBM. We applied
the CBPT (Maris and Oostenveld, 2007; Oostenveld et al., 2011;
Pellegrino et al., 2016; Benavides-Varela and Gervain, 2017) to
the whole-head time-resolved1[HbO] signals of tPBM and sham

sessions. Such an analysis allows us to identify significant spatio-
temporal clusters exhibiting hemodynamic responses to tPBM
sustained in time and spatial neighborhood channels. Also, CBPT
helps avoid the statistical problem of overly strict correction for
multiple comparisons, which multi-channel fNIRS data often
encounter.

The principle of permutation-based statistical testing is that
observations for different conditions in the null hypothesis
are drawn from the same distribution and thus exchangeable.
Therefore, if an effect observed in the data is not spurious, it
should not be perceived when the data is randomly permuted
multiple times. If less than 5% of the permutations show the
effect, the null hypothesis is rejected, and the observed effect is
considered genuine and thus significant (Maris and Oostenveld,
2007). The CBPT further considers both spatial and temporal
adjacency of the observed data based on the property that
observations on neighboring sites and time points are usually
correlated. Once cluster candidates are formed, the cluster-level
t-values, estimated as the sum of t-values of all data points
belonging to each cluster, are compared to the permutation
distribution of maximal cluster statistics. Such a permutation
distribution is generated by randomly permuting the data a large
number of times and retrieving the maximum cluster statistics
(i.e., the maximum of the cluster-level summed t-values) every
time. Any clusters whose cluster-level t-values from the actual
data are larger than the 95th percentile of the maximum cluster
permutation distribution are considered significant (Oostenveld
et al., 2011; Pellegrino et al., 2016).

The processing routine to perform the CBPT-based 1[HbO]
time-series data analysis is shown in Figure 2B. First, we
calculated the average of 1[HbO] over 1 min prior to
the active/sham stimulation and subtracted it from the
corresponding 1[HbO] time-series. The baseline-calibrated
1[HbO] signals during 8 min of stimulation and 4 min of
post-stimulation were then averaged or segmented for every 1
min. CBPT was finally performed on the time-dependent per-
minute 1[HbO] values of all 111 channels using the functions
from the Fieldtrip toolbox (Oostenveld et al., 2011). The channel
neighbors for spatial clustering were defined within a distance
of 2.5 cm from the center channel, which resulted in an average
of 4.7 neighbors per channel. The critical cluster threshold for
considering a data point (a channel-time pair in our case) as
a candidate member of a cluster was computed based on the
statistical distribution of the permutation data and the cluster
alpha of 0.05. The number of randomizations or permutations
was set to 2,000. The Monte Carlo method was used to calculate
the probability of each cluster. Clusters whose p-values were less
than the critical αcluster = 0.05 were considered significant.

2.4.2. Quantification of Changes in 1[HbO] Power of

Three Infra-Slow Oscillations (ISO)
The data analysis on CBPT-based 1[HbO] time-series given in
the previous section only investigated the broad-frequency (0–
0.2 Hz) hemodynamic changes without considering frequency-
specific oscillations. Our interest in this section is to quantify
the changes in 1[HbO] power at three ISO frequency
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FIGURE 2 | Flowchart for fNIRS data analysis. (A) fNIRS data preprocessing procedure. (B) Processing steps for mapping sites of tPBM-induced significant increases

of 1[HbO]. (C) Processing procedure for quantifying changes in 1[HbO] power of three ISOs. (D) Steps for functional connectivity analysis.

bands, including endogenic (0.003–0.02 Hz), neurogenic (0.02–
0.04 Hz), and myogenic (0.04–0.15 Hz) oscillations. Welch
method (Welch, 1967) was used to calculate the power spectral
density (PSD) for 1[HbO] time-series of significant channels
(channels 3, 4, and 7) found in Section 2.4.1. The processing
procedure is shown in Figure 2C. First, we segmented 1[HbO]
signals based on three experimental periods, namely, 8 min of
baseline (pre), 8 min of tPBM/sham (stim), and 4 min of post-
tPBM/sham (post). Let P c

〈seg〉
(f ) be the Welch power spectrum of

1[HbO] segment named
〈

seg
〉

from channel c, where
〈

seg
〉

was
noted as “pre”, “stim”, or “post”. The average power of each ISO
frequency band P c

〈seg〉,〈fb〉
was then computed by averaging the

frequency-dependent power within the corresponding frequency

range of the ISO frequency band
〈

fb
〉

, including “e” for endogenic,
“n” for neurogenic, and “m” for myogenic. Finally, the percentage
changes of the power during tPBM/sham and post-tPBM/sham
periods to the power during the baseline period were defined as
follows:

1P c
〈seg〉,〈fb〉

=

P c
〈seg〉,〈fb〉

− P c
pre,〈fb〉

P c
pre,〈fb〉

× 100% (1)

The percentage changes in power relative to the baseline power
were calculated for both tPBM and sham sessions. Paired t-test
was finally employed to investigate the effects of tPBM on the
relative changes in 1[HbO] power of three ISO frequency bands.
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2.4.3. Quantification of Changes in Functional

Connectivity of Three ISO Frequency Bands
We desired to investigate further the effect of tPBM on brain
connectivity by calculating FC for each experimental period: pre-
stimulation, during stimulation, and post-stimulation for both
study sessions (active and sham tPBM). Unlike our previously
published work (Urquhart et al., 2020b) that computed FC
using 1[HbO] signals from the entire range of hemodynamic
fluctuations (0–0.2 Hz), we calculated FC for three ISO frequency
bands. The pipeline of the FC analysis is thus depicted in
Figure 2D. First, the broadband 1[HbO] time series was first
bandpass filtered to extract the signals corresponding to three
ISO frequency bands. The time-series data of each ISO were then
segmented for three periods, corresponding to the baseline (pre),
during tPBM/sham (stim), and post-tPBM/sham (post). Pearson’s
correlation coefficients (PCC) were calculated for each pair of
111 fNIRS channels (Niu and He, 2014). The PCC matrices were
finally converted to z-values using Fisher’s r-to-z transformation
to ensure normality.

Since the tPBM stimulation site was near the right prefrontal
cortex (rPFC), only FCs between channels within the rPFC
(yellow shaded region shown in Figure 1B) to all other
channels were considered for further statistical analysis. We were
interested in changes in functional connectivity in both cases:
(1) over time (pre vs. during vs. post) within each experimental
session (active tPBM or sham) and (2) between experimental
sessions (tPBM vs. sham). To investigate the effects of tPBM on
brain connectivity over time, we compared the z-transformed
PCC between each period pair: stimulation vs. pre, post vs.
stimulation, post vs. pre. Paired t-test was used to compare the
z-transformed PCC of two periods across subjects within the
same experimental session (tPBM or sham). False discovery rate
(FDR) correction with q-value = 0.05 was employed for multiple
comparison correction. This procedure was applied for both
tPBM and sham sessions to ensure the significant differences
between any period pair were genuinely provoked by tPBM.

For the between experimental sessions comparison (tPBM vs.
sham), paired t-tests with FDR correction was also employed
to compare the z-transformed PCC between tPBM and sham
experiments of each experimental period. This procedure was
repeated for all three periods (pre, during, and post-stimulation)
and for three ISO frequency bands.

2.4.4. Topographical Network Metrics Analysis for

Three ISO Frequency Bands
Graph theory analysis (GTA) (Niu et al., 2012, 2013; Li et al.,
2018) was also employed to investigate tPBM-induced changes
in global topographical network metrics for three ISO frequency
bands. For each frequency-specific FC matrix obtained in
Section 2.4.3, we constructed the neighborhood graph in which
fNIRS channels were considered as nodes and FC between two
channels were considered as edges. The neighborhood graph
was then converted into an adjacency matrix by thresholding
it with different sparsity levels S (0.15 < S < 0.5) to
obtain binary networks. Seven global network metrics, including
small-world properties (clustering coefficient Cp, characteristic
path length Lp, normalized clustering coefficient γ , normalized

characteristic path length λ, and small-world σ ) and efficiency
parameters (local efficiency Eloc and global efficiency Eg), were
calculated from the binary networks of three periods (pre,
during tPBM/sham, and post) of both study sessions (active and
sham tPBM). The global network metrics were finally compared
between active and sham tPBM sessions using the relative
changes to the baseline period (i.e., pre-tPBM/sham). The relative
change of a given network metric was calculated as:

1M〈p〉,〈fb〉 =
M〈p〉,〈fb〉 −Mpre,〈fb〉

Mpre,〈fb〉
× 100% (2)

whereM〈p〉,〈fb〉 denotes the network metricM obtained from the

FC of period
〈

p
〉

at ISO frequency band
〈

fb
〉

.

3. RESULTS

3.1. Mapping Sites of tPBM-Induced
Significant Increases in 1[HbO] Using
CBPT
Figure 3 depicts the time-resolved (in minute) topographical
t-maps and CBPT results when comparing the whole head
1[HbO] time series of two study sessions (active and sham
tPBM). The positive values in the topographical t-map indicate
that the 1[HbO] values of the active tPBM session were higher
than those of the sham tPBM session, whereas the negative
values denote the opposite. Black dots represent the channels
that contributed to significant clusters obtained by the CBPT
(pcluster = 0.05).

For the first 3 min after starting the stimulation, no significant
differences between active and sham tPBM were detected.
Starting from minute 4, CBPT revealed significant differences
between active and sham tPBM over the right frontopolar area
(channels 3, 4, and then channel 7 starting from minute 7). It is
worth noting that the topographical t-maps also show the gradual
increase of the t-score values of the channels near the stimulation
site (the surface color gradually changed from yellow to orange
to bright red and then dark red). Moreover, the increase of
1[HbO] remained during the 4-min post-stimulation when the
stimulation light was off. Therefore, such an increase in 1[HbO]
is expected to truly come from the physiological responses to
tPBM. The contamination effect from the laser light would have
shown an immediate reduction in 1[HbO] after the laser ceased.

We also present in Figure 4 the time-resolved1[HbO] signals
of three channels near the stimulation site to better visualize
the changes in HbO concentration induced by tPBM. We can
notice a gradual increase of 1[HbO] under the tPBM condition
(red curves). As expected, notable differences of 1[HbO] curves
between active and sham tPBM were observed from minute 4 of
stimulation. Moreover, the increase of 1[HbO] remains during
the 4-min post-stimulation (minutes 8–12) when the stimulation
was off.

3.2. Changes in 1[HbO] Power of Three
ISO Frequency Bands
To assess tPBM-induced effects on hemodynamic power of
three ISO frequency bands, we computed the percentage power
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FIGURE 3 | Time-resolved topographical t-maps and CBPT results when comparing the whole head 1[HbO] time series of two study sessions (active and sham

tPBM). Black dots indicate the channels that contributed to significant clusters obtained by the CBPT (pcluster < 0.05).

FIGURE 4 | Time-resolved 1[HbO] signals of three channels near the stimulation site: channels 3, 4, and 7. The red and blue curves correspond to the tPBM and

sham sessions, respectively. Red and blue shades indicate the standard error of the mean of each group. The yellow shade depicts the stimulation period (8 min).

changes for both tPBM and sham sessions based on Eq. (1).
Figure 5 depicts the percentage changes of hemodynamic power
1P of three significant channels detected in Section 3.1 for the
tPBM/sham stimulation period and the post-tPBM/sham period.
Statistical results obtained by paired t-tests between tPBM and
sham sessions are marked as “∗∗” for p < 0.01. Compared to
sham condition, tPBM significantly enhanced 1P of channel 4
in the endogenic frequency band for both tPBM and post-tPBM
periods. Significant increase in relative power changes was also
revealed in channel 4 in the neurogenic frequency band during
the post-tPBM period.

3.3. Changes in Functional Connectivity of
Three ISO Frequency Bands
3.3.1. Channel-Wise Analysis of Frequency-Specific

FC
As mentioned in Section 2.4.3, FC was calculated for three ISO
frequency bands. Paired t-tests with FDR correction were first
employed to determine significant FC between three pairs of

periods, namely, Stim-Pre (during vs. pre-stimulation), Post-
Stim (post vs. during stimulation), and Post-Pre (post vs. pre-
stimulation) within the same experiment session (active and
sham tPBM). Figure 6 depicts the t-score maps of FC between
three pairs of periods for the endogenic and myogenic bands.
For the endogenic frequency band (Figure 6A), significant
differences in FC were found in the case of active tPBM for
the Post-Stim (first row, second column) and Post-Pre stim
(first row, third column) pairs (p < 0.05, FDR corrected). The
connections indicated the stronger FC during post-stimulation
than pre or during stimulation. No significant differences in
FC were observed for the Stim-Pre pair of the active tPBM
experiment (first row, first column). Also, paired t-tests with FDR
correction did not reveal any significant FC for all three pairs of
periods for the sham tPBM case (second row), which confirmed
the genuine effects induced by active tPBM.

Specifically, for the Post-Pre pair of the active tPBM
experiment (Figure 6A), a large number of significant
connections (p < 0.05, FDR corrected) were observed
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FIGURE 5 | Percentage changes of 1[HbO] power 1P of three significant channels (3, 4, and 7) for the tPBM/sham stimulation (first row) and post-stimulation

(second row) periods. tPBM- and sham-induced 1P are marked by red and blue bars, respectively. Error bars indicate the standard error of the mean of each group.

Statistical results obtained by paired t-tests between tPBM and sham sessions are marked as “∗∗” for p < 0.01.

FIGURE 6 | T-score maps of significant changes in FC between three pairs of periods for two frequency bands: (A) endogenic and (B) myogenic (p < 0.05, FDR

corrected). Only FC from right PFC to all channels was considered for the statistical analysis. The FC strength was compared between stimulation vs. pre-stimulation

(Stim-Pre), post- vs. during stimulation (Post-Stim), and post- vs. pre-stimulation (Post-Pre) for both active (first row) and sham (second row) tPBM.

among channels within the rFP or between rFP and rDLPFC
(10 significant connections among channels within the rFP and
8 between rFP and rDLPFC). Other ROI pairs having a high

number of significant connections included rDLPFC and lM1/S1
(10), rFP and lDLPFC (7), rDLPFC and rPMC (7), rFP and
lPMC (6), rFP and lM1/S1 (5), rFP and BA44/45 (5), rDLPFC
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and lDLPFC (5), rDLPFC and rDLPFC (6), rDLPFC and lPMC
(6), and rDLPFC and Wernicke (5). Thus, in addition to the two
regions FP and DLPFC located close to the excitation region,
other ROIs including PMC, M1/S1, and Wernicke also showed
significant improvements in FC between them and the rPFC.

Meanwhile, the myogenic band exhibited more and stronger
FC for the Post-Stim period pair than Stim-Pre and Post-Pre
pairs for the case of active tPBM (first row of Figure 6B).
Many significant connections were found when comparing
FC between Post-Stim. FC during post-stimulation was also
enhanced compared with the pre-stimulation phase. Once again,
no significant FC was found for the case of sham tPBM for all
three pairs of periods (second row of Figure 6B).

For the neurogenic band, statistical analysis of FC between
three pairs of periods could not reveal any significant changes in
connections for both active and sham tPBM experiments. Thus,
no report for this frequency band was presented.

Regarding the comparison between tPBM and sham sessions,
no significant difference in FC was revealed after paired t-tests
with FDR correction for any experimental period (pre, during, or
post-stimulation) for all three ISO frequency bands. Thus, we did
not report any results for this comparison.

3.3.2. Region-Wise Analysis of Frequency-Specific

FC
To further understand the changes of FC over different periods,
we also calculated the region-wise difference in FC of three
period pairs of the active tPBM experiment. The average FC
of all connections between two ROIs was first calculated,
and the difference in region-wise FC between two periods,
including Stim-Pre, Post-Stim, and Post-Pre, was then computed.
Topographical maps of the region-wise difference in FC at
the endogenic frequency band were depicted in Figures 7A–C,
exhibiting a gradual enhancement of FC starting from the
stimulation phase to the post-stimulation phase compared to pre-
stimulation. FC during the stimulation period improved slightly
compared to pre-stimulation (Figure 7A), which explains why
paired t-tests with FDR correction did not reveal any significant
connection when comparing these two periods (Figure 6A). FC
during post-stimulation compared to the stimulation phase was
enhanced more than the Stim-Pre period pair, which resulted in
several significant connections after applying paired t-tests with
FDR correction (Figure 6A). The region-wise difference in FC
for this period pair (Figure 7B) also shows higher values than
the Stim-Pre pair. In consequence, we observed higher difference
in FC when comparing post and pre-stimulation periods
(Figure 7C), as well as much more significant connections after
paired t-tests with FDR correction as shown in Figure 6A.

The region-wise topographical maps of the difference in
FC at the myogenic frequency band exhibited a slight decline
in whole-head FC during the stimulation period compared
to the pre-stimulation (Figure 7D). However, such a decline
was not significant (i.e., no significant connection was found
in Figure 6B). During the post-stimulation, global FC was
enhanced notably, resulting in a large number of significant
connections between channels from rPFC to all other channels

FIGURE 7 | Topographical maps of the region-wise difference in FC between

three pairs of periods for two frequency bands: (A–C) endogenic and (D–F)

myogenic. ROIs include left and right frontopolar area (lFP; rFP) (red), left and

right dorsolateral prefrontal cortex (lDLPFC; rDLPFC) (green), Broca’s area

(purple), left and right BA8 (lBA8; rBA8) (orange), BA44/45 (pink), left and right

premotor cortex (lPMC; rPMC) (blue), left and right primary motor and

somatosensory cortices (lM1/S1; rM1/S1) (yellow), left and right temporal

gyrus (lTemporal; rTemporal) (cyan), Wernicke’s area (olive), left and right

somatosensory association cortex (lSAC; rSAC) (teal), and BA39 (gray). Only

FC from (lFP; rFP) and (lDLPFC; rDLPFC) to all ROIs was plotted.

observed for the Post-Stim pair of periods. Overall, FC was also
improved after tPBM (the Post-Pre pair, Figure 6B).

3.4. Changes in Global Topographical
Network Metrics for Three ISO Frequency
Bands
Asmentioned in Section 2.4.4 the relative changes of seven global
network metrics were calculated for each ISO frequency band
and for during and post-stimulation periods. Then, paired t-tests
were used to compare the relative changes of network metrics
between tPBM and sham conditions. In this section, we report
only the GTA results revealed to be significantly different between
these two experimental conditions.

Figure 8 shows relative changes of three global topological
metrics, namely, global efficiency, local efficiency, and
characteristic path length, during the stimulation period at
the myogenic frequency band. Briefly, global efficiency (Eg)
depicts how information propagates efficiently through the
whole network, while local efficiency (Eloc) measures the
average efficiency of information transfer within a node’s
neighborhood (Bullmore and Sporns, 2009). Finally, the
characteristic path length corresponds to the average shortest
path length between all pairs of nodes in the graph (Rubinov and
Sporns, 2010).

GTA results showed that global and local efficiency were
improved thanks to tPBM stimulation. Meanwhile, the
characteristic path lengths during tPBM stimulation were
significantly shortened than those under the sham treatment.
Shorter path lengths indicate that tPBM enhanced network
information exchange. As a consequence, both global and local
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FIGURE 8 | The relative changes of three global topological metrics during the stimulation period for the myogenic frequency band (from left to right: global efficiency,

local efficiency, and characteristic path length). Significant differences between tPBM and sham conditions are marked by black stars: “∗” for p < 0.05, “∗∗” for

p < 0.01, and “∗ ∗ ∗” for p < 0.001. Red lines indicate tPBM condition, while blue lines indicate sham. Error bars indicate the standard error of the mean of each case.

efficiency of the topological network was improved due to the
shorter characteristic path length induced by tPBM.

No significant differences were found during the post
tPBM/sham period at the myogenic frequency band, as well
as during both periods (i.e., during and post tPBM/sham) at
endogenic and neurogenic bands. Thus, no report for other
periods at other frequency bands was presented.

4. DISCUSSION

4.1. tPBM-Induced Increases of Cerebral
1[HbO] Near the Stimulation Site
In our previously published work (Urquhart et al., 2020b), we
considered only eight channels in the prefrontal region and
utilized the paired t-test at each of the eight channels without
correction for multiple comparisons in statistical analysis. In this
study, we re-analyzed the signals of all 111 channels and applied
a more rigorous statistical analysis, CBPT, to investigate crucial
channels/regions possessing significant increases of 1[HbO]
induced by tPBM. This approach revealed significant clusters
over the right frontopolar area near the stimulation site. The
positive t-score values of the channels contributing to those
clusters denoted a substantial increase of 1[HbO] values during
the active tPBM session compared to those of the sham
session. Moreover, notable increases in 1[HbO] occurred 4 min
after starting the laser stimulation and remained through the
stimulation and post stimulation.

These findings were consistent with those reported
previously (Tian et al., 2016; Wang et al., 2017b; Hipskind
et al., 2018; Holmes et al., 2019; Pruitt et al., 2020). For example,
in Wang et al. (2017b), 1,064-nm laser light was delivered
to the forehead of healthy subjects and measured with a
single-channel bbNIRS system to investigate corresponding
changes in 1[CCO], 1[HbO], and 1[HbT]. The authors
observed significant increases in 1[HbO] and 1[CCO] near
the stimulation location. Pruitt et al. (2020) repeated the same
experimental protocol with two age groups of young (mean of
26.7 years of age) and older subjects (mean of 68.2 years of age).
Experimental results also revealed similar net increases in sham-
controlled 1[HbO]. Another study evidenced the augment

of 1[HbO] over the frontal area before and after forehead
tPBM measured with a 20-channel fNIRS system (Holmes et al.,
2019). In the meantime, the authors also reported tPBM-evoked
improvement of cognitive performance.

It is worth noting that, although the skin temperature at the
local stimulation site was slightly increased because of local light
absorption (Wang et al., 2017a; Pruitt et al., 2022), the increase
of 1[HbO] observed in this study was not caused by the light-
induced thermal effect. As reported in the previous study from
our group (Wang et al., 2017a), the changes in hemoglobin
concentration induced by the heat stimulation were completely
different from those provoked by tPBM. Specifically, thermal
stimulation led to a decrease in 1[HbO] during the stimulation
period and a back-to-baseline state within 2 or 3 min during
the post-stimulation period. Other investigations on the tPBM-
induced increase in brain temperature through a computational
model (Bhattacharya and Dutta, 2019) or magnetic resonance
thermometry (Dmochowski et al., 2020) also confirmed that
there was no significant difference in temperature between tPBM
and sham conditions. Furthermore, a recent study using EEG
to investigate the effects of tPBM and thermal stimulation
demonstrated that alterations of EEG power topography were
significantly different between the two stimulations (Wang et al.,
2021).

4.2. tPBM-Induced Increases in 1[HbO]
Power at Endogenic Oscillation
To the best of our knowledge, all tPBM-related studies utilized
only time-domain or time-averaged analysis to investigate
significant changes in hemodynamic and metabolic signals
induced by tPBM (Tian et al., 2016; Wang et al., 2017b; Hipskind
et al., 2018; Holmes et al., 2019; Pruitt et al., 2020; Urquhart et al.,
2020b). In this study, we employed a frequency-domain approach
by taking the Welch method to investigate or analyze frequency-
specific hemodynamic signals. The comparison of changes in
frequency-dependent 1[HbO] power between active tPBM and
sham sessions revealed significant increase of 1[HbO] power in
the endogenic frequency band. Such results implied that tPBM
impacted hemodynamic activities mainly on the endothelial cells
of blood vessels at the endogenic oscillation.
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4.3. Effects of tPBM on Frequency-Specific
FC and Global Network Metrics
Instead of evaluating the effects of tPBM on FC within a broad
frequency range (0–0.2 Hz) of 1[HbO] as reported in Urquhart
et al. (2020b), we calculated FC at three distinct frequency bands:
endogenic (0.003–0.02 Hz), neurogenic (0.02–0.04 Hz), and
myogenic (0.04–0.15 Hz), followed by comparisons of frequency-
specific FC and global network metrics between three different
time periods (i.e., pre, during, post) under either active or sham
tPBM condition. To the best of our knowledge, this paper is the
first one investigating the effects of tPBM on frequency-specific
whole-head FC. Statistical analysis revealed distinct effects of
tPBM on FC at different frequency bands.

4.3.1. Effects of tPBM on Endogenic Oscillation of

1[HbO]
The observed significant enhancement in endogenic FC may
be the results of changes in cerebral blood flow (CBF) and
metabolism in the microvessels induced by tPBM (Stefanovska
et al., 1999). Several existing studies observed an increase in
CBF (Uozumi et al., 2010; Poyton and Hendrickson, 2016;
Hipskind et al., 2018) andmetabolism (Mintzopoulos et al., 2017;
Salehpour et al., 2018) after tPBM. Prior studies suggested that
an increase in the nitric oxide (NO) level induced by tPBM is
responsible for the improved CBF (Lohr et al., 2009; Lee et al.,
2017; Keszler et al., 2018). Up-to-date research proved that PBM
could be considered an exogenous stimulus that provoked an
increase in NO production (Rizzi et al., 2018; Barolet et al.,
2021). NO, one of the vasoactive substances produced by the
endothelium, significantly influences vascular tone (Mongan
et al., 2013). NO is able to trigger vasodilation by activating
guanylate cyclase to form cyclic guanine monophosphate
(cGMP), which activates protein kinase G (PKG), resulting in
decreased levels of Ca2+ concentration. The latter prevents
myosin light-chain kinase from phosphorylating the myosin
molecule, leading to the relaxation of the smooth muscle cells of
blood vessels and lymphatic vessels (Charriaut-Marlangue et al.,
2013; Mongan et al., 2013). This vasodilation improves cerebral
circulation and oxygenation, leading to enhanced FC after tPBM
compared to pre-stimulation.

Specifically, the post-stimulation period exhibited boosted
FC at the endogenic frequency between rPFC and most other
regions of interest (ROIs) (Figures 6A, 7C). FP and DLPFC
are associated with working memory, attention, and executive
functions, while PMC,M1/S1, andWernicke are related to motor
control and speech fluency. The tPBM-evoked enhancements
of FC in these ROIs support prior studies reporting improved
executive function (Berman et al., 2017; Blanco et al., 2017),
reaction time (Barrett and Gonzalez-Lima, 2013; Grover et al.,
2017; Vargas et al., 2017), attention (Disner et al., 2016; Hwang
et al., 2016), and working memory (Barrett and Gonzalez-Lima,
2013; Berman et al., 2017).

Furthermore, the strong modulation ability of tPBM on
endogenic oscillation within cerebral hemodynamic ISO across
the human whole head seen in this study is highly consistent
with and well supported by another just-published article of

our group (Wang et al., 2022). The report was based on
dual-channel, bbNIRS measurements taken from a completely
different group of participants and performed by different
operators. Similarly, tPBM was reported to significantly enhance
the spectral amplitude of 1[HbO] in the endogenic band by 13%
near the tPBM site compared to the sham condition (Wang et al.,
2022). The excellent agreement in observing tPBM-evoked strong
modulation in endogenic oscillation between two independent
studies strengthens the underlying physiological expectation that
tPBM facilitates (either directly or indirectly) an increase in NO,
which will trigger alterations in endogenic oscillations and then
vasodilation within a period of 1–4 min.

4.3.2. Effects of tPBM on Myogenic Oscillation of

1[HbO]
We also observed significant improvement in myogenic FC
following active tPBM (Figures 6B, 7E,F). Oscillations in this
frequency band reflect the intrinsic activity of the vascular
smooth muscle in response to changes in intravascular
pressure (Rowley et al., 2007). The vascular smooth muscle
may relax or contract in response to a decrease or increase
of vascular pressure. In fact, the myogenic tone is strongly
influenced by the release of vasoactive substances produced by
endothelium (Mongan et al., 2013). As mentioned above, tPBM
evokes an increase of NO, which activates guanylate cyclase
to form cyclic guanine monophosphate (cGMP), leading to
vasodilation (Charriaut-Marlangue et al., 2013; Mongan et al.,
2013). Similar to the endogenic frequency band, the Post-
Pre pair of the myogenic frequency band exhibited significant
improvement in FC among those ROIs involved closely in
working memory, attention, executive functions, and motor
control. Moreover, the observation that tPBM enabled to strongly
modulate myogenic oscillation within cerebral hemodynamic
ISO across the human whole head is also highly consistent
with our recent article (Wang et al., 2022). Accordingly, tPBM
significantly enhanced the spectral amplitude of 1[HbO] in the
myogenic bands by 23% near the tPBM site compared to the
sham condition (Wang et al., 2022).

Putting all the knowledge and recent findings together, our
observations could be explained or interpreted as follows: tPBM
started a cascade process by (1) first triggering the release of
NO (besides photo-oxidation of CCO), (2) causing increases in
endogenic oscillation and FC, (3) giving rise to the relaxation of
the vascular smooth muscle, and thus (4) resulting in changes
in myogenic oscillations as well as increases in myogenic FC.
This cascade activity takes time in a few minutes for any
significant change to be identifiable by physiological or objective
measures, as we documented in our recent publications (Wang
et al., 2019, 2022). Figure 9 summarizes two metabolic-primary
hemodynamic events induced by tPBM. On the one hand,
photo-oxidation of CCO enhances CCO redox metabolism and
ATP synthesis, leading to a significant increase of 1[HbO], as
observed in Sections 3.1 and 3.2 and our previous studies (Wang
et al., 2017b; Pruitt et al., 2020). On the other hand, tPBM
activates the release of NO (Rizzi et al., 2018; Barolet et al.,
2021), which results in changes in endogenic and myogenic
oscillations. Vasodilation caused by the increase of NO leads to an
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FIGURE 9 | Flowchart to summarize two metabolic-primary hemodynamic

events induced by tPBM.

improvement of cerebral blood flow (Lohr et al., 2009; Lee et al.,
2017; Keszler et al., 2018).

Furthermore, GTA also revealed tPBM-evoked significant
improvements in characteristic path length (Lp), global (Eg),
and local efficiency (Eloc) metrics for the myogenic frequency
band during the stimulation period (Figure 8). The characteristic
path length, defined as the average of the shortest path lengths
connecting each vertex to all other vertices, indicates how easily
information is transported over the entire network (Stam and
Reijneveld, 2007). Meanwhile, global efficiency measures the
overall ability to transfer and process integrative information
among channels or brain regions, and local efficiency indicates
how efficiently the nodes communicate to others if one node is
removed (He and Evans, 2010; Rubinov and Sporns, 2010). Thus,
shortened path lengths during the active tPBM session indicate
that tPBM enabled to increase the transmitting speed for network
information exchange. In the meantime, both global and local
efficiencies of the topological network were improved perhaps
partially because of shortened characteristic path length induced
by tPBM.

4.3.3. Effects of tPBM on Neurogenic Oscillation of

1[HbO]
For the neurogenic oscillation, paired t-tests with FDR correction
reported that no significant difference was found in any FC
line/edge between Post-Pre comparison or between Post-Stim
comparison in either channel-wise or region-wise analysis. This
observation implied that tPBM had little effect to alter or perturb
the FC at neurogenic frequency range. A possible cause of this
insignificant effect of tPBM on neurogenic oscillation is that
neurogenic fluctuations reflect activities in large arteries and are
independent of the endothelium (Stefanovska, 1999; Stefanovska
et al., 1999). Accordingly, we can expect that tPBM would
have minimal impact on this ISO component if the NIR light
stimulated ormodulatedmainly the endogenic oscillation via NO
release, one of the biological products by tPBM.

4.4. Limitations and Future Work
We identified two key weaknesses and proposed future work to
overcome them.

4.4.1. Understanding Inter-individual Variability vs.

Inter-experimental Variability
In Section 3.3, we compared changes in functional connectivity
in two cases: (1) over time (pre vs. during vs. post) within
each experimental session (active tPBM or sham) and (2)
between experimental sessions (tPBM vs. sham). In case (1),
the comparison was based on a single experiment setup with
the main effect of active tPBM or sham over time, where the
data deviation resulted from the inter-individual variability.
On the other hand, in case (2), the comparison was made
between two experimental sessions, in which the experimental
setups of the same subject were not perfectly the same.
Thus, in this case, the data deviation resulted from both
inter-individual and inter-experimental variabilities (Kreutz and
Timmer, 2009). Our results demonstrated clearly that inter-
individual variability within one single experimental session
(active tPBM or sham) was small enough to obtain significant
effects of tPBM on endogenic and myogenic FC. On the other
hand, the experimental variability between the tPBM and sham
experimental sessions seemed too large, which shadowed the
significance of tPBM between the two sessions. The experimental
variability could be attributed to the complex setup of the whole-
head fNIRS across subjects, which led to larger measurement
inconsistency between the two sessions. To address this issue, we
may reduce the number of channels andmark the probe locations
with a 3D digitizer for improving the LABNIRS measurement
reproducibility in future studies.

4.4.2. Potential Contamination of Extracranial Layers

to the Interpreted Signals
It is known that fNIRS signals measured on the scalp of human
subjects include contributions from the extracranial layers (i.e.,
scalp and skull). To remove such potential contamination, extra
optical channels of fNIRS with a short source-detector (S-D)
separation (commonly∼0.8–1.2 cm) have been used for systemic
noise removal in task-evoked hemodynamic studies (Zhang et al.,
2007; Tian et al., 2011; Yücel et al., 2015; Zhou et al., 2020; Noah
et al., 2021), where a cortical region is functionally stimulated by
a given task. However, most fNIRS-derived FC studies did not
consider this confound effect until a recent report demonstrated
that resting-state FC analysis with short S-D correction provides
better accuracy than without correction (Paranawithana et al.,
2022).

We knowledge another weakness of this study is that
the potential contribution from the extracranial layers to the
hemodynamic results has not been considered. Under the
tPBM scenario, both the superficial and cortical layers of
tissue received optical stimulation. Thus, the conventional
methods to remove superficial-layer effects are not appropriate
in this study. However, even with room for improvement
of accuracy, our reported results and conclusions in this
study are in good agreement with a recent fMRI-driven
report, showing that increases in brain-wide FC of the
human brain were observed with connections involving the
stimulated hemisphere having a significantly larger increase
than those in the contralateral hemisphere (Dmochowski et al.,
2020). Several independent studies also confirmed that tPBM
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enables to stimulate electrophysiological oscillation powers
and enhance functional connectivity based on whole-head
electroencephalogram (Berman et al., 2017; Zomorrodi et al.,
2019; Ghaderi et al., 2021).

In the field of non-invasive neuromodulation, this is the
first mechanistic investigation with novel results on the tPBM-
induced enhancement on frequency-specific hemodynamic
power and FC in healthy humans across the whole head,
which are in good agreement with other publications. In future
studies, we plan to develop appropriate experimental setups and
algorithms that will enable us to remove the confounding factor
and thus to confirm/refine the results reported here.

5. CONCLUSIONS

In this study, we utilized a whole-head fNIRS system
concurrently with 1,064-nm tPBM delivered on the right
prefrontal cortex to investigate the neurophysiological and/or
hemodynamic responses to the light stimulation. First, we
implemented the cluster-based permutation test on the tPBM-
evoked, whole-head 1[HbO] signals within the broad frequency
range (0–0.2 Hz), which facilitated cortical mapping of cerebral
regions of significant increases in 1[HbO] signals over the right
frontopolar area near the tPBM site, confirming the findings
more rigorously. Next, we focused more on the intrinsic ISO
components of the cerebral activity and analyzed different ISO-
dependent metrics, including (1) 1[HbO] spectral power, (2)
frequency-specific FC, and (3) frequency-specific global network
metrics. Experimental results revealed that ISO components
responded differently to tPBM. Briefly, tPBM significantly
increased endogenic 1[HbO] power across the entire cortical
region and enhanced topographical FC between the frontal
stimulation site and the central as well as parietal regions.
Furthermore, tPBM improved not only the myogenic FC across
frontal-parietal cortical regions significantly but also several
global network metrics substantially. Such strong effects of
tPBM on both endogenic and myogenic hemodynamics may
be attributed to tPBM-evoked NO release that would stimulate
endogenic oscillations and vasodilation of blood vessels. These
findings were consistent with the results reported recently and
met the expectation that myogenic oscillation is highly associated

with the endothelial activity. Finally, we proved our hypothesis
of this study that tPBM would enhance FC at specific frequency
bands (i.e., endogenic and myogenic oscillations), resulting from
mitochondrial absorption of light given by tPBM.
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