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Abstract

Background: Opioid use disorder (OUD) affects millions of people, causing nearly 50 000 deaths annually in the United States. 
While opioid exposure and OUD are known to cause widespread transcriptomic and epigenetic changes, few studies in 
human samples have been conducted. Understanding how OUD affects the brain at the molecular level could help decipher 
disease pathogenesis and shed light on OUD treatment.
Methods: We generated genome-wide transcriptomic and DNA methylation profiles of 22 OUD subjects and 19 non-psychiatric 
controls. We applied weighted gene co-expression network analysis to identify genetic markers consistently associated with 
OUD at both transcriptomic and methylomic levels. We then performed functional enrichment for biological interpretation. 
We employed cross-omics analysis to uncover OUD-specific regulatory networks.
Results: We found 6 OUD-associated co-expression gene modules and 6 co-methylation modules (false discovery rate <0.1). 
Genes in these modules are involved in astrocyte and glial cell differentiation, gliogenesis, response to organic substance, 
and response to cytokine (false discovery rate <0.05). Cross-omics analysis revealed immune-related transcription regulators, 
suggesting the role of transcription factor-targeted regulatory networks in OUD pathogenesis.
Conclusions: Our integrative analysis of multi-omics data in OUD postmortem brain samples suggested complex gene 
regulatory mechanisms involved in OUD-associated expression patterns. Candidate genes and their upstream regulators 
revealed in astrocyte, and glial cells could provide new insights into OUD treatment development.
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Introduction
During the past few decades, opioids have been increasingly 
prescribed for non-cancer pain in the United States. However, 
opioid medication use puts patients at risk for opioid use dis-
order (OUD), which affects over 2 million individuals and causes 
nearly 50 000 deaths per year in the United States (National 
Institute on Drug Abuse, 2021). This causes heavy societal and 
economic burdens (Chang et al., 2018). According to the DSM-V 
criteria, OUD is defined as a problematic pattern of opioid 
use leading to clinically significant impairment or distress 
(American Psychiatric Association, 2013). OUD may be caused 
by a combination of environmental, behavioral, and biological 
factors, although the precise molecular mechanisms of OUD re-
main elusive.

Previous studies have shown significant genetic and epi-
genetic alterations between OUD patients and controls. Twin 
and family studies indicate genetic inheritance contributes 
to OUD, and heritability estimates range from 40% to 60% 
(Merikangas et  al., 1998; Tsuang et  al., 1998; Kendler et  al., 
2003; Sun et  al., 2012). Genetic variations in the opioid re-
ceptor mu 1 gene (OPRM1) and other genes (KCNC1, COMT, 
ESR1) are also associated with OUD (Gelernter et al., 2014; De 
Gregori et  al., 2016; Smith et  al., 2017). Several case-control 
studies have revealed differentially expressed genes in the 
OUD brains as well as enrichment of dopaminergic and opioid 
receptor signaling pathways (Przewlocki, 2004; Saad et  al., 
2019). Moreover, OUD and opioid exposure are associated with 
epigenetic modifications, including alterations in DNA methy-
lation, histone modifications, and microRNA expression 
(Migliore and Coppede, 2009; Browne et al., 2020). In particular, 
DNA methylation is a complex gene regulatory mechanism 
whereby cytosine hypermethylation canonically induces a 
condensed chromatin state and downregulates transcription 
of the target gene at the promoter region (Bird and Wolffe, 1999; 
Wang et al., 2015). OPRM1 is hypermethylated in the blood of 
short-term and long-term opioid users (Chorbov et al., 2011; 
Sandoval-Sierra et al., 2020). DNA methylation can be studied 
using microarray or bisulfate methylation sequencing. Many 
complex roles of DNA methylation have been documented, 
such as its regulation in mammalian development and differ-
entiation (Suzuki and Bird, 2008). However, further studies are 
needed to investigate how epigenetic alterations contribute to 
the development or consequences of OUD.

While traditional bioinformatics studies focus on correl-
ating single-modality transcriptomic or epigenetic signatures 
with disease phenotype, multi-omics approaches allow a com-
prehensive assessment of gene regulatory relationships. Such 
cross-domain analysis strategies can reduce false discoveries 
as well (Jia et al., 2019). Until recently, few multi-omics studies 
have been conducted in OUD to explore complex regulatory 

mechanisms at the genomic and epigenomic levels (Crist 
et al., 2019), and even fewer studies use data generated from 
human tissue. In this study, we systematically character-
ized DNA methylation and transcriptomic gene networks in 
postmortem brain samples of 22 OUD subjects and 19 non-
psychiatric controls. Specifically, we used weighted gene 
co-expression network analysis (WGCNA) to identify OUD-
associated differentially co-expressed or co-methylated net-
work modules (Langfelder and Horvath, 2008). Subsequent 
gene set enrichment analyses identified dysregulated bio-
logical processes within these identified network modules. 
Furthermore, we conducted cross-omics analyses of tran-
scriptome and DNA methylome data to unveil convergent 
pathways and gene regulatory patterns underlying OUD 
pathogenesis.

Materials and Methods

Samples

Postmortem brain tissues were obtained from The University 
of Texas Health Science Center at Houston (UTHealth) Brain 
Collection in collaboration with the Harris County Institute 
of Forensic Science with institutional review board approval. 
Demographic information, autopsy and toxicology reports, 
and medical and psychiatric notes were collected for each pa-
tient. A detailed psychological autopsy was obtained for each 
subject by interviewing the next of kin, where information re-
garding psychiatric clinical phenotypes (such as evidence of 
depression, mania, psychosis), age of onset of drug use, types 
of drugs used, smoking and drinking history, and co-morbid-
ities was collected. OUD or control consensus diagnosis was 
reached for each subject according to DSM-V criteria by an 
independent panel of 3 trained clinicians after review of all 
available case information.

Brains were collected from 22 OUD and 19 non-psychiatric 
control subjects (Table 1). Of them, samples of 22 OUD subjects 
and 18 controls were used to generate RNA sequencing data, 
and samples of 19 OUD subjects and 11 controls were used to 
generate DNA methylation data. Postmortem interval (PMI) was 
calculated from the time of death until tissue preservation. On 
brain receipt, the right hemisphere was coronally sectioned, 
immediately frozen, and stored at −80º C.  Brodmann area 9 
(BA9) was defined within the prefrontal cortex between the su-
perior frontal gyrus and the cingulate sulcus. Dissections of BA9 
were obtained using a 4-mm cortical punch, yielding approxi-
mately 100  mg of tissue. Then 100–200  mg of the cerebellum 
was dissected to measure cerebellar pH, as previously described 
(Monoranu et al., 2009).

Significance Statement
Mortality associated with opioid use disorder (OUD) is increasing in the United States. However, the molecular pathogenesis 
of OUD is still mostly elusive, hindering treatment development. Thus, it is crucial to investigate the complex pathophysiology 
of OUD using multi-omics approaches. In this study, we conducted an integrative transcriptome and DNA methylation ana-
lysis using data generated from OUD postmortem brain samples and controls. Our results revealed key biological processes 
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RNA Preparation and Sequencing

The general project pipeline is shown in Figure 1. A total 22 OUD 
subjects and 18 controls were selected for RNA sequencing. RNA 
of each subject was extracted from 50  mg of BA9 tissue using 
RNeasy Plus Mini kits (QIAGEN Inc., Hilden, Germany). RNA integ-
rity number (RIN) was measured to assess RNA quality (Agilent 
Bioanalyzer 2100 system, Agilent Technologies, Santa Clara, CA, 
USA). Then 1 μg RNA per sample was used for mRNA library con-
struction using NEBNext Ultra RNA Library Prep Kit (Illumina 
Inc., San Diego, CA). Paired-end sequencing reads (150 bp) were 
generated on an Illumina HiSeq2000 platform (Q30 > 80%) at 
Novogene Bioinformatics Institute (Chula Vista, CA, USA).

Sample sequencing quality was evaluated using FastQC 
(Simon, 2010). We used STAR (Dobin et al., 2013) for read map-
ping and annotation based on Genome Reference Consortium 
Human Build 37 (GRCh37) and obtained read count per gene for 
differential gene expression analysis. After mapping the fastq 
files to the reference genome, unique mapping rates were found 
to be between 82.5% and 90.7% (average: 88.2%), which qualified 
data for downstream analysis.

Differentially Expressed Gene Analysis

The R package DEseq2 was used to identify differentially ex-
pressed genes (DEGs) (Love et al., 2014). The input matrix con-
tained un-normalized read counts for each gene in each sample. 
Genes were excluded if they had read counts of 0 in more than 
50% of samples or if the variance across all samples was less 
than 1.  After these filtrations, 20 030 genes were selected for 
DEG analysis. In addition to control/OUD diagnosis, the differ-
ential expression model included the following human tissue 
covariates: age, sex, PMI, RIN, and cerebellar pH. Due to the 
small sample size, continuous covariates were factored into bins 
based on guidelines from the author (Love et al., 2014), denoted 
by Age_N, PMI_N, RIN_N, and pH_N. Specifically, age was cat-
egorized by every 10 years; PMI, RIN, and pH were each divided 
into 5 groups with equal interval sizes.

The following formula was used for differential gene expres-
sion: 

design_formulaDEG ∼ Diagnosis+ Sex+ AgeN + PMIN + RINN + pHN

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 
1995) was applied for multiple test correction, with false dis-
covery rate (FDR) set to 0.05. Log2 fold changes of gene expres-
sion between OUD and control subjects were generated from the 
DEG analysis and were used in the subsequently cross-omics 
analysis.

Methylation Data Generation and Processing

DNA from 19 OUD subjects and 11 non-psychiatric controls 
was isolated from brain tissues using the DNeasy Blood and 
Tissue Kit (QIAGEN Inc.). After quantification on a NanoDrop 
(Thermo Fisher Scientific, Waltham, MA, USA), 500  ng of DNA 
was bisulfite-converted with the EZ DNA Methylation Kit (Zymo 
Research) and was processed for hybridization to the Infinium 
MethylationEPIC kit (Illumina Inc., San Diego, CA, USA). Signal 
was detected in an iScan microarray reader (Illumina Inc.) ac-
cording to the manufacturer’s instructions, generating raw IDAT 
files for downstream analyses.

To assess the sample quality, the average detection P value 
was obtained using the R package minfi (version 1.30.0) (Aryee 
et al., 2014). Specifically, the background signal was estimated 
using negative control probes, and the detection P value was 
calculated by comparing the total signal for each probe with 
the background signal. The average detection P value across 
probes was then calculated for each sample. All samples 
were of high quality (P < .05) and were kept for the following 
analysis.

Probes were removed that met the following parameters: 
(1) probes with detection P > .01 in 50% of the samples; (2) 
probes mapped on the X or Y chromosomes; (3) probes known 
to have common single-nucleotide polymorphisms at the CpG 
sites; and (4) probes that mapped to multiple locations in the 
human genome and therefore may be cross-reactive. The ori-
ginal array contained 1 051 539 probes. A total 263 590 probes 
were filtered out, leaving 787 949 probes for the downstream 
analysis.

We normalized the intensity Yi_methy and Yi_unmethy of 
each probe i into Mi using the following formula:

 Mi = log2[max(Yi_methy, 0)/max(Yi_unmethy, 0)] (Du et  al., 
2010).

Table 1. Characteristics of OUD Patients and Non-psychiatric Controls

Gene expression data (total n = 40) Methylation data (total n = 30)

OUD patients Controls P value OUD patients Controls P value

Samples, n 22 (55.00%) 18 (45.00%)  19 (63.33%) 11 (36.67%)  
Age, mean (SE) 38.00 (2.72) 53.06 (3.68) .002a 38.21 (2.99) 47.18 (5.01) .143a

Gender, n (%)       
 Male 11 (50.00%) 16 (88.90%) .016b 10 (52.63%) 10 (90.91%) .049b

 Female 11 (50.00%) 2 (11.10%)  9 (47.37%) 1 (9.09%)  
Race/ethnicity, n       
 White 18 (81.80%) 10 (55.60%) .129b 15 (78.95%) 6 (54.55%) .211b

 Hispanic 0 (0.00%) 2 (11.10%)  0 (0.00%) 1 (9.09%)  
 African American 4 (18.10%) 5 (27.80%)  4 (21.05%) 3 (27.27%)  
 Asian 0 (0.00%) 1 (5.60%)  0 (0.00%) 1 (9.09%)  
PMI, mean (SE) 26.57(2.12) 29.66 (1.80) .273a 27.89 (2.28) 27.90 (2.52) .997a

RIN, mean (SE) 7.03 (0.21) 7.01 (0.17) .938a 6.98 (0.24) 7.05 (0.24) .835a

pH, mean (SE) 6.57 (0.04) 6.57 (0.06) .987a 6.59 (0.05) 6.52 (0.09) .519a

Abbreviations: OUD, opioid use disorder; PMI, postmortem interval; RIN, RNA integrity number.

aComparison between OUD patients and controls by t test.

bComparison between OUD patients and controls by Fisher’s exact test.
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Differentially Methylated Probes (DMP) Analysis

The DMP analysis was conducted on the normalized probe in-
tensity M using the R package limma (version 3.44.3) (Ritchie 
et al., 2015). In addition to OUD/control diagnosis, the regression 
model adjusted for the following human tissue covariates: sex, 
age, PMI, and pH. The designed formula is shown below: 

design_ formulaDMP ∼ Diagnosis+Sex+Age+PMI+pH

The P value and log2 fold change of methylation probes between 
2 groups were generated from DMP analysis and used in the 
cross-omics analysis.

To balance the probe numbers and variance in co-methylation 
network analysis, DMPs were filtered based on nominal signifi-
cance and probe location. DMPs with nominal P < .05 and loca-
tion at transcriptional start sites (TSSs) were used in weighted 
co-methylation network analysis. Out of 787 949 normalized 

methylation probes, 11 917 methylation probes met these cri-
teria for further analysis.

Co-expression/Co-methylation Network Analysis

For the co-expression and co-methylation network analyses, 
gene expression data were normalized using variance-stabilizing 
transformation (Durbin et al., 2002), and methylation data (beta-
value) were normalized to the M-value described above. In 
co-expression network analysis, 19 389 normalized genes and 
11 917 normalized methylation probes were used after filtering 
out genes with missing values. WGCNA R package (WGCNA ver-
sion 1.70–3, R version 4.0.2) was used to analyze the normalized 
data. Detailed methodology can be found in the original publi-
cation (Langfelder and Horvath, 2008). The gene co-expression 
network was constructed using a soft threshold power, allowing 
the network to approximate scale-free topology (scale-free fit 
signed R2 > 0.8). For co-methylation network construction, an 

Figure 1. Workflow of the study. WGCNA, weighted gene co-expression network analysis; OUD, opioid use disorder.
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empirical parameter of 14 was used for the power adjacency 
function based on guidelines from the authors (Langfelder and 
Horvath, 2014).

Network modules of co-expressed genes and co-methylation 
probes were detected using the WGCNA package blockwiseModules 
function with the settings:

networkType = “signed,” minModuleSize = 30, corType = “bicor,” and 
deepSplit = 3. 

Each network module was assigned a unique color by the 
package. OUD-associated co-expression and co-methylation 
modules were identified using linear regression between 
module eigengenes, defined as the first principal component of 
each module, and OUD diagnosis trait after controlling for the 
following covariates: age, gender, ethnicity, sample PMI, RIN, 
and pH. Significantly correlated OUD modules were determined 
by BH-corrected P-value with FDR (PFDR) < .1, which corrected for 
the total number of modules in each analysis (Benjamini and 
Hochberg, 1995).

Identification of Network Hub Genes of Co-
expression Modules

For each co-expression module, hub genes were defined as 
genes highly connected with the other genes in the module, 
representing a potentially critical role in the module network 
(Langfelder and Horvath, 2008; Sun et al., 2011). Specifically, hub 
genes were selected as genes with module membership ≥0.8 and 
gene trait significance ≥0.2 within each co-expression module 
(Langfelder and Horvath, 2016).

Functional Enrichment Analysis of Module Genes

To explore functional enrichment of hub genes in co-expression 
modules and annotated genes in co-methylation modules, 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID) (Huang et al., 2007) was used. Functional an-
notation tool (FAT) was used to survey significant Gene Ontology 
Biological Processes (BP), using all human protein-coding genes 
as the background. BP-FAT with BH corrected P value with FDR 
(PFDR) < .05 was considered significant (Benjamini and Hochberg, 
1995).

Cross-omics Analysis of Transcriptomic and 
Methylomic Data

The network module level and the gene level cross-omics 
analyses were conducted to integrate DNA methylation and 
gene expression analysis. At the network module level, a 
hypergeometric test was used to measure overrepresented 
genes in OUD-associated co-methylation modules and 
hub genes in co-expression modules of interest (Figure 1). 
Fisher’s exact test with raw P < .05 was used to examine if 
co-methylation modules and co-expression modules were 
overlapped significantly. Functional enrichment analysis 
of BP-FAT terms using DAVID as described above (PFDR < .05) 
was then performed on overlapping genes for biological 
interpretation.

At the gene level, we examined global correlations between 
DNA methylation changes and gene expression by including all 
available DNA methylation and gene expression data (Figure 
1). A  total 787 949 methylation probes were mapped to 16 986 
genes according to the Illumina annotation file. Then, mapped 
genes were plotted and analyzed using gene expression log2 

fold changes from DEG analysis and DNA methylation log2 fold 
changes from DMP analysis. For genes that could be mapped by 
multiple methylation probes, the median log2 fold change values 
of all mapped methylation probes for that gene were assumed 
to represent the overall level of methylation changes. Four gene 
lists were obtained representing high levels of variation in DNA 
methylation (|DNA methylation log2 fold changes| ≥ 0.2) and 
gene expression (|gene expression log2 fold changes| ≥ 1).

Ingenuity Pathway Analysis (IPA)

Canonical pathways and gene regulatory relationships were 
further explored using IPA (version 62 089 861, QIAGEN Inc.). 
Log2 fold change of genes in overlapping modules from the 
co-expression/co-methylation cross-omics analysis were input 
for IPA canonical pathway analysis. Significantly activated ca-
nonical pathways were defined as raw P < .05 and z-score > 0 
(Kramer et al., 2014).

IPA analyses were also used to infer the upstream transcrip-
tion regulators from genes with highly variable DNA methy-
lation (|DNA methylation log2 fold changes| ≥ 0.2) and gene 
expression (|gene expression log2 fold changes| ≥ 1). Specifically, 
we used the expression log2 fold change of those genes as the 
input of IPA. We defined the overrepresented transcription fac-
tors with |activation z-score| > 1.96 and raw P < .01 based on the 
tutorial from IPA (Kramer et al., 2014).

Results

Subjects and Brain Samples

Table 1 summarizes the characteristics of human subjects. 
We generated gene expression data in 97.56% (40/41) of the 
subjects and methylation data in 73.17% (30/41) of subjects. 
A  total of 19 OUD subjects and 10 non-psychiatric controls 
had both gene expression and methylation data. No signifi-
cant differences were observed between the OUD subjects and 
controls in terms of PMI, RIN, or cerebellar pH for the gene 
expression or methylation cohort (P > .05). The OUD subjects 
were significantly younger than the controls (P = .002) in the 
gene expression cohort but not in the methylation cohort 
(P = .142). The OUD group contained more female subjects than 
the control group, and subjects were predominately white in 
both datasets. All covariates (PMI, cerebellar pH, age, gender, 
and RIN for RNA-seq data) were adjusted for subsequent ana-
lyses to eliminate potential bias.

Co-expression Network Analysis

Transcriptomic data were analyzed in 40 postmortem brain 
samples (18 OUD subjects and 22 controls) (Table 1). After 
normalization, 19 389 genes were used for co-expression ana-
lysis. In total, 15 co-expression modules were detected with 
a median member size of 387 (Figure 2A). Six co-expression 
modules were significantly associated with the OUD diag-
nosis trait (PFDR < .1) (Table 2). Among these modules, genes 
in the co-expression module turquoise (module size: 4376) 
and module cyan (#196) were downregulated in OUD subjects 
(negatively correlated with presenting of OUD trait), while 
genes in co-expression modules blue (#2629), brown (#1409), 
pink (#387), and purple (#308) were upregulated (Table 2). Of 
note, the color and module ID annotations were generated by 
the WGCNA tool.



884 | International Journal of Neuropsychopharmacology, 2021

Functional Enrichment Analysis of Co-expression 
Module Hub Genes

Next, hub genes were identified in OUD-associated co-expression 
modules to investigate the critical functional roles of these 
key genes in each module. We identified 268 hub genes from 
co-expression module turquoise, 338 from module blue, 125 
from module brown, 75 from module cyan, 8 from module pink, 
and 8 genes from module purple.

Hub genes in the 3 largest OUD associated co-expression 
modules (turquoise, blue, and brown) were used to find signifi-
cant biological process terms by DAVID pathway enrichment 
tool (Figure 2B). The top 3 highly enriched biological processes 
of co-expression module turquoise hub genes (supplementary 

Table 1) were cellular localization (fold-enrichment = 2.03, 
PFDR = 2.83 × 10–6), protein localization (fold-enrichment = 2.02, 
PFDR = 4.35 × 10–6), and macromolecule localization (fold-
enrichment = 1.85, PFDR = 3.76 × 10–5). Co-expression module 
blue hub genes (supplementary Table 2) were highly enriched 
in organic acid metabolic process (fold-enrichment = 3.17, 
PFDR = 5.31 × 10−10), carboxylic acid metabolic process (fold-
enrichment = 6.86, PFDR = 5.85 × 10−10), and organic acid cata-
bolic process (fold-enrichment = 6.23, PFDR = 1.05 × 10–9). 
Co-expression module brown hub genes (supplementary Table 
3) were enriched in cell surface receptor signaling pathway 
(fold-enrichment = 2.73, PFDR = 5.78 × 10–9), response to or-
ganic substance (fold-enrichment = 2.58, PFDR = 2.49 × 10–8), and 

Figure 2. Weighted co-expression network and functional enrichment analysis of hub genes of co-expression modules. (A) Dendrogram of all expressed genes clus-

tered based on a dissimilarity measure by Weighted gene co-expression network analysis (WGCNA). Co-expression modules turquoise, blue, and brown, as annotated 

by WGCNA, contained the most genes. (B) Top 3 enriched Gene Ontology (GO) Biological Process terms for co-expression module turquoise, blue, and brown. FDR, false 

discovery rate.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab043#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab043#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab043#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab043#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab043#supplementary-data
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cellular response to organic substance (fold-enrichment = 2.88, 
PFDR = 2.59 × 10–8).

Furthermore, we collected brain cell function–specific genes 
from a previous study (Goudriaan et al., 2014) and conducted a 
hypergeometric test to identify brain cell type signatures that 
were associated with the hub genes in co-expression modules. 
The hub genes in co-expression module blue were found to be 
strongly associated with astrocyte transport, trafficking, and 
metabolism related functions (supplementary Figure 1). These 
findings suggested that the blue module might be enriched in 
astrocytic functions.

Co-methylation Network Analysis

DNA methylomic data were analyzed in postmortem brain sam-
ples of 19 OUD subjects and 11 controls (Table 1). To balance 
probe numbers and variance in co-methylation network ana-
lysis, methylation probes were filtered based on DMP analysis 
significance (at nominal P < .05) and probe location at TSSs. 
A  total 11 917 methylation probes were used in the weighted 
co-methylation analysis.

Following the same procedure as the co-expression WGCNA, 
we performed weighted network analysis on methylation data. 
The methylation probes clustered into 6 modules with a me-
dian member size of 1782.5 probes (Figure 3A; Table 3). All 6 
modules were significantly associated with the OUD diagnosis 
trait (PFDR ≤ .1) (Table 3). Among the 6 co-methylation modules, 
module eigengenes of co-methylation module blue were posi-
tively associated with the OUD trait, indicating hypermethylated 
loci were congregated in this module. Thus, mapped gene tran-
scription is likely repressed within co-methylation module blue. 
Inversely, module eigengenes of other co-methylation mod-
ules were negatively associated with the OUD trait, suggesting 
hypomethylated loci clustered in these modules, which would 
likely lead to upregulation of the mapped genes (Table 3).

Functional Enrichment Analysis of  
Co-methylated Modules

Methylation probes in each module were mapped to genes ac-
cording to the Illumina annotation file for subsequent functional 

enrichment analyses (Table 3). We observed enriched biological 
processes among the 3 largest co-methylation modules (tur-
quoise, blue, brown). Figure 3B shows the top 3 results of sig-
nificantly enriched pathways for uniquely mapped genes in 
co-methylation modules of interest. In module turquoise, 3898 
methylation probes were mapped to 2012 unique genes. The 
top 3 highly enriched biological processes in co-methylation 
module turquoise (supplementary Table 4) included neurogen-
esis (fold-enrichment = 1.70, PFDR = 2.39 × 10–12), nervous system 
development (fold-enrichment = 1.55, PFDR = 2.39 × 10–12), and gen-
eration of neurons (fold-enrichment = 1.67, PFDR = 2.20 × 10−10). The 
enriched biological processes for the 1860 uniquely mapped 
genes of co-methylation module blue (supplementary Table 
5) included detection of stimulus (fold-enrichment = 2.43, 
PFDR = 2.56 × 10–15), detection of chemical stimulus involved in 
sensory perception (fold-enrichment = 2.77, PFDR = 2.99 × 10–15), 
and detection of stimulus involved in sensory perception (fold-
enrichment = 2.64, PFDR = 5.20 × 10–15). The 1286 uniquely mapped 
genes of co-methylation module brown (supplementary Table 6) 
were enriched in biological processes of RNA metabolic process 
(fold-enrichment = 1.32, PFDR = 4.03 × 10–6), gene expression (fold-
enrichment = 1.29, PFDR = 4.03 × 10–6), and cellular macromolecule 
biosynthetic process (fold-enrichment = 1.29, PFDR = 7.86 × 10–6). 
Interestingly, uniquely mapped genes in co-methylation 
module turquoise were enriched in astrocyte and glial cell func-
tions, which aligned with the enrichment analysis result of 
co-expression module blue.

Cross-omics Analysis: OUD-Associated Co-
methylated Modules and Co-expression Modules

Hypergeometric test was performed on the 6 OUD-associated 
co-methylation modules and 6 OUD-associated co-expression 
modules to identify modules that overlapped with each other. 
Mapped genes in the 3 largest co-methylation modules were 
overrepresented in 6 gene co-expression modules (Figure 4; sup-
plementary Table 7).

Of interest, 272 genes overlapped between hypomethylated 
module turquoise and upregulated co-expression module 
blue (P = 8.42 × 10–21) (Figure 4A). The relationship between 
hypomethylated loci and upregulated genes in these 2 modules 
aligned with general methylation-expression regulatory patterns. 
These overlapping genes were enriched in biological processes, 
including glial cell differentiation, gliogenesis, and astrocyte 
differentiation (PFDR < .001), which aligned with the results of in-
dividual enrichment analysis for these 2 modules (Figure 4B; sup-
plementary Tables 2, 4, 8). Then IPA was conducted on the 272 
overlapping genes to explore enriched canonical pathways. As 
shown in Figure 5, the overlapping genes were significantly en-
riched in endocannabinoid neuronal synapse pathway (P = .03, 
z-score = 2.00). In addition, the 272 overlapping genes were signifi-
cantly enriched in opioid signaling canonical pathways (supple-
mentary Figure 2). A total 141 overlapping genes were identified 
between hypomethylated module turquoise and upregulated 
co-expression module brown (P = 1.78 × 10–12) (Figure 4C; supple-
mentary Table 9). Enrichment analysis revealed significantly 
enriched pathways involved in response to organic substance, 
regulation of fat cell differentiation, and response to cytokine 
(PFDR <  .005) (Figure 4D). Mapped genes in hypomethylated module 
brown also significantly overlapped with genes in upregulated 
co-expression module blue (P = 2.06 × 10–19) and module brown 
(P = 1.28 × 10–12). Moreover, 241 genes in hypermethylated module 
blue were overrepresented in downregulated co-expression tur-
quoise (P = 6.45 × 10–119). However, there were no significant func-
tional enrichments in those overlapping genes.

Table 2. Linear Regression of Co-expression Module Eigengenes and 
OUD Trait 

Module size Beta SE P value PFDR

MEturquoise 4376 −0.18 0.06 3.43 × 10–3 .05
MEblue 2629 0.16 0.06 .01 .05
MEbrown 1409 0.13 0.06 .03 .08
MEyellow 603 −0.08 0.07 .26 .41
MEgreen 526 −0.04 0.06 .54 .67
MEred 445 0.07 0.07 .29 .42
MEblack 441 0.09 0.06 .11 .23
MEpink 387 0.16 0.06 .01 .05
MEmagenta 356 0.04 0.07 .60 .69
MEpurple 308 0.16 0.06 .01 .05
MEgreenyellow 249 −0.01 0.07 .89 .89
MEtan 208 0.10 0.06 .14 .24
MEsalmon 205 0.13 0.07 .06 .14
MEcyan 196 −0.14 0.06 .03 .08
MEmidnightblue 124 −0.05 0.07 .47 .62

Abbreviations: FDR, false discovery rate; ME, module eigengene; OUD, opioid use 

disorder; SE, standard error.

All linear regressions analyses were conducted by controlling covariates, 

including age, gender, ethnicity, sample PMI, RIN, and pH.
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Interestingly, some relationships between co-methylation 
modules and co-expression modules did not follow canonical 
methylation-gene expression regulatory patterns. For example, 366 
overlapping genes were observed between the hypomethylated 
module brown and downregulated co-expression module turquoise 
(P = 1.07 × 10–7) (Figure 4E). Overall, enriched biological processes for 
these paradoxical module pairs included catabolic processes and 
metabolic processes (Figure 4F; supplementary Table 10).

Cross-omics Analysis: Gene Expression and 
Methylation Regulation

To further explore the correlation between OUD-associated 
gene expression and methylation changes, we conducted an 

integrative analysis based on the DEG and DMP analyses (sup-
plementary Figure 3). In total, 787 949 methylation probes 
were mapped to 16 986 genes. Genes with |expression log2 fold 
change| < 1 or |median methylation log2 fold change| < 0.2 were 
removed. After filtering, 1 outlier gene was also removed. As 
shown in Figure 6A, 366 genes were identified with high DNA 
methylation and gene expression variations. These genes could 
be divided into 4 subgroups based on DNA methylation and ex-
pression levels: (1) 91 genes hypermethylated and upregulated; 
(2) 191 genes hypermethylated and downregulated; (3) 49 
genes hypomethylated and downregulated; and (4) 35 genes 
hypomethylated and upregulated (Figure 6A). In general, our re-
sults revealed that more genes followed the trend that increased 
DNA methylation correlate downregulates gene expression 
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(1.61-fold), aligning with the general methylation-gene expres-
sion regulatory patterns (Suzuki and Bird, 2008).

Pathway enrichment analysis was next performed using IPA 
to explore potential transcription regulators for each subgroup of 
genes. Of interest, IPA of 91 genes in the first subgroup (Figure 6A)  
showed that 7 immune-related transcription regulators (CEBPB, 
JUN, NFKB1, NFKBIA, RELA, SMARCA4, and STAT1) contribute 
to the positive association between hypermethylation and 
upregulated gene expression (Figure 6B; supplementary Figure 
4). Interestingly, 5 of these 7 transcription regulators were 
hypomethylated and upregulated. Among the 191 genes in the 
second subgroup (Figure 6A), 3 upstream transcription regu-
lators, HNF1A, IRF7, and SOX11, were revealed. No significant 
transcription regulators were discovered for the genes of the 
third or the fourth subgroup.

Discussion

In the present study, we explored gene expression and DNA 
methylation alterations in postmortem brain samples between 
22 OUD subjects and 19 non-psychiatric controls. We identified 
6 gene co-expression modules and 6 co-methylation modules 

Table 3. Linear Regression of Co-methylation Module Eigengenes 
and OUD Trait 

Mod-
ule 
size

Uniquely 
mapped 

gene Beta SE
P 

value PFDR

MEturquoise 3898 2012 −0.17 0.08 .04 .09
MEblue 3146 1860 0.15 0.08 .08 .09
MEbrown 3135 1286 −0.14 0.08 .09 .09
MEyellow 430 204 −0.17 0.08 .06 .09
MEgreen 303 141 −0.18 0.09 .06 .09
MEred 76 36 −0.20 0.08 .02 .05

Abbreviations: FDR, false discovery rate. ME, module eigengene. OUD, opioid use 

disorder. SE, standard error.

All linear regressions analyses were conducted by controlling covariates, 

including age, gender, ethnicity, sample PMI, RIN, and pH.
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that were significantly associated with OUD trait. Functional 
enrichment analysis of both co-expression and co-methylation 
modules revealed gene pathways enriched in signaling, ner-
vous system development, cellular response to stimulus, and 
astrocyte-related metabolic process, transport, and differen-
tiation. In particular, this analysis revealed that astrocyte pro-
cesses might be involved in OUD pathogenesis. Subsequently, 
cross-omics analyses revealed immune-related transcription 
regulators aligned with methylation-gene expression regu-
latory patterns. These findings suggested that transcription 
regulator-related networks may play some critical roles in OUD 
pathogenesis.

Functional enrichment analyses identified astrocyte and 
glial cell-related genes that are regulated by methylation-gene 
expression relationships. It is noteworthy that overlapping 
genes between the co-methylation module turquoise and 
co-expression module blue highlighted astrocyte and glial cell 
differentiation, gliogenesis, and nervous system development, 
which were also supported by individual-level module enrich-
ment analysis (supplementary Tables 2, 4, 8). Among the brain 
cell functional analysis (Goudriaan et  al., 2014), hub genes of 

co-expression module blue showed cell-type enrichment in 
astrocyte transport, trafficking, and metabolism functions (sup-
plementary Figure 1). Moreover, IPA results revealed astrocytic 
function and the endocannabinoid neuronal synapse pathway 
that might play a role in OUD pathogenesis (Figure 5). These 
results align with previous studies showing morphine induces 
astrocyte differentiation in mice (Xu et al., 2016).

Moreover, functional enrichment analysis on overlapping 
genes of hypomethylated module turquoise and upregulated 
co-expression module brown revealed processes involved in re-
sponse to organic substances and cytokines (Figure 4). Cytokine 
activation is known to modulate opioid receptor signaling and 
is likely involved in the development of addictive disorders like 
OUD (Law et al., 2000; Eidson and Murphy, 2019).

Regulatory networks that involve transcription regulators 
were identified in our cross-omics analysis. As shown in Figure 
6, we identified 91 hypermethylated and upregulated genes in 
the first subgroup, a finding that may seem inconsistent with the 
paradigm of methylation-expression regulation. IPA suggested 
that several immune-related translational regulators (CEBPB, 
JUN, NFKB1, NFKBIA, RELA, SMARCA4, and STAT1) were involved, 

Figure 5. Endocannabinoid neuronal synapse pathway enrichment analysis and predicted regulatory network of overlapping genes between co-methylation module 

turquoise and co-expression module blue. Highlighted regulatory paths were annotated by ingenuity pathway analysis (IPA).
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all of which were hypomethylated and upregulated (Figure 6B). 
The regulatory relationships of these transcription regulators 
aligned with the general methylation-expression regulatory 
patterns. This finding suggests upstream transcription regu-
lators may override the suppressive effects of hypermethylation 
on the target genes, although individual-level and single-cell 
level conclusions remain investigated (supplementary Figure 
4). In the second subgroup, their potential upstream regulators 
(HNF1A, IRF7, and SOX11) could downregulate target genes. 
Thus, the effects of transcription regulators are in line with 
the hypermethylation effects on their targets. Alternatively, the 
MethylationEPIC kit measures both 5-hydroxymethylcytosine 
and 5-methylcytosine, but it does not distinguish between them. 
5-Hydroxymethylcytosine promotes gene transcription, the op-
posite effect of 5-methylcytosine, thereby having a functional 
demethylation effect (Ponnaluri et al., 2017).

The results of the current study should be interpreted carefully 
due to several limitations. First, although the present work had 
one of the largest sample sizes compared with the previously pub-
lished OUD studies, effect size of substance use disorders in genetic 
studies is often small, which hinders statistical power (Cecil et al., 
2016; Dai et al., 2020; Stamatovich et al., 2020). Second, the methyla-
tion and RNA-seq data were not perfectly matched. Complete gene 
expression and DNA methylation data were available for 29 out of 
41 samples, while 12 samples only have gene expression data or 
DNA methylation data. Considering the limited statistical power, 
we did not exclude samples with only 1 level of data. Thus, cur-
rent findings only reflected the shared signals among samples, not 
matched individual omics comparisons. Third, we only considered 
methylation probes in promoter and TSSs of genes in the current 
study. Only 11 917 significant DMPs located in TSSs were included 
in network analysis, which might not fully represent each gene’s 
methylation level. Methylation probes located in non-TSS regions 
were not studied in the current project, but accumulating evidence 
suggests diverse methylation functions in the gene body (Lister 

et al., 2009; Jones, 2012; Mallik and Zhao, 2017). Further studies are 
needed to examine the role of methylation in non-TSS regions 
and better understand the effects of methylation on OUD path-
ology. Lastly, as the significance threshold was loosened in some 
analyses due to relatively small sample size, we applied several 
different multiple testing correction criteria. In WGCNA, we used 
PFDR < .1 as the threshold for OUD-associated co-expression and 
co-methylation cluster selection. We will continue collecting more 
samples and integrating other omics data (e.g., genomic, proteomic, 
and single-cell level data). Further validation on protein expression 
or clinical features will support our findings. Future studies will also 
investigate the relationship between DNA methylation and gene 
expression alterations in the brain and blood, which could lead to 
the identification of candidate biomarkers.

Conclusions

In conclusion, we developed a framework to conduct an integrative 
analysis of 41 OUD postmortem brain samples at DNA methyla-
tion and gene expression levels. We identified sets of genes, tran-
scription regulators, co-expression and co-methylation modules, 
and biological pathways associated with OUD, highlighting the 
important roles of astrocytes and glial cells. Through cross-omics 
analysis, we observed both standard and paradoxical DNA methy-
lation and gene expression relationships, suggesting there may 
be other complex gene regulatory mechanisms involved in these 
expression patterns, such as regulation of upstream transcription 
regulators. Taken together, the current findings suggested that 
regulation of astrocyte and glial cells involved molecular mechan-
isms might constitute promising targets for OUD treatment.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.

Figure 6. Cross-omics analysis of DNA methylation and gene expression. (A) Correlation analysis between gene expression and DNA methylation changes. The x-axis 

is the log2 fold change of gene expression between opioid use disorder (OUD) subjects and non-psychiatric controls. The y-axis is the log2 fold change of DNA methy-

lation change of mapped genes. Subgroup 1 contains 91 genes; subgroup 2 contains 191 genes; subgroup 3 contains 49 genes; and subgroup 4 contains 35 genes. (B) 

Gene expression and DNA methylation changes of potential transcription regulators of 91 genes in subgroup 1. The x-axis is the log2 fold change of gene expression 

between OUD subjects and non-psychiatric controls. The y-axis is the log2 fold change of DNA methylation change of the mapped genes.
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