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SUMMARY
Information processing in the brain depends on the integration of synaptic input distributed throughout
neuronal dendrites. Dendritic integration is a hierarchical process, proposed to be equivalent to integration
by a multilayer network, potentially endowing single neurons with substantial computational power.
However, whether neurons can learn to harness dendritic properties to realize this potential is unknown.
Here, we develop a learning rule from dendritic cable theory and use it to investigate the processing capacity
of a detailed pyramidal neuron model. We show that computations using spatial or temporal features of syn-
aptic input patterns can be learned, and even synergistically combined, to solve a canonical nonlinear
feature-binding problem. The voltage dependence of the learning rule drives coactive synapses to engage
dendritic nonlinearities, whereas spike-timing dependence shapes the time course of subthreshold poten-
tials. Dendritic input-output relationships can therefore be flexibly tuned through synaptic plasticity, allowing
optimal implementation of nonlinear functions by single neurons.
INTRODUCTION

An essential role of each neuron in a circuit is to transform a bar-

rage of synaptic input into a meaningful stream of action poten-

tial output. The majority of input to a neuron is received on the

dendritic tree, potentially allowing transformations that extend

far beyond the simple sum-and-threshold operation that is

commonly assumed (London and H€ausser, 2005; Silver, 2010;

Poirazi and Papoutsi, 2020). Understanding the cellular basis

of brain function therefore demands an understanding of how

single-neuron input-output functions are constrained by physi-

ology and how they can be tuned for processing information.

Dendritic morphology controls the interactions between inputs

distributed in space and time and determines the attenuation

and shape of synaptic potentials propagated to the soma (Rall,

1967; Vetter et al., 2001; Williams and Stuart, 2002; Koch,

2002). Voltage-dependent conductances modulate these dy-

namics in a highly nonlinear manner (Stuart et al., 1997; Larkum

et al., 1999; Magee, 1999; Schiller et al., 2000; Polsky et al.,

2004; Nevian et al., 2007; Major et al., 2013), yielding modes of

synaptic integration spanning sublinear to supralinear regimes

(Cash and Yuste, 1999; Polsky et al., 2004; Tran-Van-Minh

et al., 2015). In pyramidal neurons, it has been proposed that

the combination of dendritic morphology and local NMDA recep-

tor-dependent nonlinearities form a hierarchical processing

structure with substantial computational power (Mel, 1992b; Ar-

chie and Mel, 2000; Poirazi and Mel, 2001). In the first stage of
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processing, synaptic input is integrated nonlinearly within indi-

vidual dendrites, followed by a subsequent stage in which cur-

rent flowing from dendrites is integrated at the soma, elegantly

summarized as an equivalence of single neurons to multilayer

neural networks (Poirazi et al., 2003a, 2003b; Jadi et al., 2014;

Ujfalussy et al., 2018; Beniaguev et al., 2021; Jones and Kording,

2021a). However, this influential theory is incomplete, as it is yet

to be comprehensively determined how or whether computa-

tions that capitalize on dendritic physiology can be learned.

Studies of dendritic processing have focused largely on how

the responses of neurons differ when the rates, spatial distribu-

tion or timing of synaptic inputs are varied (London and H€ausser,

2005; Silver, 2010). Computation in this context, such as selec-

tive responses to clustered input (Mel, 1992a; Cazé et al.,

2013) or ordered sequences (Rall, 1964; Branco et al., 2010;

Bhalla, 2017), is thus inherited from presynaptic firing patterns

and connectivity. Although these computations may be acces-

sible through precise programs of development or rearrange-

ment of axonal connections (Mel, 1992a; Poirazi and Mel,

2001), a reliance on targeted wiring for exploiting dendritic

mechanisms neglects synaptic plasticity as a dominant form of

learning in the brain. Indeed, the concept of a neuron as a multi-

layer network instead evokes an image of a highly flexible device,

whereby appropriate responses are learned through tuning of

synaptic weights. Although many biological factors underlying

plasticity are understood in molecular detail (Zucker and Regehr,

2002; Sjöström et al., 2008), at the computational level, the
er 15, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 4001
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extent to which changes in synaptic strength can be harnessed

to control the input-output function of a neuron is unknown.

Foundational theoretical studies have addressed this problem

in simplified cell models, using supervised learning algorithms to

investigate the limits of computation in single-compartment

‘‘point neurons’’ (Rosenblatt, 1958; Brunel et al., 2004; Legen-

stein et al., 2005; G€utig and Sompolinsky, 2006). More recent

models that incorporate additional coarse-grained compart-

ments to represent a dendritic tree have begun to reveal a variety

of enhancements that may be accessible with a spatially

extended morphology (Wu and Mel, 2009; Legenstein and

Maass, 2011; O’Donnell and Sejnowski, 2014; Urbanczik and

Senn, 2014; Schiess et al., 2016; Hawkins and Ahmad, 2016;

Kastellakis et al., 2016; Guerguiev et al., 2017; Sacramento

et al., 2018; Ujfalussy and Makara, 2020; Moldwin et al., 2021;

Sezener et al., 2021; Jones and Kording, 2021a, 2021b).

However, as model detail is often traded off against mathemat-

ical tractability in these approaches, it is possible that crucial fea-

tures of neuronal function may have been lost, or artificially

gained, by excluding important biological constraints. A realistic

dendritic tree, for instance, presents not only opportunities for

computation but also significant impediments that must be over-

come (H€ausser and Mel, 2003; Moldwin and Segev, 2020).

Studies using detailed biophysical models have instead focused

on exploring the consequences of experimentally motivated un-

supervised rules (Bono and Clopath, 2017) or plasticity rules that

implicitly assume only linear integration (Steuber et al., 2007;

Moldwin and Segev, 2020), but whether these forms of learning

realize the full potential of single neuron computation is unclear.

Here, we show that the computational power of dendritic pro-

cessing can be flexibly exploited through synaptic plasticity.

Although our approach is general, we focus on understanding

how dendritic morphology and NMDA receptor-dependent excit-

ability can be recruited without requiring structured connectivity.

We analyze a detailed biophysical model of a layer 2/3 pyramidal

neuron using a set of variational equations that reveal how the so-

matic membrane potential depends on the history of input to the

dendritic tree. Using this to construct a local learning rule, we train

the model to perform a nonlinear classification task. With rate-

coded input, we find that synaptic weights evolve to selectively

engage dendritic nonlinearities, consistent with the proposed

equivalence to multilayer networks. We then extend this theory

to encompass dendritic integration of temporal signals, revealing

an effective spatiotemporal strategy for processing bursts of syn-

aptic input. The trained models predict observable signatures of

optimal processing by single pyramidal neurons, reflecting com-

putations that are neither hand-tuned nor inherited but arise natu-

rally when plasticity is governed by the constraints of physiology.

RESULTS

To understand the dendritic computations that can be learned

through synaptic plasticity, we developed a compartmental

model of a pyramidal neuron and a learning rule to tune its synap-

tic weights. The main technical contribution of this paper is that

we show how a synaptic credit assignment problem can be ad-

dressed by using cable theory to account for complex nonlinear

interactions in the dendritic tree and that this can be approxi-
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mated at each synapse using only local signals. By training the

model to perform a task, we aim to uncover the computational

strategies accessible to single neurons, without presupposing

the ultimate implementation. Specifically, after introducing the

model and learning rule, we consider a nonlinear feature-binding

problem similar to that studied by Legenstein and Maass (2011)

and Cazé et al. (2013). This requires the model neuron to classify

conjunctions of synaptic input patterns by producing spikes in

response to a prescribed set of inputs but remaining silent for

others. As this biologically motivated task demands nonlinear

processing of synaptic input, it is ideal for examining the ability

of single neurons to learn network-level computations.

Synaptic integration in a layer 2/3 pyramidal neuron

Weconstructed themodel using a detailedmorphology of a layer

2/3 pyramidal neuron from mouse primary visual cortex (Allen

Institute for Brain Science, 2015; ID 502359001) and fitted a so-

matic spiking mechanism with characteristic linear f-I curve and

adaptive firing rate (Pospischil et al., 2008). Synapses were

randomly distributed across basal and apical dendrites,

comprising 800 excitatory synapses with AMPA and voltage-

dependent NMDA conductances and 200 inhibitory synapses

with GABA conductances. The voltage dependence of the

NMDA conductance results in supralinear integration of excit-

atory synaptic input to single dendritic branches, once a

threshold level of input is reached (Figure 1). This well-described

nonlinearity (Schiller et al., 2000; Polsky et al., 2004; Nevian et al.,

2007; Branco et al., 2010; Branco andH€ausser, 2011) is the foun-

dation of the multilayer-network analogy, with the responses of

individual dendrites resembling the activation functions of artifi-

cial network units (Mel, 1992b; Poirazi et al., 2003b; London and

H€ausser, 2005). We refer to the model with excitable NMDA syn-

apses as the ‘‘active model,’’ as the response to synaptic input is

dominated by the voltage dependence of the NMDA conduc-

tance. In a subset of simulations, we extend this model to

consider a more excitable regime in which voltage-dependent

intrinsic conductances are also present throughout the dendritic

tree (Figure S2). To isolate the contributions of NMDA-depen-

dent excitability and morphology, we also consider two alterna-

tive models: a passive model in which we omit the voltage

dependence of the NMDA receptors and a ‘‘point neuron’’ model

that is biophysically identical to the active model but has all syn-

apses located at the soma. In qualitative contrast to the active

model, the passive model integrates sublinearly within dendritic

branches because the dominant local effect of depolarization

due to synaptic input is a reduction in synaptic driving force.

The point neuron model, whose synapses are not subject to

the high local voltages experienced in dendrites (Spruston,

2008), integrates approximately linearly at the soma (Figure 1).

For a given pattern of input and synaptic weightsw (defined as

peak synaptic conductance), the dynamics of the models are

described by discretized dendritic cable equations, coupled to

equations for the dynamics of active somatic conductances:

_v = fðt; v;m;h;n;p;wÞ; (Equation 1)

_xm = gmðv0; xmÞ; xm =m;h; n;p: (Equation 2)



Figure 1. Synaptic integration depends on dendritic morphology

and local nonlinearity

Layer 2/3 pyramidal cell morphology with distinct basal and apical dendritic

domains. Plots show the simulated peak somatic response to increasing

numbers of excitatory synaptic inputs at the indicated locations, compared

with the peak of the linear sum of the same number of unitary EPSPs. The basal

and apical inputs are located at path distances of 95 and 275 mm from the

soma, respectively. Voltage-dependent NMDA receptors yield supralinear

integration within dendritic branches (active model, red lines), whereas inte-

gration in a purely passive model is sublinear (passive model, blue lines).

Integration is approximately linear when the synapses of the active model are

relocated to the soma (point neuron model, black line).
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In Equation 1, v denotes the vector of voltages for each segment

of the morphology. The nonlinear function f describes the activa-

tion of synaptic conductances, generation of somatic spikes,

and the flow of axial and transmembrane currents. The variables

xm in Equation 2 represent Hodgkin-Huxley gating variables for

the spiking mechanism (m, h: fast transient Na+; n: delayed recti-

fier K+; p: slow voltage-dependent K+ ). The functions gm

describe the gating kinetics, which depend on the somatic

voltage v0. We provide the full details of the model dynamics in

STAR Methods, Equations 8–12.

For efficient learning via synaptic plasticity, a fundamental

question must be addressed: during a barrage of synaptic input,

what is the influence of each synapse on the spiking output of a

neuron? When the solution to this credit assignment problem is

known, powerful learning strategies can be used in which synap-

tic weights are selectively modified relative to their ability to con-

trol the output. A compelling demonstration of this principle,

based on an integrate-and-fire point neuron, is provided by the

tempotron learning rule (G€utig and Sompolinsky, 2006, 2009; Ur-

banczik and Senn, 2009). In the tempotron, synapses are modi-

fied in proportion to the gradient of the membrane potential with

respect to the weights, allowing the voltage to be efficiently
pushed above or below spiking threshold as demanded by a

given computational task. Although proven to be highly effective

for learning in simple point neurons, to our knowledge, fuller ex-

tensions that are able to exploit the complex dynamics of den-

dritic integration have not yet been developed. With this goal in

mind, we augment Equations 1 and 2 with a system of variational

equations for credit assignment that computes gradients of the

dynamically evolving voltage with respect to the synaptic

weights.

For the weight of synapse i, the variational equations are

given by

_vv

vwi

=
vf

vwi

+
vf

vv

vv

vwi

+
X
m

vf

vxm

vxm
vwi

; (Equation 3)

_vxm
vwi

=
vgm

vv0

vv0
vwi

+
vgm

vxm

vxm
vwi

; xm =m;h;n;p: (Equation 4)

Integrated numerically for each wi, these equations track the

dependence over time of the voltage throughout themorphology

on the synaptic weights and thereby the relative contributions of

each synapse within the population. In particular, we are inter-

ested in the dependence that underlies the spiking output at

the soma, vv0ðtÞ
vwi

. When the specific identity of a synapse is not

important, we suppress the index and express this general quan-

tity as vvsoma

vw . Because the derivatives are propagated through

the model dynamics, we capture the influence of dendritic

morphology, interactions between excitatory and inhibitory syn-

apses, dendritic NMDA spikes, and active somatic integration.

We provide the full details of the variational equations in STAR

Methods, Equations 13–17.

Using the numerical solution of Equations 3 and 4 to visualize
vvsoma

vw at times preceding action potentials, we find the influence of

a synapse varies considerably with location, time of activation,

and local interactions within the dendritic tree (Figure 2A). For

instance, if excitatory synapses are active in spatial clusters,

the impacts of weight changes are amplified because of

voltage-dependent coupling of NMDA currents within the local

branch (Figure 2A, example i). Potent inhibitory control is seen

for inhibitory synapses that are proximal to active excitatory

synapses, relative to the soma (Figure 2A, example ii,

morphology lower right), and also on distal dendritic tips (Fig-

ure 2A, example ii, morphology upper left), in agreement with

previous work (Gidon and Segev, 2012). By extending the

standard compartmental equations to track internal model dy-

namics, we thus access an explicit readout of the interactions

between input statistics and dendritic biophysics, and the influ-

ence of every synapse on the soma.
Local variables can assign synaptic credit for somatic
spikes
Equations 3 and 4 provide a general means to solve the problem

of synaptic credit assignment in single neurons, without

sacrificing the rigorous constraints and predictive power of bio-

physical simulations. However, there are two limitations to

constructing a learning rule directly from this system. First, the
Neuron 109, 4001–4017, December 15, 2021 4003
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Figure 2. Two local variables determine the impact of synaptic plasticity on somatic output

(A) Example simulation of the active model stimulated with Poisson input into excitatory (black) and inhibitory (magenta) synapses. Bottom left: somatic voltage

trace. Top left: raster plots of synaptic input preceding two somatic spikes. Synapses located on the same dendrite are grouped together on the y axis. Markers

are scaled by themagnitude of influence on the somatic voltage, vvsoma

vw , immediately prior to the spike, normalized by themaximumwithin excitatory and inhibitory

groups. In this example, the variational equations were solved numerically for each individual synaptic activation by making dummy copies of synapses that were

active more than once. Right: spatial distribution of activated synapses from example (ii).

(B) Polynomial fits of somatic spike-triggered average vvsoma

vw in the active model, to be used as plasticity kernels in the learning algorithm.

(C) The approximations in (B) accurately predict the voltage gradients computed from numerical integration of Equations 13–17 (fitted on 75% of the simulated

data and tested on the remaining 25%). For visibility, scatterplot shows randomly sampled points from bins of 0.1mV nS�1 width along the x axis (up to 100 points

per bin). R2 values are computed from the correlation between actual and approximated values over all held-out data.

(D) The voltage at a synapse at the time of somatic spikes depends on multiple factors, allowing their implicit representation in the learning rule. Shown is the

semipartial correlation computed from a linear model fitted on 75% of the data and tested on the remaining 25%.

See also Figure S1.
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inherent complexity means that numerical solution over poten-

tially many training iterations is computationally expensive. Sec-

ond, the equations are non-local, as the computed influence of a

synapse formally depends on activity in even very distant regions
4004 Neuron 109, 4001–4017, December 15, 2021
of the dendritic tree, information unlikely to be generally available

to synapses of a real neuron. To overcome these issues and gain

further insight into the underlying principles, we sought an

approximation using variables local to each synapse.
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To construct the approximation, we performed an extensive

set of simulations in which input rates, weights, and synaptic lo-

cations were varied. Pooling over synapses in either basal or api-

cal dendrites, we computed a postsynaptic spike-triggered

average of vvsoma

vw as a function of the time that a given synapse

was activated before the postsynaptic spike, and the local den-

dritic voltage at the time of the postsynaptic spike. These func-

tions could be well described by polynomial fits (Figure 2B,

active model shown). Approximating values of vvsoma

vw at the time

of postsynaptic spikes using the fitted spike-triggered averages

accounted for�90%of the variance of held-out data (Figure 2C).

The temporal components of the fits resemble time-reversed

and cable-filtered synaptic conductances; the window of excit-

atory integration reflects a mix of AMPA and NMDA kinetics,

and the peak influence of apical synapses is shifted to earlier

activation times and reduced in magnitude relative to basal syn-

apses (Figures S1A–S1C). In the active model, the peaks in the

voltage components for both excitatory and inhibitory synapses

coincide with the voltage-dependent activation of NMDA recep-

tors between ��30 and �40 mV, revealing a small time and

voltage window in which synaptic weight changes are maximally

effective at modifying somatic output. The results for the passive

model are similar, but with the peak in the voltage components

for the excitatory synapses shifted to the somatic spiking

threshold of ��50 mV (Figure S1D). We approximated vvsoma

vw for

the point neuron using only synaptic activation time, as in this

case the local voltage is the somatic membrane potential itself

(Figure S1C).

The output of Equations 3 and 4 can be accurately captured in

terms of just two local variables, synaptic activation time and

dendritic voltage, which is surprising given the complex

morphology and impact of features such as spatiotemporal clus-

tering of inputs (Figure 2A). This important sensitivity is conferred

through the local voltage dependence, as we find that such fea-

tures are represented indirectly through the voltage signal within

each branch. We used linear regression to quantify the unique

contributions of key structural and dynamic variables to the local

voltage by their semipartial correlation (i.e., ability to predict the

residual voltage after removing components explained by other

variables). At the time of somatic spikes, the voltage at a synapse

depends strongly on input resistance (related to its finer-scale

location), and the degree of synchronous activation of other syn-

apses on the same branch (within a 100 ms window) (Figure 2D).

The voltage depends comparatively weakly on the weight or ki-

netic state (value of the temporal component of conductance) of

a synapse itself, once other variables are accounted for (Fig-

ure 2D). This implies that sets of both excitatory and inhibitory

synapses can be strongly coupled by the voltage within

branches, and in principle, voltage-dependent plasticity can

thereby act with sensitivity to the spatiotemporal structure of

the input. Learning controlled by local variables can therefore

harness the morphology and dynamics of a pyramidal neuron

without an explicit representation of either.

We use these results to construct a supervised synaptic

learning rule, inspired by the tempotron (G€utig and Sompolinsky,

2006), that accounts for nonlinear processing in the dendritic

tree. In the following, we consider an application where a neuron
should produce somatic spikes on presentation of noisy input

patterns from a preferred class (+) but remain silent during pre-

sentation of patterns from a nonpreferred class (�). The goal of

learning is to minimize the expected number of incorrect classi-

fications across the full set of input patterns.

We use a greedy algorithm in which input patterns are pre-

sented sequentially and synaptic plasticity acts to either

suppress or reinforce somatic spiking activity. We assume that

a supervisory system maintains a running average of the classi-

fication error for each input pattern and uses this to guide the

learning process. On presentation of (+) patterns, the supervisor

encourages spiking by depolarizing the soma. On both (+) and

(�) patterns, the supervisor controls the sign and globally scales

the magnitude of plasticity, such as via a neuromodulator (Seol

et al., 2007). Synaptic weights are modified whenever a somatic

action potential is fired, which we assume is signaled throughout

the dendrites by action potential backpropagation (Stuart and

Sakmann, 1994; Stuart et al., 1997). We use the local approxima-

tions of vvsoma

vw as plasticity kernels that assign the specific weight

change for each synapse as a function of synaptic activation

time and local dendritic voltage. Altogether, the weight update

rule is given by

Dwi = �aEp

X
k

Ki

�
Dtki ; vdendi

�
: (Equation 5)

The first factor in Equation 5 is composed of a learning rate a and

a running average error Ep provided by the supervisory system

(Ep%0 for (+) patterns and EpR0 for (�) patterns). This term

adaptively modulates the magnitude of plasticity, such that

weight updates are largest when the neuron has been perform-

ing poorly, and learning ceases once the noisy input patterns

can be classified without error. In Figure S5 we show that this

term can also be computed online from the spiking output of

the neuron, in which case the supervisor need only provide a bi-

nary classification label. The second factor in Equation 5 acts

locally to assign synaptic credit for the somatic spike;Ki denotes

the appropriate plasticity kernel for synapse i (basal, apical;

excitatory, inhibitory), Dtk is the time of the kth synaptic input

relative to the somatic spike, and vdendi
is the local dendritic

voltage at the time of the somatic spike. Thus, for example, an

excitatory synapse in the basal dendrites that was activated

40 ms before a somatic spike, and subject to a local voltage of

�40 mV at the time of the somatic spike, would be updated in

proportion to the value read from the top left panel of Figure 2B:

Dwif0:44 nS, after unit conversions. Because the plasticity ker-

nels approximate the gradient of somatic voltage with respect to

the weights, synapses are modified in proportion to their relative

ability to reinforce or suppress somatic spikes.
Can a single neuron learn nonlinear functions?
We challenged the active, passive, and point neuronmodels with

a nonlinear feature-binding task, framed as binary classification

of combinations of synaptic input patterns (Legenstein and

Maass, 2011; Cazé et al., 2013; Tran-Van-Minh et al., 2015).

This task is an abstraction of the tendency of cortical neurons

to respond to selective conjunctions of variables, such as spatial

orientation and frequency, or multi-modal stimuli (Leventhal
Neuron 109, 4001–4017, December 15, 2021 4005
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Figure 3. A single neuron can learn nonlinear functions

(A) Nonlinear feature-binding problem. Synapses representing different stimulus features were randomly distributed throughout basal and apical dendrites. In this

example, the neuron should only spike in response to the associations ‘‘green triangle’’ and ‘‘orange square’’ as indicated by the classification labels (bottom).

(B) Example simulations of a model before (gray) and after (black) training on the task defined in (A). Each combination of features is presented in turn via rate-

coded Poisson input, interspersed with background noise. For clarity, only input to excitatory synapses is shown.

(C) Performance (fraction correct) of models trained on ten random instantiations of the task (left bars). In the somatic inhibition condition (middle bars), models

were trained with all inhibitory synapses placed at the soma. Performance collapsed when dendritic voltage dependence was omitted from the learning rule

(right bars).

(D) Classification of associations is made by differential supralinear or sublinear integration. Input was presented to the indicated domains of trained models with

somatic spiking blocked. The peak somatic depolarization measured when features were presented together was compared with the sum of responses when

presented independently (averaged over 20 presentations of each association pair, then over label types).

All bars denote means; p values are from two-tailedWilcoxon signed-rank tests between groups for n = 10 independent replications. See also Figures S2 and S3.
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et al., 1995). We first focused on the rate-coded input regime on

which previous theories of pyramidal cell computation are based

(Poirazi et al., 2003b; Jadi et al., 2014) and chose classification

labels such that the task could not be solved by linear integration

(Legenstein and Maass, 2011). We consider streams of input

from two presynaptic populations representing different classes

of stimulus features, for concreteness, shape, and color. The

neuron must learn to spike on specific associations of features

from each class, such as ‘‘green triangle’’ and ‘‘orange square,’’

but no other combinations, such as ‘‘green square,’’ even though

similar groups of synapses are active on both preferred and non-

preferred associations (Figure 3A). Note that this task is similar to

learning an exclusive OR (XOR), as historically studied in a ma-

chine learning context (Minsky and Papert, 2017), but differs

by requiring selective responses to combinations of different
4006 Neuron 109, 4001–4017, December 15, 2021
input patterns, rather than input magnitudes. Biologically, this

corresponds to the presynaptic populations encoding stimulus

identity through patterns of activity rather than the binary pres-

ence or absence of stimuli as in the XOR. Previously proposed

solutions to this problem require strong assumptions about plas-

ticity of the coupling of dendritic branches to the soma (Legen-

stein andMaass, 2011), motivated by observations in hippocam-

pal neurons (Losonczy et al., 2008), or structured connectivity

that organizes specific inputs into clusters (Cazé et al., 2013;

Tran-Van-Minh et al., 2015). Here, we neither assume a biophys-

ical implementation nor hard-wire a solution through connectiv-

ity but let synaptic plasticity act on randomly distributed inputs to

learn the task.

To map the task to patterns of synaptic input, we defined each

feature component by a sparse, randomly generated vector of
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input rates taking values of either 0 or 40 Hz (see STARMethods,

Equations 18–20). Input patterns were realized in simulations as

Poisson spike trains comprising an initial 100 ms of background

activity to randomize the initial conditions, followed by a 400 ms

‘‘stimulus presentation’’ of pairs of features. We used a sparse-

ness of 1/16 (fraction of active synapses) to construct the rate

vectors, giving an average of 1,000 presynaptic spikes per stim-

ulus presentation (i.e., one spike per synapse, facilitating later

comparison with candidate temporal coding schemes). We

confirmed that our results do not depend qualitatively on these

specific parameter choices, which are comparable with related

work (Poirazi et al., 2003b; Legenstein and Maass, 2011). Pairs

of features were presented in random order over 1,000 epochs

of training and then tested 20 times without input from the super-

visor. After training, the active model could robustly discriminate

preferred associations from nonpreferred associations or back-

ground noise, demonstrating the ability of our learning rule to

tune the synaptic weights of a detailed biophysical model for

nonlinear computation (Figure 3B).

Which mechanisms are recruited to solve this task?

Comparing classification performance across the three models

confirms the advantage of dendritic morphology, with the point

neuron performing at chance levels (Figure 3C; active, 81% ±

6%; passive, 78% ± 6%; point neuron, 53% ± 4%; mean ±

SD). Dendritic excitability, however, is not essential, as the pas-

sive model performed almost as well as the active model. The

performance of both models remained high when trained with

all inhibitory synapses placed at the soma (Figure 3C; active,

81% ± 4%; passive, 79% ± 5%; mean ± SD), pointing to the

engagement of predominantly excitatory nonlinearities. The

voltage dependence of the learning rule was crucial for recruiting

these nonlinearities, as performance collapsed when restricting

it to depend only on synaptic activation time (Figure 3C; active,

56% ± 7%; passive, 55% ± 5%; mean ± SD).

To explore the possible roles of supralinear and sublinear

modes of integration, we simulated the response of the trained

models to different feature components, individually and in pairs,

while blocking somatic spiking. Summation of pairs of features

was supralinear in basal dendrites of the activemodel for all asso-

ciations, but substantially more so for the preferred class, relative

to nonpreferred (Figure 3D). By contrast, summation in passive

basal dendrites was sublinear, with a small but consistent bias to-

ward stronger sublinearity on nonpreferred associations, and

similarly for passive apical dendrites. Unexpectedly, apical den-

drites of the active model also exhibited a pronounced sublinear

response, reflecting a level of depolarization such that the satu-

rating phase of the sigmoid nonlinearity was engaged. We found

similar results when the model was extended to include dendritic

Na+, K+, and HCN channels to increase the intrinsic excitability of

the dendritic tree (Figure S2). Therefore, in agreement with the

central premise of Poirazi et al. (2003b), selective engagement

of activemechanisms in basal dendrites can indeedbeharnessed

for nonlinear computation. However, voltage-dependent plas-

ticity can also recruit sublinear forms of processing, and with

this flexibility, the optimal apical strategy predicted for this

morphology in fact resembles passive integration.

Examining the weights of the trained models, we find that the

learning rule rediscovers the clustering principles proposed in
terms of structured connectivity in the binary neuron model of

Cazé et al. (2013). Cazé et al. (2013) proposed that with an

expansive nonlinearity, excitatory inputs from two features form-

ing a preferred association should be spatially clustered to

enable supralinear integration. Inputs from two features forming

a nonpreferred association should instead be dispersed, thereby

ensuring only linear integration and a smaller somatic response

(Figure 4A, left). Conversely, with a suppressive nonlinearity, in-

puts forming preferred associations should be dispersed, with

linear integration yielding a larger somatic response than the

sublinear integration of clustered inputs (Figure 4A, right). Trans-

lated to our setting, in which connectivity is random, we find

these strategies can be realized functionally through learning

by tuning the spatial distribution of input strength (Figure 4B).

To quantify this, we constructed a spatial profile of excitation

strength for each feature in an association pair by summing the

weighted excitatory input rates on each dendritic branch and

then computed the correlation between profiles. Comparing

profiles in basal and apical domains separately, differences in

functional clustering, as defined by the overlap in patterns of

excitation strength, reflect the pattern of supra- or sublinear

summation observed in the simulations (Figure 4C). Comparing

profiles of excitation and inhibition in a similar manner, we find

that they overlap selectively in basal dendrites of the active

model on nonpreferred associations, serving to further suppress

the response to those association pairs (Figure 4D).

Although the performance of the active and passive models

was surprisingly similar, there are several notable differences.

Although the degree of functional clustering was comparable in

both cases, this was translated into much larger differences in

nonlinear summation in the active model (Figure 3D). This effect

may be due to the presence of steeper dendritic nonlinearities in

the active case (Figure 1), allowing a larger response difference

between classes. Moreover, we find that the active model is

more robust to input noise, tested by varying the rates of stim-

ulus-dependent and background synaptic activity and the total

number of synapses (Figures S3A–S3C). We also performed addi-

tional simulations in which the connectivity was highly structured,

such that the solutions learnedwith randomsynapse placement in

Figure 3 were either increasingly ‘‘hard-wired’’ or prohibited.

Strikingly, in the latter case, whereas the passive model failed to

learn the task, the activemodel learned to use an alternative strat-

egy of sublinear processing in basal dendrites (Figures S3D and

S3E). Active dendritic processing therefore enables more robust

and flexible solution of the task. Generally, however, our results

demonstrate that the power of multilayer integration is broadly

accessible to single neurons through active and passive dendritic

mechanisms, even with random connectivity. Spatial processing

of rate-coded input can be learned in either case through selective

enhancement of co-localized synaptic weights.

Computation with temporal signals
We have shown how a single pyramidal neuron can learn to

compute nonlinear functions of input rates. A long-standing ques-

tion is whether analogous computational principles govern tem-

poral processing within a branched dendritic tree (Poirazi et al.,

2003b; London and H€ausser, 2005; Jadi et al., 2014). One chal-

lenge in addressing this question is choosing a form of temporal
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Figure 4. Learning tunes the spatial distribution of input strengths

(A) Schematic illustrating how the feature-binding task can be solved via the structured connectivity mechanism proposed by Cazé et al. (2013). Arrows denote

the targeting of excitatory input from a given feature to a compartment. With supralinear integration, responses to clustered input are enhanced relative to re-

sponses to dispersed input, and conversely with sublinear integration.

(B) When connectivity is random, the strategies of (A) can be realized functionally by tuning synaptic weights through learning. Left: spatial distribution of

excitatory input strengths (weight 3 input rate) in a trained model. Inputs are color-coded by the features they represent and the classification labels defined by

thematrix below. Right: profiles of excitatory input strength for themodel depicted on the left. The height of each point is proportional to the sum of weighted input

rates on a branch. Preferred associations (e.g., X1 and Y1; blue and green) have strong inputs to common basal dendrites but separate apical dendrites.

Conversely, strong inputs of nonpreferred associations (e.g., X1 and Y2; blue and orange) are dispersed in basal dendrites and clustered in apical dendrites.

(C) Left: functionally clustered or dispersed configurations are reflected in the spatial correlation between weighted input to dendritic branches. XE and YE

represent excitatory input from two features. Right: correlation between spatial profiles of excitation (weighted input rates, summed within branches) from

association pairs after learning.

(D) As in (C) but comparing excitation and inhibition. In this case, the excitatory and inhibitory contributions from both features are summed before computing the

correlation. In basal dendrites, spatially selective inhibition serves to suppress the response to (�) patterns.

All bars denote means; p values are from two-tailed Wilcoxon signed-rank tests between groups for n = 10 independent replications.
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input, as there are many possibilities for encoding information in

spike timing, and the organization of in vivo synaptic input is un-

known.We therefore proceed in two stages. Using the biophysical

model as a guiding constraint, we first identify a form of input that

maximizes performance on the feature-binding task, while

respecting the stochasticity of in vivo spike generation and trans-

mission. We then explore this regime as a hypothesis of temporal

coding that is optimally suited to single neuron computation.

Extending the approachdescribed above,we represented input

features by randomly generated patterns of time-dependent pre-

synaptic rates. We parameterized a broad space of candidate

input schemes by the time-averaged firing rate of active synapses

and the number of precisely timed events per active synapse

(implemented asGaussianbumpsof elevated activity), while hold-
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ing the total population rate constant (Figure 5A). This parameter-

ization defines a space of possible input schemes ranging from a

sparse rate code (as implemented in Figure 3) to a dense temporal

code in which every synapse receives one presynaptic spike on

averagewithin aprecisewindowof time (similar toG€utig andSom-

polinsky, 2006, but herewith stochastic spikegeneration). Interpo-

lating between these extremes is a mixed regime in which inputs

carry both rate and temporal information, communicated through

single or multiple bumps of activity of varying size.

Using the same learning rule and training procedure as before,

we found the introduction of temporal signals resulted in near-per-

fect performance on the 2 3 2 association task of Figure 3

(not shown).We therefore increased thecomputational loadbyex-

tending the feature-binding task to classification of 73 7 randomly
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Figure 5. Sparse, precisely timed bursts of input maximize classification performance

(A) Left: parameterization of candidate rate and temporal coding schemes by the time-averaged input rate to active synapses and the number of precisely timed

elevations of the input rate (implemented as Gaussian bumps). The total presynaptic population rate is constrained to be the same for all parameters. To enforce

this constraint, and with scaling to maintain physiological instantaneous input rates, patterns also differ in sparseness (fraction of active synapses) and temporal

precision (width of rate elevations). Note that we use a decreasing order for the x axis in the temporal region; having multiple precisely timed events per synapse

more closely resembles a rate code than a single event per synapse as the input spikes are more uniformly distributed in time. Right: example rate functions

generated for an association pair in the feature-binding task by different parameter choices. (i) sparse rate code, (ii) dense temporal code, (iii) and (iv) mixed

regimes comprising bursts of activity. For clarity, only 20 synapses are shown.

(B) Example 7 3 7 matrix of associations to be classified. Classification labels are randomly assigned for each replication.

(C) Performance (fraction correct) of trained active, passive, and point neuronmodels, averaged over 10 replications for each input condition. The optimal form of

input (asterisk) was the same for all models. R and T denote the rate and temporal schemes used for comparison in (D) and (E).

(D) Example realizations of Poisson input to a synapse for the rate, optimal, and temporal conditions. Bursts in the optimal condition are temporally localized but

do not suffer from the transmission failures of the temporal condition.

(E) Detailed comparison of performance across the three models from an independent set of simulations.

Bars denote means; p values are from two-tailed Wilcoxon signed-rank tests between groups for n = 10 independent replications.
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labeled associations (Figure 5B). We trained each of the three

models on the 7 3 7 task using input patterns generated under

the various parameterized input regimes. We find that the form

of input that maximizes classification performance is the same

forallmodels (Figure5C). In theoptimal input regime, sparselyacti-

vated synapses communicate in single �50 ms bursts, each

comprising an expected eight presynaptic spikes (Figure 5D).
Notably, across all models, synaptic input of this form resulted in

a pronounced performance enhancement over the more

commonly assumed purely rate or temporal schemes, as as-

sessed with an independent set of simulations (Figure 5E; active,

73% ± 5%/90% ± 3%/70% ± 3%; passive, 72% ± 5%/91% ±

2%/71% ± 5%; point neuron, 62% ± 5%/89% ± 4%/72% ± 2%;

mean ± SD for rate/optimal/temporal input). This advantage was
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observed for computational loads tested up to 10 3 10 associa-

tions andwas robust to background noise and trial-by-trial pertur-

bations to synaptic weights and burst timing (Figure S4).

InFigure6A,weshowanexample simulationof theactivemodel

in theoptimal input condition solvinganonlinear subsetof the task,

analogous to Figure 3A. To understand the implementation, we

examined the subthreshold potentials and synaptic weights of

the trained models as before. Simulating the subthreshold

response to individual feature components revealed a common

temporal strategy. After training, the time courses of somatic re-

sponses are shaped such that only preferred pairs of features

will sum constructively (Figure 6B). For all models, the somatic re-

sponses to features forming preferred associations are therefore

temporally correlated, whereas responses to features forming

nonpreferred associations are temporally anticorrelated (Fig-

ure 6C). Analogous to the rate-coded case (Figure 4), the imple-

mentation can be understood at the synaptic level in terms of the

profiles of input that have been shaped through plasticity. For

each feature component and dendritic domain we computed a

temporal profile of excitation and inhibition as a time-dependent

sum over synapses, scaled by synaptic weights. In the point

neuron model, temporal profiles of excitation are positively

correlated for preferred associations and negatively correlated

for nonpreferredassociations (Figure6D). The temporal correlation

between inhibitionandexcitationalsodifferswithassociation type,

but with a reversal of sign (Figure 6E). In the active and passive

models, in which the influence of inhibition is spatially restricted

within the tree, we find that this strategy is implemented within

each dendritic domain (Figures 6D and 6E). Simulating the

response to basal and apical input separately and comparing so-

matic membrane potentials reveals that these locally computed

signals are also coordinated globally. Subthreshold potentials

arising from input to each domain are preferentially aligned on

preferred associations (active, 0.38 ± 0.1/0.04 ± 0.09; passive,

0.27 ± 0.12/0.21 ± 0.09; mean ± SD of temporal correlation be-

tween somatic membrane potentials from basal and apical input

for preferred/nonpreferred associations), meaning that responses

canbe learned that are shaped locally bydendritic inhibitionbefore

appropriate summation at the soma.

In summary, these results show that from a randombasis of syn-

aptic input bursts of suitable density and precision, reliable analog

signals can be constructed and selectively combined for computa-

tion. In contrast to the rate-coded scheme, this optimal representa-

tion allows binding of input features through integration in either

single or multiple compartments. However, as performance was

consistently high across all models in our simulations, further con-

tributions of dendritic processing were unresolved. We now show

thatas this input regimecontains information inboth ratesandspike

timing, spatial processing can also be synergistically recruited as

the capacity of the temporal processing strategy is reached.

Synergistic recruitment of spatial and temporal
processing
To understand what can be learned by a single neuron beyond

computations involving purely spatial or temporal processing,

we challenged the models with the 73 7 task, though under pro-

gressively shorter durations of stimulus presentation to gradually

saturate the temporal capacity (Figure 7A). The performance of
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all models decreased with decreasing stimulus duration, reaching

that of an equivalent rate code as the durationwas reduced below

thewidthofa single inputburst (Figure7B). Theperformanceof the

point neuron, however, which represents the limit of a purely tem-

poral strategy, fell off the most rapidly. At intermediate durations,

the active and passive models performed well above the lower

bound represented by the equivalent rate code, even as the point

neuron dipped below (active, 80% ± 3%; passive, 77% ± 4%;

point neuron, 67% ± 4%; mean ± SD for 75 ms duration). This

suggests a concurrence of spatial and temporal processing,

enhancing performance beyond that of either strategy alone.

The analysis of trainedmodels in Figures 4Cand 4Dand Figures

6D and 6E shows that distinct signatures of the spatial and tempo-

ral feature-binding strategies are imprinted on the synaptic

weights through learning. We repeated this analysis to determine

the contributions of spatial and temporal processing across stim-

ulusdurations. As above,wecomputedweighted spatial and tem-

poral input correlations for all association pairs, separately for

each dendritic domain, and for excitation and inhibition. We use

the shorthand rS (spatial correlations) and rT (temporal correla-

tions) to refer to these groups of measurements. We find that dif-

ferences in rT between pairs of preferred and nonpreferred asso-

ciations decrease with stimulus duration for all models (Figures

S6A and S6B). In the active and passive models, this apparent

reduction in temporal processing power is accompanied by a

graded increase in spatial organization, revealed by differences

in rS, such that both signatures are present where the advantage

over the point neuron is greatest (Figure S6C). We quantified this

by fitting regression models to predict the classification label of

each association pair from rS and rT (Figure 7C). This analysis re-

veals two contributions to the superior performance of the active

and passive models. Sensitivity to both spatial and temporal

structure gives the opportunity to use one strategywhen the other

would fail because of the statistics of a particular input pattern.

Spatial and temporal processing can also be jointly recruited to

act within a single pattern presentation.

Regression prediction accuracy is highest when regressing

classification labels on rT for long durations and rS for short dura-

tions, as expected (Figure 7C). For intermediate durations, both

are approximately equally effective. Pooling over the 75 ms and

100 ms conditions, we find a fraction of association labels can

be correctly predicted from rT, but not from rS (active, 25%; pas-

sive, 22% of labels). On this set (as defined by the active model)

the average task performance of the point neuron model was

77%. A similar fraction can be correctly predicted from rS, but

not rT (active, 22%; passive, 23% of labels). On this set the task

performance of the point neuron was reduced to 63%, close to

the rate-coded lower bound (Figure 7B). These two groups reflect

different subsets of associations where either the spatial or tem-

poral strategy is implemented in isolation. However, the labels

of a large fraction of associations can be correctly predicted

from rT and also separately from rS (active, 44%; passive, 45%

of labels), reflecting another subset in which both forms of pro-

cessing are present. We explored this further by predicting labels

from learned spatiotemporal input correlations, rST, computed by

concatenating the temporal profiles of input to individual

branches. For the active model, rST is uniformly more predictive

of class label than rS alone (Figure 7C), driven mostly by weights
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Figure 6. Synaptic plasticity can shape subthreshold potentials to implement a temporal feature-binding strategy

(A) Example simulation of a model trained on the 7 3 7 association task in the optimal precisely timed burst input condition. The response on a nonlinear 2 3 2

subset of the task is shown, as defined by the classification labels (left). Each combination of features is presented in turn, interspersed with background noise.

The markers in the raster are scaled in proportion to synaptic weight. For clarity, only input to excitatory synapses is shown.

(B) Example of average subthreshold somatic membrane potentials arising from presentation of input features in isolation, with somatic spiking blocked. Shaded

area is SD from 20 presentations. The components Xi and Yi correspond to those simulated in (A). Note that X1 andY1 will sum constructively to produce a spike at

�200 ms, but X1 and Y2 will not.

(C) Across all models, after training the subthreshold potentials arising from pairs forming preferred associations are temporally correlated, whereas those arising

from pairs forming nonpreferred associations are anticorrelated.

(D) Left: analogous to the spatial clustering strategy of Figure 4, over learning, synaptic weights evolve to temporally align patterns of excitation to bind preferred

associations. XE and YE represent excitatory input from two features. Right: correlations between temporal profiles of excitation (weighted input rates, summed

over synapses) from pairs forming preferred or nonpreferred associations.

(E) As in (D) but for the alignment of excitation and inhibition. XI and Y I represent inhibitory input from two features. Excitation-inhibition correlations are calculated

after summing the excitatory and inhibitory contributions of each feature component in a pair. Weighted excitatory and inhibitory input is aligned on nonpreferred

associations, serving to suppress somatic output.

Bars denote means (averaged over 20 presentations of each association, then over label types); p values are from two-tailedWilcoxon signed-rank tests between

groups for n = 10 independent replications.
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in basal dendrites. This implies that learning has organized tempo-

ral signals even within single dendritic branches. Clustered and

synchronous excitation can thereby strongly engage supralinear

integration to bind preferred associations (Figure 7D). By contrast,
prediction accuracy with rST in the passive model was degraded.

Here, the spatial and temporal strategies are in opposition, as

preferred associations demand dispersed yet synchronous input,

whereas nonpreferred associations demand clustered yet
Neuron 109, 4001–4017, December 15, 2021 4011
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Figure 7. Synergistic recruitment of spatial and temporal processing

(A) Schematic of presynaptic rates underlying the precisely timed burst input scheme with compressed stimulus presentation time.

(B) Average model performance after training as a function of stimulus duration for ten independent replications per condition. Dashed lines are average per-

formance under a rate code of the same sparseness and time-averaged maximum rate (20 Hz), presented for 400 ms. Note that the x axis is not a linear scale.

Shaded areas are SEM.

(C) Analysis of the relative contribution of spatial and temporal processing as a function of stimulus duration. The signature of each strategy is imprinted on the

synaptic weights through learning, allowing the classification label of a given association pair to be predicted from knowledge of the weights and input rates. Plots

show the prediction accuracy of logistic regression models fitted to predict the classification labels on the basis of correlations between spatial (rS, squares),

temporal (rT, circles), and spatiotemporal (rST, diamonds) input profiles after training for the active (red) and passive (blue) models. Spatiotemporal correlations in

the active model are more predictive of class labels than spatial correlations alone, implying a local organization of temporal signals within individual branches.

(D) Schematic of spatiotemporal feature-binding strategies. Traces represent the excitation of dendritic branches with weighted input from two stimulus features.

With supralinear integration, the response to preferred associations (+) can be synergistically enhanced by tuning weights such that excitation is both clustered

and synchronous (denoted by red arrow). Input from nonpreferred associations (�) should instead be dispersed and asynchronous. Feature binding with

sublinear integration demands dispersed, synchronous input from preferred associations and clustered, asynchronous input to suppress responses to non-

preferred associations. Although less compatible than supralinear processing, local sublinear integration could compensate on branches where temporal

segregation is incomplete (blue arrow). Inhibitory input can also act in both cases to sharpen temporal responses and aid suppression of (�) pairs (not shown).

See also Figure S6.
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asynchronous input (limiting engagement of dendritic nonlinear-

ities). Although local sublinear processing could serve to compen-

sate on nonpreferred associations where temporal segregation is

incomplete (Figure 7D), the passive model lacks the inherent

compatibility of the active model for spatiotemporal integration

on this task, which may explain the consistent performance gap

between the two (Figure 7B).

We conclude that with synaptic plasticity acting on spatiotem-

poral input to dendrites, complementary processing strategies

can be flexibly selected, and even combined, to solve a chal-

lenging nonlinear computational task. When spatial and tempo-

ral features of synaptic input patterns both carry information

about a stimulus, supralinear dendritic integration provides an

ideal foundation for exploiting their interaction.

DISCUSSION

Nonlinear dendritic integration enables single neurons to

perform sophisticated computations on their inputs. For neural
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circuits to capitalize on this processing capacity beyond what

can be hard-wired during development requires dendritic com-

putations to be learned. We have shown how this can be effi-

ciently accomplished through synaptic plasticity. Through an

extension of dendritic cable theory, we quantified for the first

time how the spiking output of a neuron is influenced by small

changes in the strengths of its many interacting synaptic inputs.

We used this analysis to develop a supervised spike-timing and

voltage-dependent learning rule that optimally adjusts synaptic

weights to control the input-output function of a detailed pyrami-

dal neuron model. Training the model to perform a nonlinear

classification task, we demonstrated that the biophysical

properties of dendrites can be harnessed without structured

connectivity, which greatly expands the repertoire of dendritic

computations that can be exploited by the brain. Computations

that use high-order spatial or temporal features of random syn-

aptic input patterns can be learned through the same form of

plasticity, yielding synaptic weight distributions that engage

supralinear or sublinear dendritic integration or precisely control
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the time course of subthreshold potentials. When information is

encoded in both the rates and spike timing of the input, spatial

and temporal processing strategies can be combined to maxi-

mize the computational power of single neurons.

The foundation of our approach is a precise mathematical

description of the influence of synaptic weight changes on

somatic output. Despite the inherent complexity of dendritic

integration, we found this information is available to individual

synapses through a simple functional dependence on synaptic

activation time and dendritic voltage. A neuron can therefore

optimally update its synaptic weights using local signals, while

still accounting for nonlinear interactions throughout the den-

dritic tree. Encapsulating this insight in a supervised learning

rule allowed us to explore principles of single neuron computa-

tion under a range of input conditions and model assumptions.

That very different computations were learned with rate or

temporal input, and even in distinct dendritic domains, demon-

strates the sensitivity of our learning rule and its general applica-

bility. The algorithmic perspective brought by our approach

complements previous theoretical studies that have invoked

spike-timing and voltage-dependent plasticity on the basis of

experimental observations (Legenstein and Maass, 2011; Clo-

path et al., 2010; Bono and Clopath, 2017; Ebner et al., 2019).

Although we have not sought to reproduce the results of specific

experiments, our rule is biologically grounded insofar as it oper-

ates within the biophysical constraints imposed by our detailed

model and weight updates are computed from variables that

are plausibly accessible to dendritic synapses. We acknowl-

edge, however, that several biological details of the implementa-

tion have been left unspecified. In particular, we have modeled

the supervisory signal at an abstract level; to make the underly-

ing assumptions explicit, a more detailed treatment in future

work could include a specific circuit for neuromodulatory control

(G€utig, 2014). Similarly, the implementation of the local plasticity

kernels could be developed by modeling signaling cascades at

the synapse that process pre- and postsynaptic spike times

and the local dendritic voltage (Ebner et al., 2019). To further

elucidate connections between the algorithmic and biological

aspects of synaptic plasticity, another important extension of

our analysis will be to characterize how the influence of synaptic

weight changes depends on the wider range of dendritic mech-

anisms found throughout the brain. We hypothesize that, among

other factors, experimentally observed differences in plasticity

induction within and across cell types (Sjöström et al., 2008)

may reflect specializations to allow optimal assignment of syn-

aptic credit from local dendritic signals.

Training the model on a rate-coded feature-binding task, we

showed that a single neuron can learn to implement nonlinear

functions of randomly distributed input by engaging dendritic

nonlinearities. Therefore, not only do pyramidal neurons share

structural similarities with multilayer artificial networks (Poirazi

et al., 2003b; Jadi et al., 2014), but they can capitalize on this

foundation without requiring special connectivity rules or struc-

tural plasticity. Modulo the remaining mechanistic questions

detailed above, this flexibility would reduce the developmental

burden of precise axonal targeting and allow the output of a

neuron to easily adapt to changes in input tuning or network de-

mands. The learned implementation differs from the branch-
strength potentiation modeled by Legenstein and Maass

(2011), as this mechanism, observed in hippocampal neurons,

is not a feature of our model. Instead, our model predicts a

form of in-branch functional clustering (Kastellakis et al., 2015),

similar to that imposed in the abstract Boolean model of Cazé

et al. (2013), in which it was shown that distinct wiring schemes

could take advantage of either supralinear or sublinear dendritic

integration. Our results demonstrate that both possibilities can in

fact emerge naturally from identical input connectivity and the

same learning rule. As a consequence, we find opposite imple-

mentations in apical and basal dendrites, whereas the rules of

multistage integration in these domains have previously been

assumed to be the same (Jadi et al., 2014). Why sublinear pro-

cessing in apical dendrites is optimal for the task is unclear; it

may be that saturating voltages are required to overcome atten-

uation from the tuft (Moldwin and Segev, 2020). This intriguing

result reinforces the importance of analyzing models built with

realistic morphological constraints. More broadly, these obser-

vations and the comparable performance of the purely passive

model underscore the potential of diverse forms of dendritic

nonlinearity for computation (Poirazi and Mel, 2001; Ujfalussy

et al., 2015). The power of hierarchical dendritic processing

may extend far beyond the excitable dendrites of pyramidal cells

to include dendrites exhibiting largely passive integration (Abra-

hamsson et al., 2012; Vervaeke et al., 2012), or where a mixture

of both supralinear and sublinear integration is found within

inhibitory interneurons (Tzilivaki et al., 2019).

Solving the same task under a range of temporal input

schemes revealed an optimal regime of input comprising

sparsely distributed bursts. Although it was feasible in this study

to survey only a fraction of possible temporal coding schemes,

our results highlight several general principles. First, as argued

previously (Lisman, 1997; Krahe and Gabbiani, 2004), burst firing

of presynaptic cells provides reliable units of information to post-

synaptic cells. Earlier models trained on temporal pattern

discrimination showed impressive performance when presented

with precisely timed and reliable single spikes (G€utig and Som-

polinsky, 2006, 2009; Schiess et al., 2016). We found that using

a similar dense temporal scheme, although accounting for the

stochasticity of spike generation, failed to improve upon the per-

formance of amuch simpler rate code (Figure 5E). However, per-

formance improved dramatically when synapses were activated

in bursts, ensuring robust signaling while retaining spike-timing

information. Short-term synaptic dynamics, not considered

here, could further accentuate this advantage (Lisman, 1997)

and even allow multiple streams of information to be multiplexed

within single cells (Körding and König, 2001; Naud and Sprek-

eler, 2018; Payeur et al., 2021). Second, as with connectivity,

plasticity acting on globally unstructured temporal signals pro-

vides a general and flexible basis for computation. Well-studied

structured alternatives include highly synchronous or sequential

activation of synapses, which, through intrinsic biophysical

mechanisms, can elicit differential responses to specific sets of

inputs (Rall, 1964; Ariav et al., 2003; Branco et al., 2010; Branco

and H€ausser, 2011; Bhalla, 2017). We found, however, that with

patterns defined by randomly timed events, our model could

learn arbitrary responses by shaping the time course of sub-

threshold potentials. In this case, dendritic processing tuned
Neuron 109, 4001–4017, December 15, 2021 4013
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by plasticity can decide the stimuli that are most relevant to a

cell. Finally, our results reveal the remarkable computational

potential that exists beyond a strict rate or temporal coding di-

chotomy. Dendrites confer exquisite sensitivity to both represen-

tations, and through spatiotemporal integration, processing of

rate and temporal information can be synergistically combined.

Key predictions of our model can be tested experimentally

without the need to measure synaptic weights or input rates.

We propose experiments that, although challenging, could be

performed in layer 2/3 pyramidal cells with currently available

techniques. Performing chronic in vivo Ca2+ imaging of

pyramidal cell populations while training animals to discriminate

stimulus conjunctions as in Figure 3, we predict the emergence

of individual neuronswith nonlinear selectivity. This would confirm

that such computations can be learned, even in early sensory

areas, rather than being hard-wired through connectivity. In neu-

rons exhibiting this selectivity, the signature of the optimal spatial

strategy could then be identified through in vivo Ca2+ imaging of

dendritic branches (Kerlin et al., 2019; Palmer et al., 2014). As

schematized in Figure 7D, in basal dendrites, preferred associa-

tions are predicted to elicit a strong local Ca2+ signal from acti-

vating NMDA receptors in a small number of branches, whereas

nonpreferred associations are predicted to elicit comparatively

weaker responses in a larger number of branches (conversely

for apical dendrites). The predicted signature of the temporal

strategy could be identified through two-photon targeted patch-

clamp recordings (Margrie et al., 2003; Kitamura et al., 2008)

from the imaged population. In conjunction-selective cells,

preferred associations are predicted to evoke a consistent peak

in somatic voltage underlying a spiking response, whereas multi-

ple subthreshold peaks are predicted for nonpreferred associa-

tions, reflecting the temporal alignment or misalignment of excita-

tion arising from individual stimulus features.

Beyond the present study, the strength of our general

approach is that it can be applied to investigate a wide range of

possible computations, as well as other biophysical mechanisms

and cell types. The governing Equations 1, 2, 3, and 4 are indeed

easily extended to any number of active conductances distrib-

uted throughout a given dendritic morphology. Thus, although

we have focused on voltage-dependent NMDA receptors as

the major driver of supralinear synaptic integration (Branco and

H€ausser, 2011; Major et al., 2013), the computational roles of

additional dendritic conductances can also be quantitatively as-

sessed. We have taken a first step toward this goal, demon-

strating an increase in classification performance in the presence

of Ih currents and dendritic Na+ spikes (Figure S2). However, a re-

maining challenge in this more excitable regime is finding an ac-

curate local approximation of vvsoma

vw , as used for learning in the

strictly NMDA-dependent active model (Figure 2B). This will likely

require a dependence on additional local variables, such as high-

pass-filtered voltage signals that can detect fast dendritic Na+

spikes. Further investigation of the impact of Na+ spikes on stim-

ulus tuning (Smith et al., 2013; Goetz et al., 2021) and temporal

processing (Ariav et al., 2003) is a priority for future work. An

intriguing nonmonotonic dendritic nonlinearity was also recently

found in human layer 2/3 neurons (Gidon et al., 2020). In principle,

this inverted U-shaped response to input magnitude could allow

an XOR to be implemented within a single compartment (Zador
4014 Neuron 109, 4001–4017, December 15, 2021
et al., 1991; Gidon et al., 2020), whereas implementation with

the more common sigmoid nonlinearities of our model would

require two (in a similar fashion to feature binding but with stron-

ger recruitment of inhibition). Whether human neuron electro-

physiology might confer additional benefits beyond this specific

computation remains to be elucidated and would be of great in-

terest to explore through task optimization of a detailed model,

as we have done here. Applying our methods to study dendritic

integration in neurons of cortical layer 5, the hippocampus, and

cerebellumcould also provide fresh insights into other active phe-

nomena, such as associative interactions that produce apical tuft

Ca2+ plateaus (Larkum et al., 1999; Bittner et al., 2015) and tem-

poral regulation by Ih currents (Magee, 1999; Angelo et al., 2007).

Althoughwe found that all of ourmajor results were reproduced in

a second layer 2/3 pyramidal cell model (Figure S7), it will be very

revealing to explore how local rules of plasticity and computation

may differ across cell types with distinct dendritic architecture

and physiology. We suspect, for instance, that the segregated

apical tuft of larger layer 5 neuronswould preclude a direct gener-

alization of the learning rule presented here. In this case, a two-

stage rule may be more applicable, in which credit is assigned

locally to synapses for producing apical Ca2+ plateaus, and

also globally in proportion to the ability of the plateau to drive so-

matic output. Although many important questions about the im-

plications of dendritic physiology for learning and computation

remain open, the tools we have developed will allow these to

now be systematically addressed.
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METHOD DETAILS

Biophysical model
Morphology and passive properties

We used two adult mouse V1 layer 2/3 pyramidal cell morphologies from the Allen Cell Types Database (Allen Institute for Brain Sci-

ence, 2015). The morphology shown in Figure 1 (ID 502359001) was used for the majority of simulations. The second morphology

(ID 521409057) was used to confirm the reproducibility of the results (Figure S7). Possible reconstruction errors in the form of pinched

sections of dendrite were manually corrected by linear interpolation between adjacent segments, and the diameter profile of each

branch was then smoothed with a moving average filter. Dendritic sections were subsampled such that each branch comprised

at least two compartments, and the maximum compartment length was less than 10 mm (462 and 510 total dendritic compartments

for the first and second morphology). For computational efficiency and to constrain the number of free parameters, we removed the

detailed reconstructed axon and used a lumped axo-somatic compartment of radius 10 mm for action potential generation. The

specific membrane capacitance cm = 1 mF cm�2, specific membrane resistance rm = 104 U cm2, axial resistivity ra = 150 U cm,

and leak conductance reversal potential EL = �75 mV were set as in the layer 2/3 pyramidal neuron model of Branco et al. (2010),

giving a membrane time constant tm = 10 ms. We did not include dendritic spine compartments in the model due to the computa-

tional cost and uncertainty surrounding parameters such as spine-neck resistance. We confirmed that our main results did not differ

qualitatively when modeling the influence of spines on membrane surface area using the common approach of scaling the dendritic

capacitance and leak conductance by a factor of two (not shown) (Holmes and Rall, 1992; Hay et al., 2011).

Active conductances

For a biophysical spiking mechanism, we included fast transient Na+ channels (reversal potential ENa = 50 mV, maximum

conductance gNa = 80 mS cm�2) and fast delayed-rectifier K+ channels (reversal potential EK = �80 mV, maximum conductance

gK = 40 mS cm�2) in the axo-somatic compartment. Slow persistent K+ channels (reversal potential EK = � 80 mV, maximum

conductance gKm
= 3 mS cm�2, adaptation time-constant tKm

= 200 ms) were included for spike-rate adaptation (Pospischil

et al., 2008). Channel kinetics were implemented with standard models using the Hodgkin-Huxley formalism, as described by

Pospischil et al. (2008) (see also Equations 8–12).
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In the set of simulations exploring the role of intrinsic dendritic excitability (Figure S2), the Na+ and K+ conductanceswere extended

throughout the dendritic tree (dendriticmaximumconductances:gNa = 2 mS cm�2, gK = 1 mS cm�2, gKm
= 0:15 mS cm�2). A uniform

density of HCN channels was also included in both the dendritic and axo-somatic compartments (reversal potential EHCN = � 45 mV,

maximum conductance gIh = 0:1 mS cm�2) using the model of Kole et al. (2006). Dendritic conductance parameters were tuned such

that the model produced fast dendritic Na+ spikes in response to synaptic input (Smith et al., 2013), and a voltage sag of� 1� 2 mV in

response to hyperpolarizing current injection, consistent with deeper mouse layer 2/3 pyramidal neurons (Kalmbach et al., 2018).

Synaptic conductances

Excitatory synapses with AMPA and NMDA conductances, and inhibitory synapseswith GABA conductancesweremodeled with dou-

ble-exponential activation kinetics. That is, for a presynaptic spike arriving at time t0, the timecourseof the activation for tR t0 is given by

gsynðtÞ = 1

gmax

�
e�ðt�t0Þ=td � e�ðt�t0Þ=tr

�
(Equation 6)

where tr and td are rise and decay time constants specific to each conductance type, and gmax is a normalization factor that ensures

gsyn peaks at a maximum of 1. The time-dependent activation function is scaled by a synaptic weight to determine the conductance.

Weightswi were specific to each synapse and variable within the simulations. For excitatory synapses, the weight describes a com-

bined NMDA and AMPA conductance, with a fixed NMDA/AMPA ratio g = 2. Rise and decay time constants for each of the conduc-

tance types were as follows. AMPA: trA = 0:1 ms, tdA = 2 ms; NMDA: trN = 2 ms, tdN = 75 ms; GABA: trG = 1 ms, tdG = 5 ms, similar to

previous work (Doron et al., 2017).

In the active and point neuron models, the NMDA voltage dependence was modeled by multiplying the time-dependent conduc-

tance by a local-voltage-dependent sigmoid

sNðvÞ = 1

1+Ce�rv
; (Equation 7)

as described by Jahr and Stevens (1990). We used parameters C= 1=3:75 and r= 0:062 to define the shape of the nonlinearity.

While some recent studies have used steeper nonlinearities (Poleg-Polsky, 2015; Doron et al., 2017) or more complex multi-

state receptor models (Branco et al., 2010), in our morphologies, we found that Equation 7 with the stated parameters was

sufficient to produce the characteristic sigmoid response to synaptic input (Figure 1). The passive model was constructed by setting

sNðvÞ= 1 and leaving all other biophysical parameters unchanged. The reversal potentials for excitatory and inhibitory synapses were

EE = 0 mV and EI = �75 mV, respectively.

Dynamics and variational equations

To simplify the notation, we provide the model equations for the general case in which Na+ and K+ conductances are extended

throughout the entire dendritic tree. The model simulated in the main text in which these conductances are restricted to the axo-so-

matic compartment (summarized by Equations 1, 2, 3, and 4), is recovered by setting the dendritic conductance parameters (gNai, gKi
,

gKmi
for i > 0) to zero. For a given pattern of presynaptic input, the dynamics of the voltage in each compartment vi evolve by the

coupled system of equations

cm _vi = �
X
j

HE
ij w

E
j

�
1

1+g
gA
j ðtÞ +

g

1+g
gN
j ðtÞsNðviÞ

�
ðvi �EEÞ

�
X
k

HI
ikw

I
kg

G
k ðtÞðvi �EIÞ�gNaim

3
i hiðvi �ENaÞ�gKi

n4
i ðvi �EKÞ

�gKmi
piðvi �EKÞ�gLðvi �ELÞ +

X
l

Gilvl (Equation 8)
_mi = amðviÞð1�miÞ � bmðviÞmi (Equation 9)
_hi = ahðviÞð1� hiÞ � bhðviÞhi (Equation 10)
_ni = anðviÞð1� niÞ � bnðviÞni (Equation 11)
_pi = apðviÞð1�piÞ � bpðviÞpi (Equation 12)
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The first two sums on the right hand side of Equation 8 describe the excitatory and inhibitory synaptic currents. The matrix with el-

ementsHE
ij projects excitatory conductances with weightswE

j into the compartments in which the synapses are located, indexed by i,

and normalizes the resulting currents by compartment surface area to give the appropriate change in voltage. Similarly, the inhibitory

currents are described by weights wI
k and projection HI

ik . The functions gA
j ðtÞ, gN

j ðtÞ, and gG
k ðtÞ denote the time-dependent activation

of AMPA, NMDA and GABA conductances by input spike trains, constructed by linear summation of the responses to individual

spikes described by Equation 6. The NMDA/AMPA ratio g controls the relative contributions of excitatory conductance types. The

subsequent three terms describe the active Na+ and K+ conductances, expressed here in generality for both the somatic and den-

dritic compartments. The final two terms describe leak and axial conductances, with the matrix G encoding the branching structure

and geometry of the dendritic tree (see Dayan and Abbott (2001); Chapter 6). Finally, Equations 9–12 describe the kinetics of the

Hodgkin-Huxley gating variables for the active conductances. Variablesmi and hi control the transient Na
+ conductance in compart-

ment i, ni controls the fast K+ conductance, and pi controls the slow K+ conductance. The voltage-dependent rates for each case,

amðvÞ and bmðvÞ for m = m;h;n;p, are as described in Pospischil et al. (2008), section 2.2.

Variational equations for the system are derived by taking partial derivatives of Equations 8–12 with respect to any parameters of

interest (similar to the point-neuron parameter-fitting technique of Doya et al. (1994)). When solved numerically in parallel with the

model dynamics described above, these equations track how small perturbations to parameters are propagated through time

and the morphology to influence the voltage throughout the tree. Here, we consider the excitatory and inhibitory weight parameters,

with the aim of using the gradient of somatic voltage with respect to synaptic weights to guide learning.

We denote by dvij =
vvi
vwj

the partial derivative of the voltage in compartment i by synaptic weightwj (similarly for the gating variables).

The component with index i = 0 corresponds to the axo-somatic compartment, which we often express using the notation vvsoma

vw , sup-

pressing the index for the weight when the specific identity of a synapse is not important.

For the excitatory weights,

cm
_dvij = �HE

ij

�
1

1+g
gA
j ðtÞ +

g

1+g
gN
j ðtÞsNðviÞ

�
ðvi �EEÞ�

�X
j0
HE

ij0w
E
j0 ð

1

1+g
gA
j0 ðtÞ +

g

1+g
gN
j0 ðtÞsNðviÞ

+
g

1+g
gN
j0 ðtÞsN

0ðviÞðvi �EEÞÞ + gNaim
3
i hi + gKi

n4
i + gKmi

pi + gL

	
dvij

�3gNaim
2
i hiðvi �ENaÞdmi

j �gNaim
3
i ðvi �ENaÞdhi

j

�4gKi
n3
i ðvi �EKÞdni

j �gKmi
ðvi �EKÞdpi

j +
X
l

Gildv
l
j (Equation 13)
_dmi
j = ðam

0ðviÞð1�miÞ� bm
0ðviÞmiÞdvij � ðamðviÞ + bmðviÞÞdmi

j (Equation 14)
_dhi
j = ðah

0ðviÞð1� hiÞ� bh
0ðviÞhiÞdvij � ðahðviÞ + bhðviÞÞdhi

j (Equation 15)
_dni
j = ðan

0ðviÞð1� niÞ� bn
0ðviÞniÞdvij � ðanðviÞ + bnðviÞÞdni

j (Equation 16)
_dpi
j =

�
ap

0ðviÞð1�piÞ� bp
0ðviÞpi

�
dvij �

�
apðviÞ + bpðviÞ

�
dpi

j; (Equation 17)

where sN
0ðvÞ, am

0ðvÞ and bm
0ðvÞ denote derivatives with respect to voltage. The expression for inhibitory weights is similar.

In a subset of the simulations presented in Figure S2 we also include voltage-dependent HCN channels in the axo-somatic and

dendritic compartments. For this we used the Hodgkin-Huxley type channel model of Kole et al. (2006), which describes the channel

kinetics in terms of a single gating variable that we denote by q. The HCN conductance can be incorporated into the model in the

same manner as the other active conductances, by adding the additional term �gIhiqiðvi �EhcnÞ to Equation 8 and an additional first

order equation for the gating variable analogous to Equations 9–12. The associated terms that appear in the variational equations are

computed by taking partial derivatives. Note that for channel models constructed using the Hodgkin-Huxley formalism these oper-

ations are formulaic, allowing our general approach to be extended to additional conductance mechanisms.

We solve the system numerically using a custom implicit Euler solver written in Python 3 (Van Rossum and Drake, 2009), using

Numpy (Harris et al., 2020) and Numba (Lam et al., 2015). Theoretical background for the implementation was drawn from Hines

(1984); Dayan and Abbott (2001); Hines and Carnevale (2006), and the accuracy of solutions to Equations 8–12 was validated during
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development using NEURON 7.5 (Hines and Carnevale, 2006). After using this custom simulator to derive the local plasticity kernels

as described below, simulations of the model were performed using NEURON 7.5 for computational efficiency.

Synaptic input patterns
To explore the space of possible input regimes, we parameterized amodel for generating random input patterns for the feature-bind-

ing task. A total number of Nsyn synapses were randomly divided into two equally sized subsets, representing presynaptic popula-

tions associated with two feature classes (described as feature X and feature Y). Input patterns for specific features within a class

ðX1;X2;.Þ were defined as vectors of time dependent rates for the Nsyn=2 synapses assigned to the class. Input patterns were

realized in simulations as non-homogeneous Poisson spike trains, generated by rejection sampling. Unless stated otherwise,

each input pattern consisted of 100 ms of background activity at constant rate l0 = 1:25 Hz for all synapses, followed by a T =

400 ms stimulus presentation between times ton and toff. To constrain the parameter space, the time- and population-averaged firing

rate of the stimulus component was fixed at lpop = 2:5 Hz per synapse to give an average of one presynaptic spike per synapse over

the 400 ms stimulus presentation.

Two parameters define the characteristics of a pattern: the time-averaged firing rate of active synapses lsyn, and the number of

precisely timed events K. To satisfy the imposed constraint that ensemble-averaged activity is maintained at a constant level, lsyn
also determines the sparseness of activity – few synapses active with high firing rates, or many active with low firing rates. Synapses

were thus assigned time-averaged rates l= lsyn with probability lpop=lsyn, or l= 0 otherwise. Precisely timed events were imple-

mented as Gaussian bumps of elevated firing rate centered at uniformly distributed times. To ensure physiological instantaneous

firing rates, Gaussian widths were scaled with the number of presynaptic spikes expected to occur during an event (which depends

on l) from an initial value of s0 = 2:5 ms. Altogether, the stimulus-dependent component of the rate function for the ith synapse, liðtÞ,
was initialized as

liðtÞ =

8>><
>>:

li; K = 0

liT

K

XK
k = 1

g

�
t � tki ;s0

liT

K

�
; K > 0

(Equation 18)
li

lsyn
� Bernoulli

�
lpop

lsyn

�
(Equation 19)
tki � unifðton; toffÞ: (Equation 20)

The multiplicative factor liT=K in the K > 0 case in Equation 18 scales the time-dependent rates such that the integral over ½ton; toff�,
ignoring small boundary effects, is equivalent to that when K = 0. When pairs of features are presented together, for instance X1 and

Y1, the expected number of presynaptic spikes over all synapses is thus NsynlpopT for all choices of parameters.

Plasticity kernels
We constructed plasticity kernels to be used in the learning algorithm (Figure 2B; Figures S1A–S1D) by approximating the output of

Equations 13–17 in terms of the local dendritic voltage and synaptic activation time. Specifically, we approximated the influence of

synaptic weight changes on the somatic membrane potential at times immediately preceding somatic spikes, vvsoma

vw ðtspikeÞ. In this

way, when the kernels are used to update synaptic weights at the time of somatic spikes, synapses are selectively modified relative

to their ability to enhance or suppress somatic output in response to a given input pattern.

To construct the approximation, for each of the active, passive and point neuron models we ran 5000 10 s simulations using

randomly generated Poisson input. In each simulation, input rates were drawn independently for each synapse from a lognormal

distribution li � lognormalð0;1Þ, yielding a bombardment of synaptic input featuring both isolated single spikes and high frequency

spike trains. Synaptic weights were set for excitatory and inhibitory synapses by randomly perturbing the initial values wE = 0:6 nS

andwI = 0:8 nS, giving a range of weights� 0:4� 1 nS. For the passivemodel, the excitatory weights were reduced by a factor of five

to give a similar postsynaptic firing rate.

Guided by preliminary simulations, we focused our analysis on windows of 150 ms preceding somatic spikes. We excluded win-

dows in which additional output spikes had occurred, to ensure we collected independent measurements (leaving � 105 somatic

spikes for analysis in each condition). For each somatic spike we computed the influence of synaptic weight changes on the somatic

voltage at the upswing of the action potential (defining tspike as 2 ms before the voltage crossed 0 mV). We used this time point as a

functional definition of spike threshold crossing; once the autonomous voltage-dependent spiking mechanism is engaged during the

upswing, the somatic voltage becomes far less susceptible to synaptic control (i.e., ‘the horse has bolted’). Integrating Equations

13–17 for a detailed model is computationally expensive, so was performed over the selected 150ms windows, rather than the entire

10 s simulation run. This was accomplished by simulating themodel again over the selected window using initial conditions and input
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set from the same time point in the original run. We also made two small modifications in these sub-simulations, which were found

during development to enable more reliable predictions about the influence of weight changes on spiking output. First, we made

dummy copies of any synapses that were activated more than once, such that every synapse received a single presynaptic spike,

while the input to the neuron remained functionally identical. This allowed us to compute and then approximate vvsoma

vw for each indi-

vidual input, rather than the value aggregated over a sequence of randomly timed inputs. Second, we blocked the action potential at

the end of the sub-simulation window by setting the fast axo-somatic Na+ and K+ conductances to zero. This avoids occasional

spuriously high vvsoma

vw values arising from the steep nonlinearity of the action potential itself, but has negligible influence on the pre-

ceding sub-threshold integration that is the underlying cause. Along with the computed values of vvsoma

vw for each somatic spike, we

recorded the associated presynaptic spike times, synaptic weights and dendritic voltages.

For the active and passive models, we pooled the simulated data across synapse locations in basal and apical dendrites. We

computed averages of vvsoma

vw as a function of the difference in timing between pre- and post-synaptic spikes, and the local dendritic

voltage at the time of the post-synaptic spike. In Figure 2D we show that the local voltage at the time of the post-synaptic spike

encodes the level of activity of neighboring excitatory and inhibitory synapses over the past 100 ms. This is what allows our rule to

selectively enhance or suppress coactive groups of synapses within a branch. Note that if plasticity were instead to depend on the

voltage at the time of a presynaptic spike, much of this crucial dependence would be lost because the rule would be blind to

any subsequent activity in the branch. Averages were computed after discretizing time and voltage in 1 ms and 1 mV bins.

The plasticity kernels were then constructed by fitting the averaged two-dimensional functions with polynomials of degree 8

in both variables. Because the simulated data did not cover all points of the parameter space, the boundaries at v = 0 mV,

v = �80 mV and t = �1 ms were first padded with zeros to allow a smooth interpolation over the whole domain. We also restricted

the temporal dimension to a limit of 100 ms time difference between pre- and post-synaptic spikes, beyond which the values of

the spike-triggered averages are effectively zero. After fitting, the kernels were thresholded to remove negative values from the

excitatory kernels and positive values from the inhibitory kernels, which was found to improve convergence in pilot simulations.

For the point neuron model, and simulations using temporal kernels (Figure 3C), we fitted the temporal spike-triggered average

(Figure S1A–S1C) with a degree 10 polynomial after padding the boundary at t = �1ms. The accuracy of the fitted kernel approx-

imations was assessed by fitting on 75% of the data and testing on the remaining 25% (Figure 2C), and was used to inform the

choices of polynomial degrees used in the fits.

Learning rule
Our aim was to develop a supervised spike-based plasticity rule that could take advantage of the complex morphology and

biophysics of pyramidal cell dendritic trees. Importantly, we sought a formulation that could be applied under diverse forms of noisy

synaptic input and that did not presuppose the implementation of a given computation (for instance, by including an explicit mech-

anism to encourage synaptic clustering). Inspired by the tempotron (G€utig and Sompolinsky, 2006), we used a greedy algorithm that

updates synaptic weights in proportion to their influence on the somatic membrane potential, vvsoma

vw . Although the tempotron rule is

based on a single-compartment leaky integrate-and-fire neuron model, we found that the underlying principles provide a powerful

heuristic for implementing spike-based learning in a detailed biophysical model. We first outline the computational task and tempo-

tron rule, and then detail the modifications that lead to the rule represented by Equation 5 of the main text.

We consider a general binary classification problem, in which a neuron must produce at least one postsynaptic spike in response to

preferred patterns of input, and remain silent for nonpreferred patterns. For the specific feature-binding task that we study, input pat-

terns are definedbydifferent pairs of stimulus associations. The preferred and nonpreferred classes of input patterns are denoted by the

symbols (+) and (�). Upon presentation of an input pattern p, realized as stochastic presynaptic spiking activity, a binary variable zp
records the output of the neuron, taking the value zp = 1 if at least one spike is emitted, and zp = 0 if the neuron remains silent. The target

output is given by a label z�p, taking the value z�p = 1 for (+) patterns and z�p = 0 for (�) patterns. We define a signed classification error as

Ep = zp � z�p; (Equation 21)

which takes the value Ep = 0 for correct trials, Ep = �1 for (+) pattern errors, and Ep = 1 for (�) pattern errors. The goal of learning is to

minimize the expected absolute value of Ep for all input patterns. As a proxy for the expected value, we use an average over a sample

of trials, defining the total classification error for the whole set of Np patterns by

E =
1

Np

X
p



Ep



 ; Ep = zp � z�p; (Equation 22)

where bars denote an average over Navg pattern presentations. Unless stated otherwise, we set Navg = 10.

Tempotron learning

For binary classification with tempotron learning, input patterns are presented sequentially over many trials and synaptic weights are

modified when the neuron makes an error. Plasticity during presentation of a pattern p is guided by gradient descent on a single-

pattern loss function that measures how far the somatic voltage deviates from spiking threshold (assumed to be fixed). In our

notation, the loss function is given by
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Ep = ðVsomaðtmaxÞ�VthÞEp: (Equation 23)

In Equation 23,Vth denotes the spiking threshold andVsomaðtmaxÞ denotes the voltage at the time of the first post-synaptic spike, or the

maximum subthreshold voltage attained if no spikes were emitted. By definition of Ep, and assuming a spike is fired when Vsoma

crosses Vth, Ep = 0 on correct trials, and Ep > 0 for both (+) and (�) pattern error trials.

After presentation of an input pattern, synaptic weights are updated in proportion to the negative gradient of the loss function with

respect to the weights,

Dwi f � vEp

vwi

z� Ep

vVsoma

vwi

ðtmaxÞ: (Equation 24)

Wewrite Equation 24 as an approximation because it ignores the possibly discontinuous dependence of the value of tmax itself on the

weights (see Urbanczik and Senn (2009) for a detailed discussion). The first factor on the right-hand side of Equation 24 acts as a

corrective supervisory signal – plasticity is gated on only on error trials, with the sign determined by the class of pattern (positive

for (+) pattern errors and negative for (�) pattern errors). The second factor implements synaptic credit assignment by scaling the

magnitude of weight update for each synapse by its contribution to the voltage at time tmax. Intuitively, iterating over repeated pre-

sentations of input patterns, locally optimal weight updates are applied to push peaks in the somatic voltage below threshold on (�)

patterns, and to push peaks above threshold on (+) patterns.

Adaptive learning with dendritic synapses

The tempotron rule can be directly generalized to our biophysical model by using values of vVsoma

vw computed from Equation 13. How-

ever, with dendritic synapses, this rule becomes implausibly nonlocal. In (+) pattern error trials, where no spike was emitted, tmax must

somehow be computed and transmitted to a synapse from the subthreshold activity at the soma. Furthermore, with an extended

morphology, the value of vVsoma

vw for a given synapse formally depends on activity in even distant dendrites. To address these issues

and better satisfy the requirements of our noisy task, we make three modifications to the tempotron rule. First, we introduce an

explicit mechanism that allows the timing of somatic events to be communicated to dendritic synapses. Second, we use an approx-

imation that allows accurate synaptic credit assignment using local dendritic signals. Third, in pursuit of minimizing E (Equation 22),

we replace the gating factor Ep with modulation by the running average error Ep. The first and third modifications are achieved using

an adaptive supervisory signal that guides the learning process. Subsequently, we show that these dynamics permit a straightfor-

ward extension to an online implementation, where learning is controlled by feedback from the spiking output of the neuron.

In our approach, we assume that an external supervisory system maintains a running average of past errors, Ep. The supervisory

system guides learning by encouraging spiking when it is desired, and modulating the sign and magnitude of plasticity. On presen-

tation of (+) patterns during training, a depolarizing teaching current is activated at the soma

Iteach = b


Ep



 : (Equation 25)

The teaching current could be provided through regulation of synaptic input or active conductances. In simulations, for simplicity, we

use a direct somatic current injection. We set the parameter b = 0:1 nA, yielding a maximum current that is too small to elicit spiking

on its own, but sufficient in the presence of synaptic input. When the neuron has been performing poorly, the teaching current adds a

constant positive offset to the somatic potential, VteachzIteachRin, where Rin denotes the somatic input resistance measured in the

absence of synaptic activity. This has the effect of raising otherwise-subthreshold peaks in the somatic voltage above the spiking

threshold. The time of a peak, now marked by a backpropagating action potential (Stuart and Sakmann, 1994; Stuart et al.,

1997), can thus be broadcast to the dendrites, and does not require secondary computation or transmission after the pattern has

been presented. As performance improves, the teaching current gradually decreases until positive classifications are made without

assistance.

During presentation of either (+) of (�) patterns, synaptic weights are modified whenever a somatic action potential is fired. The

specific contribution of each synapse to the somatic voltage is computed by approximating the output of Equation 13 with a local

plasticity kernel (Figure 2B), summed over presynaptic spikes,

vVsoma

vwi

ðtspikeÞz
X
k

Ki

�
Dtki ; vdendi

�
: (Equation 26)

In Equation 26, the index k runs over presynaptic spikes that arrived at synapse i in the past 100 ms, Ki is the appropriate plasticity

kernel for the synapse (basal, apical; excitatory, inhibitory), Dtki is the time of the kth synaptic input relative to the somatic spike, and

vdendi
is the local dendritic voltage at the time of the somatic spike. Intuitively, to implement Equation 26, each synapse requires a

plasticity kernel that is common among all synapses in basal and apical domains, to know that a postsynaptic spike has occurred,

to know the local voltage, and to know how far in the past presynaptic spikes arrived.

Analogous to Equation 24, weight updates are then determined by the product of the locally approximated gradient of the voltage

and a global scalar error term, scaled by the learning rate a (Equation 5, in the main text),

Dwi = �aEp

X
k

Ki

�
Dtki ; vdendi

�
: (Equation 27)
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Using the average Ep in Equation 27 introduces adaptive dynamics to the learning process.When past performance has been consis-

tently poor, updates are large and favor exploration of the weight space. As performance improves, the magnitudes of updates

decrease, which favors refinement of the solution. Learning ceases upon minimization of E. For comparison, we also tested an alter-

native rule in which plasticity was instead gated only by the error on the current pattern (for this purpose, positive classifications were

considered as errors if assisted by the teaching current). We found that while both rate and temporally coded tasks could still be

learned, performance was inconsistent and highly sensitive to the learning rate (Figure S5).

Training and testing procedure

Unless otherwise stated, all models were trained using the same procedure and learning rule. Np input patterns, divided into (+) and

(�) classes, were presented in random order in each of 1000 total epochs of training (500 epochs for the parameter sweep in Fig-

ure 5C). For computational efficiency, the simulations were interrupted at the time of the first somatic spike during a pattern presen-

tation, weights were updated using Equation 27, and the next pattern was presented. Training ended when the maximum number of

epochs was reached, or after ten successive epochs without errors ðE = 0Þ. With synaptic weights defined in the simulations in units

of mS, we used an initial learning rate a = 23 10�6=lsyn, which decayed as a function of training epoch as 1=

�
1 + 1

125 x

�
. The learning

rate parameters were selected based on pilot simulations using the 232 association task. In case of runaway growth of the weights,

we enforced a maximumweight by clipping at 0:01 mS, though in practice this maximumwas never reached. Model training required

� 1 h of CPU time on a single core for learning the 232 task, and � 12 h for the 737 task.

After training, all patterns were presented 20 times with both plasticity and the depolarizing teaching current turned off. Testing

performance was quantified from these simulations as Ptest = 1� E, using Navg = 20.

Online implementation

The history dependence of our learning rule provides a basis for an online implementation, in which errors are integrated over time

within a single pattern presentation. In this case we assume that the supervisor provides only a binary classification label when a

pattern is presented. All other quantities are computed online from spiking output and fed back to the neuron to guide plasticity.

The input patterns to be classified were defined as above by time series of presynaptic rates. During training, to allow for temporal

integration and feedback, patterns were presented for a duration Ttrain, ranging from 1� 4 s. For the precisely timed burst input con-

dition, this was achieved by periodic extension of the 400 ms input patterns over the training presentation time (Figure S5C). All pat-

terns were superimposed on a constant background rate of l0 = 1:25 Hz to every synapse, which remained active throughout the

whole presentation period (equivalent to a background noise level of 0.5, in Figure S3B).

We augmented themodel with two first-order equations that compute the classification error for the current input pattern as a func-

tion of recent spiking activity and the label z�p,

tr _r = dspikeðtÞ � r (Equation 28)
tE _Ep = Q
h
r� rL

�
1� z�p

�
� rUz

�
p

i
� z�P � Ep (Equation 29)

Equation 28 computes an exponentially weighted average of the spike count over an averaging time tr . The first term dspikeðtÞ denotes
an impulse applied whenever the somatic voltage cross 0mV from below. In practice, when the system is discretized for simulations,

the variable r is instantaneously incremented by 1=tr in any time step in which a spike occurs. Equation 29 uses the sampled rate to

compute an exponentially weighted average of the classification error over averaging time tE . In the first term of Equation 29,Q de-

notes the Heaviside step function (Q½x�= 1 for xR0 andQ½x�= 0 for x < 0), which thresholds the rate r, analogous to the variable zp in

Equation 21. To enforce the spikes/silence binary classification we use two separate thresholds. For (+) patterns, when z�p = 1,

the rate is compared to an upper threshold rU. For (�) patterns, when z�p = 0, the rate is compared to a lower threshold rL.

The time-averaged error defined by Equation 29 converges to zero when the rate is stably maintained above rU on (+) patterns,

and below rL on (�) patterns. In the simulations presented in Figure S5, we used parameters tr = 1000 ms, tE = 500 ms, rL =

0:1 Hz, and rU = 5 Hz.

For each presentation of an input pattern, variables r and Ep are initialized at 0, and numerically integrated in parallel with themodel

voltage dynamics. The variable Ep – now recording a temporal rather than trial average – determines the magnitude of the teaching

current activated during (+) patterns as in Equation 25. For the first Ttrain=2 ms, the model is simulated without plasticity to allow the

system to come to a steady state. At time Ttrain=2, plasticity is turned on and weight updates are applied using Equation 27 (substitut-

ing the time-averaged Ep) at the time of every somatic spike. The time at which plasticity is turned on is largely arbitrary; generally, we

found that learning was more stable when adding a delay that avoids the transient dynamics that arise from initializing Equations 28

and 29 at 0, and the model at rest, for each new pattern presentation. In Figure S5D we show examples of the online learning dy-

namics during single pattern presentations.

Models were trained using this procedure for 500 epochs. After training, using identical conditions to the offline learning simula-

tions, models were tested on pattern presentations of duration of Ttest = 500 ms, comprising 100 ms of background input, followed

by 400 ms of background and stimulus-dependent input.
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Spatial and temporal processing analysis
Subthreshold integration

After training, models were simulated with the fast axo-somatic Na+ and K+ conductance parameters set to zero to block somatic

spiking (gNa0 and gK0
in Equation 8).

To quantify the supralinearity and sublinearity or responses in Figures 3D, S2C, and S7G, input patterns representing individual

feature components were presented individually and then together in association pairs. This was performed separately for basal

and apical dendrites by setting synaptic weights to zero in one or the other domain. Somatic voltage traces were recorded and aver-

aged over 20 replications. The nonlinearity of summation for each association was defined as the peak of the average membrane

potential when both features were presented together divided by the peak of the sum of the traces from features presented sepa-

rately. Peaks were computed from the second half of the 400 ms stimulus presentation time to capture the steady-state response.

To quantify the temporal alignment of responses in Figures 6C and S7H, somatic voltage traces were recorded from presentation

of individual feature components and averaged over 20 replications (including both basal and apical input together for the active and

passive models). The Pearson correlation was computed between average traces from each feature in an association pair, using the

entire stimulus presentation time. To compare the output of the basal and apical domains for each association, pairs of features were

presented together with input restricted to one or the other domain, and the Pearson correlation was computed between the average

basal-input and apical-input traces.

Weighted input profiles

To understand the computational strategies learned by themodels, we examined how the synaptic weights determine the spatial and

temporal distribution of input strength. We defined a spatial profile of input by a vector with each element Sb computed as the sum of

time-averaged excitatory or inhibitory input rates to a single dendritic branch, scaled by synaptic weights Sb =
P
i

wb
i l

b

i . Here,w
b
i and

l
b

i denote the weights and rates associated with branch b. Similarly, replacing branches with 1 ms time steps, we defined a temporal

profile of input by a time-dependent sum of rates over all synapses in a given domain (basal, apical or soma), TðtÞ = P
i

wiliðtÞ. Spatio-

temporal profiles were constructed by computing a temporal profile of input into each branch, TbðtÞ =
P
i

wb
i l

b
i ðtÞ, and then concat-

enating the branch time series. We use these definitions to quantify the manner in which learning has tuned the interactions between

pairs of features forming associations. In Figure 4C, we quantify the spatial clustering of weighted excitatory input patterns by

computing the Pearson correlation between their respective spatial input profiles. In Figure 4D, we quantify the spatial clustering

of weighted excitatory and inhibitory input patterns. In this case, we first sum the excitatory profiles of each pair, separately sum

the inhibitory profiles, and then compute the Pearson correlation between the total excitatory and inhibitory profiles. Similarly, in Fig-

ures 6D and 6E, we quantify the temporal alignment of weighted input patterns by computing the Pearson correlation between their

respective temporal input profiles.

Regression of classification labels

In Figure 7 we simulate a regime of input in which both spatial and temporal processing strategies can be learned. To unpack the

relative contributions, we use regression models to predict the classification label of a given association pair from the profiles of input

that have been shaped by plasticity. Distinct signatures of spatial and temporal processing are shown in Figures 4 and 6. For the

spatial strategy, preferred patterns are associated with positive correlations between excitatory spatial profiles (spatial clustering)

and nonpreferred patterns with negative correlations (spatial dispersion). Analogously, for the temporal strategy, preferred patterns

are associated with positive correlations between excitatory temporal profiles (temporal alignment) and nonpreferred patterns with

negative correlations (temporal misalignment). The reverse contingencies tend to hold when comparing excitation and inhibition. In

Figure 7, pooling across all simulated data for each stimulus duration, we fit separate logistic regression models to predict associ-

ation label, (+) or (�), from correlations between the spatial, temporal and full spatiotemporal profiles of association pairs (using

LogisticRegression from the Scikit-learn library in Python). Prediction accuracywas determined using leave-one-out cross validation.

Regressors included correlations between profiles of excitation, and between profiles of excitation and inhibition, computed sepa-

rately for basal and apical domains. In the temporal model, we also included correlations between global temporal profiles, computed

as a sum over all synapses.

Noise robustness
Models were trained and tested under a variety of conditions to assess the robustness tomultiple sources of noise: trial-by-trial spike

count variability (Figure S3A), background synaptic activity (Figures S3B and S4B), mislabelling during training (Figure S3C), pertur-

bations to synaptic weights (Figure S4C), and trial-by-trial burst timing variability (Figure S4D).

Robustness to spike count variability was tested by varying the rates of presynaptic input between 2:5� 40 Hz via parameter lsyn in

Equation 19. Although our model for generating input patterns keeps the total population rate fixed for different values lsyn (by adapt-

ing the sparseness of activation), smaller lsyn increases the standard deviation of the number of spikes arriving at each synapse, rela-

tive to the mean. To test the dependence on spike-count variability at the presynaptic population level, for each value of lsyn, we also

varied the total number of synapses fromNsyn = 500� 4000. Tomaintain similar output responses to themainmodel ðNsyn = 1000Þ at
the onset of training, initial values of synaptic weights were scaled by a multiplicative factor of 1000=Nsyn.
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Robustness to background synaptic activity was tested by varying the background rate parameter l0. In the simulations presented

in Figures 3, 4, 5, 6, and 7, l0 was set to 1:25 Hz for all synapses for the first 100ms of a simulation, and set to zero during the stimulus

presentation. For the simulations in Figures S3B and S4B, l0 was varied between 0:625� 5 Hz, and remained at that level during the

stimulus presentation. We quantify the background noise level by the ratio of the background and stimulus-dependent population

rates, l0=lpop (see Equations 19 and 20). When the noise level is 1, during the stimulus presentation, as many background spikes

arrive across the population of Nsyn synapses as do ‘signal’ spikes that depend on the specific input pattern being presented. To

maintain similar output responses at the onset of training, initial values of synaptic weights we scaled by a multiplicative factor of

lpop=ðl0 + lpopÞ to account for the additional input spikes. For the 232 association task (Figure S3B), these simulationswere repeated

with Nsyn = 500� 4000, and initial weight values scaled by an additional factor of 1000=Nsyn.

Robustness to label noise was tested by varying the probability that models were given an incorrect classification label during

training. For each presentation of an input pattern, the label was switched with probability pmislabel ranging between 0� 0:2. During

training, the label was used as in the noise-free case to determine both the sign of plasticity and the presence of a depolarizing current

at the soma. The error term Ep, which scales the magnitude of plasticity, was computed with reference to the noisy labels.

Robustness to synaptic weight jitter was tested by perturbing the weights of trainedmodels with randommultiplicative noise.Models

were tested on 20 presentations of each input pattern used in training. Each time a pattern was presented, a noise term was drawn

independently for every synapse from a uniform distribution over the interval ½ �sjitter;sjitter�, with the scaling factor sjitter ranging from

0:5� 2. Weights were multiplied by ð1 + sjitterÞ, and thresholded at zero to avoid negative weights. In Figure S4C, model performance

is quantified as a function of the standard deviation of the scaling factor; sjitter = 1 corresponds to a weight jitter SD of 50%.

Robustness to timing variability was tested for the precisely timed burst input condition by perturbing the times of input bursts.

Models were tested on 20 presentations of each input pattern used in training. We considered two types of perturbation – shared

and independent. For the shared case, each time a pattern was presented, a single noise term was drawn from a uniform distribution

over the interval ½ �tshift; tshift� and all burst times were periodically shifted within the 400 ms stimulus presentation window by this

value. In the independent case, noise terms were drawn for every synapse, and burst times were shifted independently. The param-

eter tshift was varied between 50� 400 ms, and the noise level quantified by the standard deviation of the noise term. Note that for a

timing jitter standard deviation of 100 ms in the independent noise case, corresponding to tshift = 200 ms, the burst times are

completely scrambled.

Structured connectivity
We assume throughout the majority of this study that synapses are distributed randomly, without reference to the particular classi-

fication problem that needs to be solved. For comparison, we also assessed the performance of models in which the solution was

increasingly ‘hard-wired’ by the placement of synapses on specific sets of branches (Figures S3D and S3E). Guided by the results of

Figure 4C, for the activemodel, when two features Xi and Yi formed a preferred association, their excitatory synapseswere placed on

a common set of basal dendrites, and separate sets of apical dendrites. Conversely, when two features formed a non-preferred as-

sociation, their synapses were placed on separate basal dendrites and common apical dendrites. This arrangement should allow the

model to take maximal advantage of supralinear integration in basal dendrites and sublinear integration in apical dendrites to solve

the task. For the passive model, for both basal and apical dendrites, we separated synapses representing features forming preferred

associations and clustered synapses forming nonpreferred associations.

To implement the clustering we randomly selected two equally sized and possibly overlapping sets of basal branches (from a

possible 16), and two equally sized and possibly overlapping sets of apical branches (from a possible 8). Synapses to be clustered

within a dendritic domain were randomly distributed across the same set of branches, whereas synapses to be dispersed were

distributed across different sets. We parameterized the degree of structured connectivity in terms of the overlap between the two

selected branch sets within each domain (1 minus the fraction of shared branches). For completely unstructured connectivity (0 in

the parameterization), the two sets selected within each domain were identical, each consisting of all 16 basal or 8 apical branches.

In this condition, as in the simulations in themain text, synapse placement does not depend on the classification labels. Formaximally

structured connectivity (1 in the parameterization), the two sets selected within each domain were disjoint, consisting of 8 basal or 4

apical branches each, such that convergence of input on common dendrites was completely prescribed by the classification labels.

At intermediate levels the two sets selected within each domain partially overlapped. For instance, at 0.5 in the parameterization, the

two sets of basal dendrites consisted of 12 branches each, half of which were common to both. For each condition we trainedmodels

using the classification labels that were favored by the imposed connectivity (‘favored labels’), and also with the contingencies

switched (‘reversed labels’).

Active intrinsic conductances
To assess the possible role of additional active dendritic conductances beyondNMDA receptors, we extended themodel to include a

low density of dendritic voltage-dependent Na+ and K+ channels, as well as axo-somatic and dendritic HCN channels (see Dy-

namics and variational equations). Dendritic Na+ conductances are responsible for fast dendritic spikes observed in pyramidal neu-

rons, and serve to sharpen stimulus tuning and action potential timing (Ariav et al., 2003; Smith et al., 2013). HCN conductances are

responsible for depolarizing Ih currents, regulating the coupling between apical and somatic compartments and counterbalancing
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the effects of dendritic filtering (Magee, 1999; Harnett et al., 2015). We chose parameters such that dendritic Na+ spikes were reliably

triggered by synaptic input and the HCN-dependent voltage sag response to hyperpolarizing input was consistent with experimental

observations (Kalmbach et al., 2018). We did not seek to precisely reproduce the experimental data, but rather to capture these

effects qualitatively in a regime of dendritic excitability beyond that of the main NMDA-dependent active model.

We initially proceeded as before by performing many simulations with random input to fit plasticity kernels, as in Figure 2B. How-

ever, we found that using the same spike-triggered average approach as for themainmodels, we could not account for a comparable

amount of the variance in vvsoma

vw . Specifically, whereas the local approximation accounts for� 90%of the variance in the active-NMDA

model (Figure 2C), in the presence of dendritic Na+ spikes this was reduced to � 80% in basal dendrites and � 30% in apical den-

drites. As this discrepancy would make a comparison between models unbalanced, we instead performed simulations in which the

plasticity rule of Equation 27 used values of vvsoma

vw computed directly for each synapse via numerical integration of Equations 13–17

(i.e., we did not apply the approximation of Equation 26). We used the same sub-simulation procedure as described in Plasticity ker-

nels, with the difference that the equations were integrated directly for synapses receiving multiple inputs, rather than copying syn-

apses to solve separately for each individual synaptic activation. We applied this strategy in simulations with the original passive and

active models, an active model with additional HCN conductances, an active model with additional dendritic Na+ and K+ conduc-

tances, and an active model with additional HCN, Na+ and K+ conductances. All models were trained and tested on the rate-coded

232 association task of Figure 3. To test whether the models with additional dendritic mechanisms obeyed the same rules of inte-

gration, we simulated and analyzed the subthreshold response to input features as in Figure 3D, setting the fast axo-somatic Na+ and

K+ conductances to zero, but leaving all other conductances intact.

QUANTIFICATION AND STATISTICAL ANALYSIS

Two-tailedWilcoxon signed-rank tests were used to compare the performance and properties ofmodels that were trained and tested

on the same input patterns. Sample sizes and p values are provided in the figures and figure legends.
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