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A Genome-Wide Association
Study in American Indians
Implicates DNER as
a Susceptibility Locus for Type 2
Diabetes

Most genetic variants associated with type 2
diabetes mellitus (T2DM) have been identified
through genome-wide association studies (GWASs)
in Europeans. The current study reports a GWAS for
young-onset T2DM in American Indians. Participants
were selected from a longitudinal study conducted
in Pima Indians and included 278 cases with
diabetes with onset before 25 years of age, 295
nondiabetic controls ‡45 years of age, and 267
siblings of cases or controls. Individuals were
genotyped on a ∼1M single nucleotide
polymorphism (SNP) array, resulting in 453,654 SNPs
with minor allele frequency >0.05. SNPs were
analyzed for association in cases and controls, and
a family-based association test was conducted. Tag
SNPs (n = 311) were selected for 499 SNPs
associated with diabetes (P < 0.0005 in case-control
analyses or P < 0.0003 in family-based analyses), and
these SNPs were genotyped in up to 6,834 additional
Pima Indians to assess replication. Rs1861612 in
DNER was associated with T2DM (odds ratio = 1.29
per copy of the T allele; P = 6.6 3 1028, which
represents genome-wide significance accounting
for the number of effectively independent SNPs
analyzed). Transfection studies in murine pancreatic

b-cells suggested that DNER regulates expression
of notch signaling pathway genes. These studies
implicate DNER as a susceptibility gene for T2DM in
American Indians.
Diabetes 2014;63:369–376 | DOI: 10.2337/db13-0416

A number of genetic variants associated with type 2 di-
abetes mellitus (T2DM) have been identified (1–6). Since
most established susceptibility variants were detected by
genome-wide association studies (GWASs) in Europeans,
GWASs in non-European populations may identify other
important variants. Except for our preliminary study
with 80,044 markers in Pima Indians (7), there are few
GWASs for T2DM in American Indians. In the current
study, we extend this GWAS to include 453,654 single
nucleotide polymorphisms (SNPs), and we genotype
6,834 additional individuals to identify reproducibly as-
sociated variants.

RESEARCH DESIGN AND METHODS

Participants

Participants were derived from a longitudinal study
conducted in the Gila River Indian Community (8). Di-
abetes was diagnosed by a 75 g oral glucose tolerance test
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according to 1997 American Diabetes Association criteria
(9) or if the diagnosis was made during routine clinical
care. As described previously, participants informative
for analyses of young-onset diabetes or for metabolic
traits related to diabetes were selected for the GWAS
(10). All individuals were full-heritage American Indian,
and they included 278 “cases” who developed diabetes
before age 25 years (mean 6 SD age of onset = 19.4 6
4.4 years) and 295 “controls” who were nondiabetic and
$45 years old when last examined (mean age = 55.2 6
9.7 years). To allow for family-based analyses, discordant
siblings were included. These included 129 nondiabetic
siblings of cases last examined at an age older than the
case’s age of onset (mean age = 28.1 6 8.2 years) and 138
diabetic siblings of controls who developed diabetes when
they were younger than the age when the control was
examined (mean age at diagnosis = 40.8 6 8.4 years). The
diabetes GWAS involved 840 individuals in 514 sibships.

Replication studies were conducted in additional
individuals from the longitudinal study. Initial studies
(replication set 1) were conducted in 2,908 individuals
(mean age = 40.0 6 16.3 years; 43.8% with diabetes) who
were not part of the GWAS and who were full-heritage
Pima or who had data on metabolic traits. Selected SNPs
were further typed in a second group (replication set 2) of
3,926 individuals who were largely “mixed” heritage (mean
age = 27.7 6 13.9 years; 20.2% with diabetes; mean Pima
heritage = 55%). Supplementary Table 1 shows charac-
teristics of the groups. Studies were approved by the in-
stitutional review board of the National Institute of
Diabetes and Digestive and Kidney Diseases.

Association of diabetes-associated SNPs with meta-
bolic characteristics of T2DM was assessed. Maximum
BMI observed in the longitudinal study was analyzed in
6,786 individuals examined when $15 years of age.
Fasting serum insulin concentration was measured in
5,400 of these individuals when they were nondiabetic;
measures of insulin resistance (homeostasis model as-
sessment of insulin resistance [HOMA-IR]) and b-cell
function (homeostasis model assessment of b-cell func-
tion [HOMA-B]) were calculated (11). Detailed physiologic
measures were made in 400 nondiabetic full-heritage
Pimas. Percentage of body fat was calculated by hydro-
static weighing or dual X-ray absorptiometry, and insulin
sensitivity was determined by the hyperinsulinemic–
euglycemic “clamp” (12). Acute insulin response, 3–5 min
after a 25 g intravenous glucose bolus, was measured in
288 normoglycemic individuals (12).

Genotyping

Genotypes in the GWAS were generated on the Affymetrix
6.0 Human SNP Array (Affymetrix, Santa Clara, CA) using
the BIRDSEED algorithm, as described previously (10).
SNPs were excluded if .15% of genotype calls were miss-
ing, if genotype frequencies diverged from Hardy–Weinberg
expectations (P , 0.001), if concordance among 100 du-
plicate samples was ,97%, or if minor allele frequency was

,5%. Thus 453,654 SNPs were analyzed. Supplemental Fig.
1 shows the selection of SNPs in different samples.

Genotyping in replication studies was performed by
BeadXpress (Illumina, San Diego, CA) or Assays-on-
Demand (Applied Biosystems, Carlsbad, CA) according to
manufacturer’s protocol. To confirm accuracy of initial
GWAS genotypes, all GWAS participants were retyped for
each SNP in replication studies, and these genotypes
were used in subsequent analyses. Forty-five SNPs with
large differences in allele frequency between American
Indian and European populations (13) were genotyped
for estimation of the proportion of European heritage,
utilizing the method of Hanis et al. (14), for use as
a covariate.

Statistical Analysis

Association between young-onset T2DM and each SNP in
the GWAS was analyzed by logistic regression under an
“additive” model in which a numeric variable (0,1,2) is
assigned based on the number of referent alleles. A class
D regressive model was used to account for resemblance
among siblings by including sample prevalence of young-
onset diabetes among siblings as a covariate (15). Ge-
nomic control (16) was used to account for inflation of
significance due to additional population stratification;
the inflation parameter was calculated as the mean x2

statistic among all SNPs.
A family-based test of association among siblings

discordant for diabetes was conducted by conditional
logistic regression. To augment statistical power, the
P value was calculated by combining the P value from
conditional logistic regression (Psib) with a truncated
1-sided P value from the case-control analysis (PCC1). The
family-based P value is thus taken from x2=22*ln(Psib)22*ln
(max{Psib,[1-(1-PCC1)

2]}on four df. This enhances power of
the family-based test while maintaining robustness to
population stratification (17).

Associations with diabetes in replication studies and
in the pooled combined data were examined by logistic
regression, fit by the generalized estimating equation
procedure to account for dependence among siblings.
Association with continuous variables was analyzed
similarly with a linear “mixed” model. Values were loga-
rithmically transformed, and the regression coefficient
was exponentiated to obtain the effect estimate
expressed a multiplier. The logarithms of homeostasis
model assessment values were standardized within dif-
ferent insulin assays; effect sizes are presented in SD
units. All P values presented are two-sided. To compare
Pima results with those in Europeans, publicly available
results were obtained from the DIAbetes Genetics Rep-
lication And Meta-analysis (DIAGRAM) consortium (1).
Heterogeneity between Pimas and Europeans was ana-
lyzed by the Q-statistic.

Functional Studies

Overexpression and knockdown of DNER were assessed
in murine pancreatic b-cells (NIT1). For overexpression,
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cells were transfected with 2 mg of pCMV6 expression
vector (OriGene, Rockville, MD) containing DNER insert
or empty vector control using Lipofectamine LTX (Life
Technologies, Carlsbad, CA). For knockdown studies, cells
were transfected with 150 pmol small interfering RNA
(siRNA) targeting DNER or negative control siRNA
using Lipofectamine RNAiMAX. Cells were harvested
after 48 h incubation, and total RNA was isolated using
the RNeasy mini kit (Qiagen, Valencia, CA). Residual
genomic DNA was eliminated by on-column DNAase
digestion. First strand cDNA was synthesized using
the Advantage RT-for-PCR kit (Clontech, Mountain
View, CA). mRNA levels were quantified by real-time
PCR using SYBR green on an ABI 7900HT-Fast RT-
PCR System (Life Technologies). Relative mRNA
level was taken as the ratio of experimental data to
control. Data were averaged from 7–8 transfection
experiments.

RESULTS

GWAS

Among the 453,654 SNPs, the genomic inflation factor
was 1.13 for the case-control test and 1.02 for the family-
based conditional logistic regression test. Results of the
GWAS are shown in Fig. 1. There were 260 SNPs with

P , 0.0003 in the family-based analysis and 242 SNPs
with P , 0.0005 in the case-control analysis (P value
thresholds were taken to select ;250 SNPs); three SNPs
met both criteria. Among these 499 SNPs, 319 tags
were selected for genotyping in replication studies (with
r2 . 0.95 taken as indicative of redundancy).

Replication Studies

Results for replication studies are shown in Supplemen-
tary Table 2. Among 311 SNPs genotyped in the first
replication sample, 41 showed directionally consistent
association with P , 0.10. Ninety-six of the 311 SNPs,
constituting 26 SNPs with P , 0.001 in the combined
GWAS and first replication set and 70 “candidate” SNPs,
were also genotyped in the second replication sample.
The 20 SNPs with the strongest associations in all 7,674
individuals are shown in Table 1. Two SNPs, rs8181588
in KCNQ1 and rs1861612 in DNER, showed consistent
and statistically strong (P , 5 3 1027) evidence for
association across all samples. The KCNQ1 SNP tags
rs2283228 (r2 = 0.98), a previously established marker
for T2DM (4). The DNER SNP has not been reported in
other studies of T2DM, and the effect of rs1861612 is
significantly different between Europeans and Pimas
(P = 1.6 3 1026; I2 = 95.6%).

Figure 1—A: “Manhattan” plot of genome-wide association results for young-onset T2DM in American Indians in case-control study. The
negative base 10 logarithm of the P value for an association with diabetes is plotted against chromosome and position (determined in
Build 37). Results are shown after genomic control. B: “Manhattan” plot of genome-wide association results for young-onset T2DM in
American Indians in family-based analysis. The negative base 10 logarithm of the P value for an association with diabetes is plotted
against chromosome and position (determined in Build 37). C: Quantile–quantile plot of observed vs. expected (given the null distribution)
P value for the case-control study. The observed distribution of P values without genomic control is shown in the dotted line, and the
distribution with genomic control is shown in the solid line. D: Quantile–quantile plot of observed vs. expected (given the null distribution)
P value for the family-based study. The expected distribution was estimated from simulation of 108 test statistics with the observed
correlation (r = 0.29) between those for the conditional logistic regression and case-control analyses. GC, genomic control.
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Associations With Metabolic Traits

Associations with metabolic traits are shown in Table 2.
The diabetes risk allele at rs2283228 in KCNQ1 was as-
sociated with lower insulin secretion (by 13.7% per copy
of the risk allele; P = 0.0038). The diabetes risk allele at
rs1861612 in DNER was associated with increased
HOMA-IR and increased fasting serum insulin (;0.04 SD
per copy of the risk allele; P = 0.0119).

Fine Mapping and Functional Studies

Sixty-three variants in DNER were selected from the
GWAS and from direct sequencing of exons and ;2 kb of
the promoter region in 12 diabetic and 12 nondiabetic
Pimas. Results for association with diabetes are shown in
Fig. 2A. The initial GWAS SNP, rs1861612, was the most
strongly associated variant. The association was consis-
tent across age-groups (Fig. 2B).

Figure 2—A: Association results for 63 variants across DNER with T2DM in Pima Indians. The negative base 10 logarithm of the P value
for association is shown at the Build 37 position. Variants include 48 “tags” (r2 >0.8) for 153 SNPs from the GWAS and 14 variants
identified from sequencing ;5,300 base pairs in DNER; one variant identified by sequencing (a short insertion/deletion at position
230.580216 Mb) is not in public databases. Results obtained in all 7,674 individuals are shown as boxes, while those obtained in the
GWAS and first replication samples are shown as triangles. Symbols are shaded according to r2 with rs1861612. B: The prevalence of
T2DM by genotype at rs1861612 and age-group in 7,674 Pima Indians. P values for association with T2DM in each age-group are as
follows: P = 0.0005 (5–24), P = 0.0517 (25–34), P = 0.0265 (35–44), P = 0.0004 (45–54), and P = 0.0028 (55 and up). C: Relative mRNA level
in murine pancreatic b-cells after transfection experiments to overexpress DNER (gray bars) or to knockdown DNER expression (open
bars) compared with negative control (black bars, which = 1 by definition). mRNA levels are shown for DNER itself, for notch pathway
genes (Notch1, Hes1, Neurog3) and for Rtn2 (which is not involved in the notch pathway). *P < 0.001; **P < 0.0001.
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To investigate the role of DNER in regulating the
notch signaling pathway, DNER mRNA was overex-
pressed (124-fold enrichment) and knocked down via
siRNA (69% reduction) in murine b-cells, and expression
levels of four genes were measured. The mRNA of notch
pathway-specific genes Notch1, Hes1, and Neurog3
were increased by 2.0-, 1.4-, and 1.6-fold, respectively
(P , 0.001), in response to DNER overexpression and
decreased by 25, 40, and 41% (P , 0.001) in response
to DNER knockdown (Fig. 2C). In contrast, Rtn2, which
is not involved in the notch pathway, was largely
unaffected.

DISCUSSION

A number of genetic variants have recently been identi-
fied as associated with T2DM (1–6). Most of these var-
iants were identified in GWASs in Europeans, but
associations for many are consistent in other ethnic
groups, including American Indians (18,19). However,
some associations are heterogeneous across ethnic
groups (5,6,20). In Pima Indians, for example, TCF7L2
variants, which are strongly associated in most ethnic
groups, show little association with diabetes (20). In
addition because of ethnic differences in allele
frequencies, relative importance of different diabetes-
susceptibility alleles varies. For these reasons, GWASs in
non-European populations might yield additional T2DM
susceptibility variants. Indeed, studies in East Asians and
South Asians have identified additional diabetes associ-
ations (4–6).

There have been few GWASs in American Indians
despite their high risk for T2DM. In the current study,
we extend our initial GWAS in Pima Indians (7) to in-
clude 453,654 SNPs. We also conduct additional repli-
cation studies in the population, so associations were
ultimately assessed in 7,674 individuals. These studies
implicate DNER as a novel locus conferring susceptibility
to T2DM. The association with rs1861612 in DNER is
reproducible across different groups of Pimas but is not
observed in Europeans. Other ethnic-specific genetic
associations for T2DM have been described (5,6). Such
associations may occur due to difference in frequency of
functional alleles, differences in linkage disequilibrium,
or interaction with other genetic or environmental fac-
tors. Studies of DNER polymorphisms in other pop-
ulations are required to determine generalizability.

Stringent criteria for statistical significance are gen-
erally applied in GWASs on account of multiple statistical
testing. In non-African populations, P , 5 3 1028 is
conventionally considered genome-wide significance. In
the current study, only a variant in the established
diabetes gene KCNQ1 achieved this threshold. Associa-
tions with KCNQ1 variants, which are subject to parent-
of-origin effects, are particularly strong in Pimas (21).
Conventional criteria for genome-wide significance were
derived from estimates of the number of effectively in-
dependent common variants in European and East Asian

populations (22,23), and this number is likely smaller in
Pimas. In fact, we estimate that P , 5 3 1027 is an
appropriate level for genome-wide statistical significance
in Pimas (10), and the DNER association achieves this
criterion. Although many of the other established T2DM-
susceptibility loci appear to influence diabetes risk in
Pimas (19), their effects are modest and difficult to de-
tect at genome-wide significance with the current sample.
The present GWAS was small and had little power in
itself to detect associations at genome-wide significance.

The mechanism by which variation in DNER might
cause T2DM is not clear. DNER encodes a D/notch-like
epidermal-growth-factor-related receptor, and it medi-
ates notch signaling. We show that DNER expression
affects expression of several notch pathway genes in
pancreatic b-cells. The diabetes risk allele at rs1861612
was associated with fasting hyperinsulinemia and ele-
vated HOMA-IR, but there was no association with
directly measured insulin resistance. A speculative
mechanism is that DNER-mediated alterations in notch
signaling may produce fasting hyperinsulinemia, which
increases risk of diabetes independently of insulin
resistance (24), but further mechanistic studies are re-
quired. Regardless of the mechanism, the current study
implicates DNER as a T2DM-susceptibility gene in
American Indians.
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