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ABSTRACT
The deacetylase sirtuin 1 (Sirt1), activated by calorie 
restriction and fasting, exerts several complementary 
effects on cellular function that are favourable to 
healthspan; it is often thought of as an ‘anti- aging’ 
enzyme. Practical measures which might boost 
Sirt1 activity are therefore of considerable interest. 
A number of nutraceuticals have potential in this 
regard. Nutraceuticals reported to enhance Sirt1 
synthesis or protein expression include ferulic acid, 
tetrahydrocurcumin, urolithin A, melatonin, astaxanthin, 
carnosic acid and neochlorogenic acid. The half- life 
of Sirt1 protein can be enhanced with the natural 
nicotinamide catabolite N1- methylnicotinamide. The 
availability of Sirt1’s obligate substrate NAD+ can be 
increased in several ways: nicotinamide riboside and 
nicotinamide mononucleotide can function as substrates 
for NAD+ synthesis; activators of AMP- activated 
kinase—such as berberine—can increase expression 
of nicotinamide phosphoribosyltransferase, which is 
rate limiting for NAD+ synthesis; and nutraceutical 
quinones such as thymoquinone and pyrroloquinoline 
quinone can boost NAD+ by promoting oxidation of 
NADH. Induced ketosis—as via ingestion of medium- 
chain triglycerides—can increase NAD+ in the brain 
by lessening the reduction of NAD+ mediated by 
glycolysis. Post- translational modifications of Sirt1 by 
O- GlcNAcylation or sulfonation can increase its activity, 
suggesting that administration of glucosamine or of 
agents promoting hydrogen sulfide synthesis may aid Sirt1 
activity. Although resveratrol has poor pharmacokinetics, 
it can bind to Sirt1 and activate it allosterically—as 
can so- called sirtuin- activating compound drugs. Since 
oxidative stress can reduce Sirt1 activity in multiple 
ways, effective antioxidant supplementation that blunts 
such stress may also help preserve Sirt1 activity in some 
circumstances. Combination nutraceutical regimens 
providing physiologically meaningful doses of several of 
these agents, capable of activating Sirt1 in complementary 
ways, may have considerable potential for health 
promotion. Such measures may also amplify the benefits 
of sodium- glucose cotransporter- 2 (SGLT2) inhibitors in 
non- diabetic disorders, as these benefits appear to reflect 
upregulation of Sirt1 and AMP- activated protein kinase 
activities.

HEALTH PROMOTION VIA SIRTUIN 1 ACTIVATION
The type III deacetylase sirtuin 1 (Sirt1) has 
aroused considerable interest, as its activity has 
been linked to enhanced healthspan.1–3 Sirt1 

is particularly intriguing for its wide- ranging 
modulatory activities—enhancing autophagy, 
mitophagy, mitochondrial biogenesis (MB), 
DNA repair, antioxidant enzyme expression, 
osteoblast generation and endothelial nitric 
oxide synthase expression and activity, while 
inhibiting apoptosis, senescence, de novo lipo-
genesis, atherogenesis and—via suppression of 
canonical NF-κB activity—inflammation.4–9 In 
aggregate, these effects may account for the 
favourable impact of Sirt1 on healthspan.

With respect to cardiovascular health, Sirt1 
opposes atherogenesis both by favourable 
effects on endothelial function—downregu-
lating inflammation via NF-κB suppression and 
promotion of endothelial nitric oxide synthase 
activity—and by opposing foam cell formation 
by decreasing low- density lipoprotein (LDL) 
uptake while boosting reverse cholesterol 
transport.6 7 9–12 Moreover, measures which 
increase Sirt1 activity have shown benefit in 
rodent models of ventricular hypertrophy and 
heart failure.13–20

It is therefore of importance to devise 
clinical strategies—preferably involving safe 
nutraceuticals appropriate for use in primary 
prevention—for enhancing Sirt1 activity. 
A growing literature suggests that several 
phytochemicals, natural metabolites and 
approved drugs have potential in this regard. 
The following brief review cites the pertinent 
literature on these agents and attempts to 
define their likely mechanisms of action. An 
understanding of these mechanisms may aid 
the development of complex nutraceutical 
regimens that can support Sirt1 activity in 
complementary ways.

NUTRACEUTICALS FOR INCREASING SIRT1 
SYNTHESIS OR HALF-LIFE
Certain nutraceuticals have the poten-
tial to increase protein expression of Sirt1 
by promoting its synthesis. These include 
ferulic acid, tetrahydrocurcumin, urolithin 
A, melatonin, carnosic acid, neochlorogenic 
acid and astaxanthin. Ferulic acid, tetrahy-
drocurcumin and urolithin A may be the 
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absorbed metabolites mainly responsible for the health 
benefits of orally administered anthocyanins, curcumin 
and pomegranate ellagitanins, respectively.21–23 Sodium 
ferulate has long been used in Chinese cardiovascular 
medicine.24 Carnosic acid is a prominent constituent 
of rosemary extract, and neochlorogenic acid is found 
in mulberry leaves.25 26 Ferulic acid and tetrahydrocur-
cumin can boost Sirt1 expression at both the mRNA 
and protein level; how they accomplish this remains 
obscure.27–32 Melatonin likewise can enhance mRNA and 
protein expression of Sirt1; its activity in this regard has 
been traced to activation of the clock transcription factor 
Bmal1, which binds to the promoter of the Sirt1 gene and 
drives its transcription.33–37 Bmal1 activation, in turn, may 
reflect melatonin’s interaction with its M1 membrane 
receptor.38 39 Urolithin A, carnosic acid and neochloro-
genic acid appear to exert their upregulatory impacts 
on Sirt1 synthesis by suppressing expression of miR- 34a, 
which binds to the 3’UTR of Sirt1 mRNA and promotes its 
degradation.40–47 Agents of this type may be of particular 
interest in cardiovascular medicine, inasmuch as upregu-
lation of miR- 34a, in addition to its suppressive effect on 
Sirt1 expression, works in additional ways to compromise 
vascular health.48 Astaxanthin is reported to increase 
protein expression of Sirt1 in a range of rodent tissues; 
the mechanism responsible remains unclear.49–54

Of ancillary interest is evidence that treadmill exercise 
training in rodents induces Sirt1 expression at the mRNA 
and protein level in brain and various other tissues.55–62 In 
the brain, the effect is mediated at least in part by lactate; 
the molecular biology underlying this remains obscure.61 
It is reasonable to suspect that Sirt1 induction is a key 
mediator of the broad- ranging neuroprotective effects of 
aerobic exercise training—effects documented both in 
rodents and via epidemiology.63–65 Among other benefits, 
Sirt1 promotes expression of brain- derived neurotrophic 
factor.61 62

Sirt1 protein expression may also be increased by 
prolonging its half- life. The stress- inducible MAP kinase 
c- Jun N- terminal kinase 1 (JNK1) can confer a phosphor-
ylation on Sirt1 (Ser- 46) that promotes its ubiquitination 
and subsequent proteasomal degradation.66 67 N1- methyl-
nicotinamide (MNA) is a natural catabolite of nicotinamide 
known to have anti- inflammatory properties.68 MNA has 
been shown to boost Sirt1 protein expression by slowing 
proteasomal degradation of Sirt1, and this may be trace-
able to its ability to inhibit phosphorylation of Ser- 46.69–72

NUTRACEUTICAL ENHANCEMENT OF SIRT1’S SUBSTRATE 
NAD+
Sirt1 has an obligate requirement for NAD+ as a substrate. 
Hence, measures which either increase NAD+ synthesis or 
increase the NAD+/NADH ratio, can boost Sirt1 activity. 
With respect to the latter possibility, fasting or calorie restric-
tion can activate Sirt1 by reducing the availability of oxidis-
able substrate that drives metabolic reduction of NAD+.73 
Quinones susceptible to reversible reduction, notably 

thymoquinone (from the oil of black cumin seed—Nigella 
sativa) and pyrroloquinoline quinone (PQQ—a vitamin- 
like compound found in many foods) can boost Sirt1 
activity by oxidising NADH. The reduction of thymoqui-
none is catalysed by the Nrf2- inducible enzyme (NQO1), 
and PQQ’s high- affinity binding to lactate dehydrogenase 
promotes PQQ’s reduction by NADH.74–78

The brain readily employs ketones—chiefly β-hydroxy-
butyrate (BHB)—as an alternative substrate to glucose 
during fasting. Oxidation of BHB in the brain is associ-
ated with a compensatory reduction in glucose uptake.79 
When a molecule of glucose passes down the glycolytic 
pathway to generate two molecules of acetyl- CoA, two 
molecules of NAD+ are reduced to NADH in the cyto-
plasm; when a molecule of BHB is converted to two acetyl- 
CoAs, no reduction of cytoplasmic NAD+ is induced. For 
this reason, the brain NAD+/NADH ratio is higher during 
ketosis than during normal glucose- based metabolism.80 
This effect has been directly demonstrated in the brain of 
healthy volunteers following administration of medium- 
chain triglycerides (MCTs).81 This effect can be expected 
to be associated with increased brain Sirt1 activity, and it 
has been suggested that this phenomenon—and perhaps 
other consequences of an elevated NAD+/NADH ratio—
may help to explain the neuroprotective properties of 
ketogenic diets.80 Moreover, there is recent evidence 
that exposure of neurons to BHB in vitro increases their 
expression of Sirt1 at both the mRNA and protein level.82

Evidently, fasting for the purpose of inducing keto-
genesis is only a temporary expedient. Diets very high in 
fats and low in both carbohydrates and protein can be 
used to achieve ketosis while maintaining an adequate 
calorie intake, but such diets are too monotonous for 
most people to practise indefinitely. The most practical 
approach to boosting plasma BHB levels is through 
administration of MCTs; the short- chain fatty acids which 
these supply are not stored in triglycerides, but rather are 
either oxidised quickly or converted to ketone bodies in 
the liver.83 Hence, ingestion of MCTs can be employed to 
enhance brain Sirt1 activity.

De novo synthesis of NAD+ can be enhanced by precur-
sors such as nicotinamide riboside or nicotinamide 
mononucleoside, each of which are Sirt1 activators.84–89 
AMP- activated protein kinase (AMPK) boosts NAD+ 
synthesis via induction of the enzyme nicotinamide ribo-
sylphosphotransferase (NAMPT), rate limiting for conver-
sion of nicotinamide to NAD+.90–92 Since nicotinamide 
is a product of Sirt1 activity that inhibits Sirt1, NAMPT 
also promotes Sirt1 activity by alleviating this inhibition. 
While the therapeutic utility of the drug metformin in 
diabetes reflects its ability to activate AMPK, this activity is 
shared by the phytochemical berberine, a component of 
many Chinese medicinal herbs, that has long been used 
for management of type II diabetes in China.93–95 Both 
metformin and berberine boost Sirt1 activity.96–100

CD38 functions to degrade NAD+ to generate two 
molecules which can regulate intracellular calcium, 
ADP- ribose and cyclic ADP- ribose; its expression is most 
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notable in immune cells, but other cells can express 
it. CD38 can be inhibited by the flavonoids apigenin 
and quercetin, with Kis of about 12 and 13 µM, respec-
tively; this inhibition can boost Sirt1 activity by boosting 
NAD+.101 102 Although intraperitoneal administration 
of an ample dose (100 mg/kg) of apigenin has been 
reported to alleviate metabolic syndrome in obese mice, 
presumably via CD38 inhibition, it seems unlikely that 
this effect could be replicated with oral administration of 
apigenin or quercetin, for which absorption is inefficient 
and conjugation rapid.102

NUTRACEUTICALS CAN ACTIVATE SIRT1 ALLOSTERICALLY OR 
VIA POST-TRANSLATIONAL MODIFICATIONS
Certain post- translational modifications of Sirt1 can 
enhance its activity. O- GlcNAcylation of Sirt1 at Ser- 549 
boosts its enzymatic activity—an effect which possibly 
contributes to the anti- inflammatory activity of supple-
mental glucosamine.103 104 It is possible that the favour-
able effects of glucosamine supplementation on human 
mortality and lifespan of mice reflect, to some extent, 
Sirt1 activation.105–108 Sirt1 activity is also enhanced by 
covalent interaction with hydrogen sulfide—suggesting 
a Sirt1 activating role for nutraceuticals or drugs which 
promote hydrogen sulfide generation.109–111 N- acetyl-
cysteine can serve as a substrate for H2S generation, 
whereas taurine has been shown to induce two key 
enzymes for H2S synthesis, cystathionine β-synthase and 
cystathionine γ-lyase, in vascular tissues.111

Sirt1 can also be allosterically activated by certain 
agents. The lignin phytochemical resveratrol has this 
potential, and studies with resveratrol in cell cultures 
and rodents drew early attention to the health- protective 
potential of Sirt1 activation.112–114 Unfortunately, the clin-
ical utility of resveratrol is impaired by poor pharmaco-
kinetics—inefficient absorption and rapid conjugation 
in the intestinal mucosa and liver.115 Presumably for this 
reason, clinical evaluations with supplemental resvera-
trol have produced inconsistent results.116 Nonetheless, 
a meta- analysis of clinical studies with resveratrol in 
type 2 diabetics has concluded that it has useful effects 
on systolic blood pressure, haemoglobin A1c and creat-
inine.117 Drugs with better pharmacokinetics which can 
allosterically activate Sirt1—known as sirtuin- activating 
compounds—may have greater potential if and when 
they are approved.118 119

COUNTERING OXIDATIVE STRESS MAY SUPPORT SIRT1 
ACTIVITY
On the other hand, oxidant stress can oppose Sirt1 
activity via multiple mechanisms. Reactive oxidant species 
(ROS) can increase miR- 34a expression via upregulation 
of NF-κB and p53 activities.120 In that regard, a report 
that treatment with the drug salsalate can elevate Sirt1 
levels in endothelial cells and monocytes may reflect 
the ability of salicylic acid to suppress activation of 
NF-κB via IκB kinase-β.121 122 (Salsalate is a dimer of the 

anti- inflammatory phytochemical salicylic acid; esterase 
activity in the intestinal tract cleaves it to release free 
salicylic acid. In multigram daily doses, it exerts anti- 
inflammatory activity useful in rheumatoid arthritis.123 
Unlike its derivative acetylsalicylic acid, it only mildly and 
reversibly inhibits cyclo- oxygenase activity, and hence is 
comparatively safe; however, its clinical utility is compro-
mised by the fact that it induces fully reversible ototox-
icity in a fairly high proportion of patients.)

ROS can decrease NAD+ levels via DNA damage 
and consequent PARP activation.124 And ROS can also 
promote Sirt1 proteolysis by boosting JNK1 activity; as 
noted, the latter can confer a phosphorylation on Sirt1 
that enables its ubiquitination and subsequent prote-
asomal degradation (an effect opposed by MNA).66 67 
Hence, effective antioxidant measures may help support 
Sirt1 activity in the context of oxidative stress. More-
over, antioxidant supplementation could be expected 
to complement the anti- inflammatory activity of Sirt1, 
as reversible oxidation of sulfhydryl groups by hydrogen 
peroxide works in various ways to upregulate activation of 
NF-κB and MAP kinases, mediators of the synthesis and 
activity of many pro- inflammatory cytokines.125–127

SUMMING UP AND FUTURE RESEARCH PROSPECTS
Figure 1 depicts the various mechanisms whereby the 
nutraceuticals discussed above are believed to promote 
Sirt1 activity. It is almost surely the case that future 
research will identify further phytochemicals or metabo-
lites with potential for Sirt1 activation. It is reasonable to 

Figure 1 Mechanisms that regulate Sirt1 activity, as 
modulated by nutraceuticals. Also depicted: exercise- 
induced lactic acid boosts Sirt1 expression in the brain. 
AMPK, AMP- activated protein kinase; ASX, astaxanthin; 
BHB, β- hydroxybutyrate; CA, carnosic acid; DAPA, 
dapaflogazin; GCA, glucosamine; MCTs, medium- chain 
triglycerides; MLT, melatonin; NAC, N- acetylcysteine; 
NAMPT, nicotinamide ribosylphosphotransferase; NCA, 
neochlorogenic acid; NMA, N1- methylnicotinamide; NMN, 
nicotinamide mononucleotide; NR, nicotinamide riboside; 
PQQ, pyrroloquinoline quinone; ROS, reactive oxidant 
species; RSV, resveratrol; THC, tetrahydrocurcumin; THQ, 
thymoquinone; URO, urolithin A.
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expect that nutraceutical combinations which promote 
Sirt1 activity by multiple complementary mechanisms 
may have considerable potential for health promotion. 
Various combinations of nutraceuticals, thought to boost 
Sirt1 activity in ways that are potentially complementary 
or synergistic, could be evaluated in preclinical research 
to determine which might be most appropriate for clinical 
study. Although support of Sirt1 activity is likely to benefit 
cardiovascular health in a great many ways, studying 
Sirt1- activating regimens in the context of heart failure—
the leading overall cause of death—may be of particular 
interest; Sirt1 supports mitophagy and MB—known to 
be protective but defective in heart failure128–132—while 
suppressing inflammation. Curiously, the SGLT2 inhibi-
tory drugs used to treat diabetes—by diminishing renal 
retention of glucose and hence moderating glycaemia—
have been found to be therapeutically useful in heart and 
renal failure, even in patients who are normoglycaemic.133 
This effect has been traced to their ability to boost Sirt1 
and AMPK activity, thereby promoting autophagy, mito-
phagy and MB.20 134–137 While blunting postprandial rises 
in glucose may boost Sirt1 and AMPK activity via a reduc-
tion in oxidisable substrate—rather like caloric restric-
tion does135 138—there is evidence that these drugs can 
exert this effect on cells in vitro, including in heart tissue, 
which does not express SGLT2.20 137 139 140 The molecular 
biology underlying this latter effect remains unclear. It 
is reasonable to suspect that the nutraceutical strategies 
outlined above could complement the benefits of SGLT2 
inhibitors for non- diabetic health disorders. These drugs 
tend to be well tolerated aside from a moderate increase 
in risk of bladder and genital infections reflecting the 
increased glucose content of urine.133

As noted, promotion of autophagy and of mitophagy/
MB is a key mechanism whereby effective Sirt1 activity can 
maintain or restore health. It is therefore appropriate to 
comment on ancillary nutraceuticals which may comple-
ment Sirt1 in aiding these processes. Two recent essays 
have addressed this issue.141 142 Stimulation of AMPK, in 
addition to its role in boosting Sirt1 activity, can promote 
these processes in independent ways—pointing to the 
potential value of berberine in this regard.143–145 The 
dietary polyamine spermidine—recently available as a 
nutraceutical—can aid autophagy, mitophagy and MB by 
promoting efficient translation of the mRNA coding for 
transcription factor EB.146–149 In at least some tissues, nitric 
oxide aids MB by boosting PGC- 1α expression and half- 
life via cGMP- PKC- p38 MAP kinase signalling; recoupling 
endothelial nitric oxide synthase with citrulline, or directly 
stimulating soluble guanylate cyclase with high- dose biotin, 
represents nutraceutical strategies for achieving these 
effects.150–156 The xanthophyll carotenoid astaxanthin can 
aid MB by acting as an agonist for the PPAR-α transcription 
factor, and phase 2 activating nutraceuticals, such as lipoic 
acid or sulforaphane, can analogously aid MB by boosting 
expression of the transcription factor NRF- 1, another key 
mediator of MB.157–162 Hence, administration of berberine, 
spermidine, citrulline, biotin, astaxanthin, lipoic acid and/

or sulforaphane may complement the utility of Sirt1 activa-
tors for aiding autophagy, mitophagy and MB.
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