
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 204658, 6 pages
http://dx.doi.org/10.1155/2013/204658

Research Article
Prediction of Associations between
OMIM Diseases and MicroRNAs by Random Walk on
OMIM Disease Similarity Network

Hailin Chen1,2 and Zuping Zhang1

1 School of Information Science and Engineering, Central South University, Changsha 410083, China
2Department of Computer Science and Technology, Hunan University of Humanities, Science and Technology, Loudi 417000, China

Correspondence should be addressed to Zuping Zhang; zpzhang@mail.csu.edu.cn

Received 28 January 2013; Accepted 19 February 2013

Academic Editors: K. Abdelmohsen and Y. Xi

Copyright © 2013 H. Chen and Z. Zhang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Increasing evidence has revealed that microRNAs (miRNAs) play important roles in the development and progression of human
diseases. However, efforts made to uncover OMIM disease-miRNA associations are lacking and the majority of diseases in the
OMIM database are not associated with any miRNA. Therefore, there is a strong incentive to develop computational methods to
detect potential OMIM disease-miRNA associations. In this paper, randomwalk on OMIM disease similarity network is applied to
predict potential OMIM disease-miRNA associations under the assumption that functionally related miRNAs are often associated
with phenotypically similar diseases. Our method makes full use of global disease similarity values. We tested our method on 1226
known OMIM disease-miRNA associations in the framework of leave-one-out cross-validation and achieved an area under the
ROC curve of 71.42%. Excellent performance enables us to predict a number of new potential OMIM disease-miRNA associations
and the newly predicted associations are publicly released to facilitate future studies. Some predicted associations with high ranks
were manually checked and were confirmed from the publicly available databases, which was a strong evidence for the practical
relevance of our method.

1. Introduction

MicroRNAs (miRNAs) are a class of small noncoding RNAs
typically about 22 nucleotides in length. They have been
identified in eukaryotic organisms ranging from nematodes
to humans [1–3]. Caenorhabditis elegans (C. elegans) lin-4
and let-7 are the first two discovered miRNAs [4, 5]. Over
the past decade, thousands of miRNAs have been discovered.
miRNAs normally function as negative regulators of gene
expression [6–8]. Research also reports that miRNAsmay act
as positive regulators in some cases [9, 10].

Many investigators have reported that miRNAs are crit-
ical in tissue development [11], cell growth [12], cellular
signalling [13], and so on. As such, the mutation of miRNAs,
the dysfunction of miRNA biogenesis, and the dysregulation

of miRNAs and their targets may result in various diseases,
such as lung cancer [14], lymphoma [15], and breast cancer
[16].Therefore, research on the relationship betweenmiRNAs
and diseases has become an important biomedical goal.

The Online Mendelian Inheritance in Man database
(OMIM, http://www.ncbi.nlm.nih.gov/omim/) is a compre-
hensive knowledgebase of human genetic disorders. It con-
tains information about genes and genetic phenotypes. As of
December 2012, OMIM comprised 5442 Mendelian diseases
(which are prefixed using “#” (𝑛 = 3676) if the responsible
gene is known and with “%” otherwise (𝑛 = 1766)). However,
efforts made to reveal OMIM disease-miRNA associations
are lacking and the majority of diseases in the OMIM
database are not associated with any miRNA. To provide
testable hypotheses to guide future experiments, it is of great
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importance to devise computationalmodels to infer potential
OMIM disease-miRNA associations.

Recently, some important conclusions and computational
methods about the relationship between diseases and miR-
NAs have been presented. Lu et al. [17] performed a com-
prehensive analysis to the humanmiRNA-disease association
data and disclosed that miRNAs tend to show similar or
different dysfunctional evidences for the similar or different
disease clusters, respectively. Jiang et al. [18] proposed a
computational model based on the hypergeometric distribu-
tion to infer potential miRNA-OMIM disease associations
by prioritizing the entire human microRNAome for diseases
of interest. The notation that functionally related miRNAs
tend to be associated with phenotypically similar diseases
was reconfirmed in their manuscript. Although miRNAs
functional network, disease similarity network, and known
miRNA-disease associations were integrated in their work,
only the neighbor information of each miRNA was used in
their scoring system. Prediction accuracy would be increased
by taking advantage of the global network similarity informa-
tion. Another limitation is that in silico predicted associations
were used as data sources in this method. It is known that
these predicted associations used as data sources have some
false-positive and false-negative results, thus influencing the
final prediction accuracy. To test the hypothesis that some
miRNAs could be potentially responsible for a number
of “orphan” OMIM diseases, Rossi et al. [19] developed a
novel approach OMiR to calculate the significance of the
overlap betweenmiRNA loci and OMIM disease loci. Results
suggested that “orphan” genetic disease loci were proximal
to miRNA loci more frequently than to loci for which the
responsible protein coding gene is known.

In this paper, we propose a computational approach to
infer potential humanOMIMdisease-miRNAassociations by
randomwalk to prioritize the candidate diseases for miRNAs
of interest. We first constructed an OMIM disease similarity
network and an OMIM disease-miRNA association network.
We subsequently implement random walk on the OMIM
disease similarity network to prioritize candidate diseases for
an miRNA of interest. Cross-validation has illustrated the
excellent performance of our method. The comprehensively
predicted OMIM disease-miRNA associations also enable
us to suggest many potential OMIM disease-miRNA asso-
ciations, which can offer help in further experiments and
hence increase research productivity. We further manually
checked some strongly predicted associations and encour-
aging confirmation results were found from the publicly
available databases.

2. Materials and Methods

2.1. Data Preparation. The benchmark dataset (see
Supplementary material S1 available at http://dx.doi.org/
10.1155/2013/204658) used in this manuscript is downloaded
from [20, 21]. Here below we provide a brief description.

2.1.1. The OMIM Disease Similarity Data. We download the
disease phenotype similarity scores from theMimMiner [21],

developed by van Driel et al. who computed a phenotype
similarity score for each phenotype pair by the text min-
ing analysis of their phenotype descriptions in the Online
Mendelian Inheritance in Man (OMIM) database [22]. The
phenotypic similarity scores have been successfully used to
predict or prioritize disease-related protein-coding genes [23,
24].

OMIMdisease similaritymatrix is defined as𝑂, where the
entity𝑂(𝑖, 𝑗) in row 𝑖 column 𝑗 is the similarity score between
OMIMdisease 𝑖 and 𝑗. Based on the similaritymatrix, OMIM
disease similarity network (ODSN) is constructed, where
vertex set 𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
} denotes the set of 𝑛 OMIM

diseases. Vertices 𝑑
𝑖
and 𝑑

𝑗
are linked by an edge in the

network if the similarity between diseases 𝑖 and 𝑗 ismore than
zero. The similarity score between diseases 𝑖 and 𝑗 is used as
the weight of this edge.

2.1.2. The OMIMDisease-miRNA Association Data. Previous
studies have produced a large number of miRNA-disease
associations. Lu et al. [17] and Jiang et al. [20] manually
retrieved the associations of miRNA and disease from litera-
tures and constructed two curated databases, humanmiRNA-
associated disease database (HMDD) and miR2Disease,
respectively. They aim to offer comprehensive resources of
experimentally confirmedmiRNA-disease associations. Yang
et al. [25] also created a publicly available database of Dif-
ferentially ExpressedmiRNAs in human Cancers (dbDEMC)
with the goal to provide potential cancer-related miRNAs by
in silico computing.

The OMIM disease-miRNA association data used in
our paper was downloaded from miR2Disease [20]. After
mapping these downloaded diseases into OMIM disease IDs,
we finally received 1226 OMIM disease-miRNA associations
consisting of 61 OMIM diseases and 365 miRNAs. These
associations were used for performance evaluation, and the
latest versions of the HMDD [17] and dbDEMC [25] data
were applied for prediction confirmation.

OMIM disease-miRNA association network (ODMAN)
was constructed based on the 1226 verified associations,
where vertex set 𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
} denotes the set of 𝑛

OMIM diseases and 𝑀 = {𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑘
} denotes the set

of 𝑘miRNAs. Vertices 𝑚
𝑖
and 𝑑

𝑗
are linked by an edge in

the ODMAN if disease 𝑗 is associated with miRNA 𝑖 in our
datasets. The weights of all edges are set to be 1.

2.2. Method Description. Random walk is a ranking algo-
rithm. It simulates a random walker who starts on some
given seed nodes and moves to their immediate neighbors
randomly at each step. Finally, all the nodes in the network are
ranked by the probability of the random walker reaching this
node. Let 𝑝

0
be the initial probability vector and 𝑝

𝑠
a vector

in which the 𝑖th element holds the probability of finding the
random walker at node 𝑖 at step𝑠. The probability vector at
step 𝑠 + 1 can be given by

𝑝
𝑠+1
= 𝑟𝑝
0
+ (1 − 𝑟)𝐷norm𝑝𝑠, (1)
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Figure 1: OMIM disease-miRNA association network (ODMAN). The network is generated by using 1226 experimentally verified
associations between OMIM diseases and miRNAs. The network is prepared by Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

where 𝑟 is the restart probability of randomwalk in every time
step at source nodes and 𝐷norm is the normalized similarity
network.

After some steps, the probability will reach a steady
state. This is obtained by performing the iteration until the
difference between 𝑝

𝑠
and 𝑝

𝑠+1
(measured by the 𝐿1 norm)

falls below 10−10. The steady-state probability 𝑝
∞

gives a
measure of proximity to seed nodes. If 𝑝

∞
(𝑖) > 𝑝

∞
(𝑗), then

node 𝑖 is more proximate to seed nodes than node 𝑗.
In this paper, based on the observation that functionally

related miRNAs are often associated with phenotypically
similar diseases [17], random walk was proposed to uncover
the potential associations between OMIM diseases and miR-
NAs. The source code in Matlab can be downloaded from
Supplementary Material S2. As we want to predict potential
OMIM diseases for a given miRNA 𝑚 of interest, all the
OMIM diseases which have already been confirmed to be
associated with this miRNA will be considered as seed
nodes. Other nonseed OMIM diseases will be considered as
candidate diseases. The initial probability 𝑝

0
is formed such

that equal probabilities are assigned to the seed nodes, with
the sum equal to 1, while the initial probabilities of nonseed
miRNAs are 0. Here we allow the restart of random walk in
every time step at source nodeswith probability 𝑟 (0 < 𝑟 < 1).
After some iteration, the random walk is stable. The stable
probability is defined as 𝑝

∞
. Candidate OMIM diseases are

ranked according to𝑝
∞
.Thehigh-scoredOMIMdiseases can

be expected to have a high probability to be associated with
the given miRNA.

3. Results

3.1. OMIM Disease-miRNA Association Network (ODMAN)
Analysis. In this study, we first focus on the verified OMIM
disease-miRNA associations. The set of 1226 known OMIM
disease-miRNA associations is regarded as the “gold stan-
dard” data and is used for evaluating the performance
of our proposed method in the cross-validation experi-
ments as well as training data in the comprehensive pre-
diction. We constructed the OMIM disease-miRNA asso-
ciation network using a bipartite graph representation (see
Figure 1) and analyzed some statistics for the OMIM disease-
miRNA association network. In the bipartite graph, the
heterogeneous nodes correspond to either miRNAs or dis-
eases, and edges correspond to associations between them.
An edge is placed between a miRNA node and a dis-
ease node if the disease is known to associate with the
miRNA.

Figure 2 shows the degree distributions for miRNAs and
diseases in the OMIM disease-miRNA association network.
The degree of the miRNA (respective disease) node is the
number of diseases that the miRNA has associations with
(resp., the number of miRNAs targeting the disease).

Table 1 details some statistics for the OMIM disease-
miRNA association network, such as the average degree of
miRNAs and the average degree of diseases.

Inspection of the OMIM disease-miRNA association
network shows that most edges in the network are connected
and form a large connecting subnetwork.

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Figure 2: Degree distributions for OMIM diseases and miRNAs in the OMIM disease-miRNA association network (ODMAN). (a) shows
the histograms of the degree of miRNAs. (b) shows the histograms of the degree of OMIM diseases.

Table 1: Statistics for the OMIM disease-miRNA association network.

No. of OMIM
diseases No. of miRNAs No. of OMIM disease-miRNA

associations
Average degree of
OMIM diseases

Average degree of
miRNAs

61 365 1226 20.10 3.36

Table 2: The effect of restart probability value on the cross-validation results.

Restart probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AUC 0.6703 0.6903 0.7011 0.7082 0.7126 0.7135 0.7138 0.7142 0.7138

3.2. Performance Evaluation of the Proposed Method. In
order to assess the power of our method to predict OMIM
disease-miRNA associations by prioritizing the entire candi-
date OMIM diseases, we performed a leave-one-out cross-
validation on the 1226 known OMIM disease-miRNA asso-
ciations. For a given miRNA 𝑚, each known related OMIM
disease was left out in turn as test disease and other known
OMIM diseases were taken as seed nodes. The candidate
disease set consisted of all the OMIM diseases which have no
evidence to show their association with miRNA𝑚.

We calculated the sensitivity and specificity for each
threshold. Sensitivity refers to the percentage of the asso-
ciations whose ranking is higher than a given threshold,
namely, the ratio of the successfully predicted experimentally
verified OMIM disease-miRNA associations to the total
experimentally verified OMIM disease-miRNA associations.
Specificity refers to the percentage of associations that are
below the threshold. The value of area under receiver-
operating characteristics (ROC) curve (AUC) was calculated
and an AUC value of 71.42% was achieved, suggesting that
our method can recover the known experimentally verified
OMIM disease-miRNA associations and therefore has the
potential to infer new OMIM disease-miRNA associations.

3.3. Effects of Parameter in the Proposed Method. Restart
probability r is one parameter in our method. To investigate

the selection of the parameter for the performance of our
method, we set various values for it and calculated the AUC
values in the framework of leave-one-out cross-validation.
Table 2 details the effect of the parameter on the cross-
validation results in the benchmark dataset. After a compre-
hensive searching, the parameter (𝑟 = 0.8) which led to best
AUC result is selected for further association prediction. It
could also be observed that the predictive result is robust to
the restart probability.

3.4. Comparison with Other Methods. Until recently, efforts
made to discover potential OMIM disease-miRNA associa-
tions are lacking. Meanwhile models have been constructed
based on different data features, which makes direct perfor-
mance comparison difficult. The most recent study related
with our work is the computational model proposed by Jiang
et al. [18], which was based on the hypergeometric distribu-
tion to infer potential miRNA-OMIM disease associations by
prioritizing the entire human microRNAome for diseases of
interest. Only the neighbor information of each miRNA was
used in their scoring system. Another limitation is that in
silico predicted associations were used as data sources in this
method. It is known that these predicted associations have
some false-positive and false-negative results, which may
bring noises to the experiments. Our method is based on the
experimentally verified OMIM disease-miRNA associations.
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Table 3: The newly confirmed OMIM disease-miRNA associations
in the top 10 predicted results of hsa-let-7g.

miRNA OMIM ID Rank Source
hsa-let-7g 114480 1 HMDD
hsa-let-7g 155720 2 HMDD
hsa-let-7g 180200 3 HMDD
hsa-let-7g 256700 4
hsa-let-7g 188470 5
hsa-let-7g 109800 6
hsa-let-7g 133239 7 dbDEMC
hsa-let-7g 603956 8 HMDD
hsa-let-7g 155255 9 dbDEMC
hsa-let-7g 607174 10

3.5. Comprehensive Prediction for Unknown OMIM Disease–
miRNA Associations. After confirming the usefulness of our
method, we conduct a comprehensive prediction of unknown
associations between all possible OMIM diseases and miR-
NAs. In the inference process, we trained ourmethod with all
the known associations. We ranked the nonassociating pairs
with respect to their probability scores and extracted the top
20 predicted associations for each of the 365 OMIM diseases.
The full list of the prediction results can be obtained from
Supplementary Material S3.

Furthermore, we manually checked some strongly pre-
dicted associations. Take the top 10 predicted associations of
hsa-let-7g as an example. We confirmed that 6 associations
(Table 3) are now annotated in at least one of the two
latest online versions of HMDD [17] and dbDEMC [25]
databases. We take these as a strong evidence to support the
practical application of our method. Note that the predicted
associations that are not reported yet may also exist in reality.

4. Discussion

We have applied random walk on OMIM disease similarity
network to predict potential OMIM disease-miRNA associa-
tions. Differing fromusing local network similaritymeasures,
like the method proposed by Jiang et al. [18], we adopted
global network similarity measures. Excellent performance
based on leave-one-out cross-validation suggested that our
method has the potential to infer newOMIMdisease-miRNA
associations. The newly predicted associations are publicly
released to facilitate future studies. Further confirmation of
some strongly predicted associations in publicly accessible
databases indicates the realistic application of our method.

Despite the encouraging results of our method, there are
also limitations. The known experimentally verified OMIM
disease-miRNA associations were rare.Therefore, integrating
other bioinformatics sources, such as Gene Ontology, might
improve model performance. Our method cannot be applied
for miRNAs which do not have any known associated OMIM
diseases. Thus miRNA similarity information should be
taken into consideration. From a technical viewpoint, the
performance of ourmethod could be improved by usingmore
accurate similarity information designed for OMIMdiseases.
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