
Translational drug–interaction corpus
Shijun Zhang 1,†, Hengyi Wu2,†, Lei Wang1, Gongbo Zhang3, Luis M. Rocha 4, Hagit Shatkay3

and Lang Li1,*
1Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210, USA
2Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
3Department of Computer and Information Sciences, University of Delaware, 101 Smith Hall, 18 Amstel Ave, Newark, DE 19716, USA
4School of Informatics & Computing, Indiana University, 919 E 10th St, Bloomington, IN 47408, USA
*Corresponding author: Tel: +614-685-4685; Fax: +614-293-6600; Email: li.8958@osu.edu
†These authors contributed equally to this work.

Citation details: Zhang, S., Wu, H., Wang, L. et al.  Translational drug–interaction corpus. Database (2022) Vol. 2022: article ID baac031; DOI: 
https://doi.org/10.1093/database/baac031

Abstract
The discovery of drug–drug interactions (DDIs) that have a translational impact among in vitro pharmacokinetics (PK), in vivo PK and clinical 
outcomes depends largely on the quality of the annotated corpus available for text mining. We have developed a new DDI corpus based on an 
annotation scheme that builds upon and extends previous ones, where an abstract is fragmented and each fragment is then annotated along eight 
dimensions, namely, focus, polarity, certainty, evidence, directionality, study type, interaction type and mechanism. The guideline for defining 
these dimensions has undergone refinement during the annotation process. Our DDI corpus comprises 900 positive DDI abstracts and 750 that 
are not directly relevant to DDI. The abstracts in corpus are separated into eight categories of DDI or non-DDI evidence: DDI with pharmacokinetic 
(PK) mechanism, in vivo DDI PK, DDI clinical, drug–nutrition interaction, single drug, not drug related, in vitro pharmacodynamic (PD) and case 
report. Seven annotators, three annotators with drug–interaction research experience and four annotators with less drug–interaction research 
experience independently annotated the DDI corpus, where two researchers independently annotated each abstract. After two rounds of 
annotations with additional training in between, agreement improved from (0.79, 0.96, 0.86, 0.70, 0.91, 0.65, 0.78, 0.90) to (0.93, 0.99, 0.96, 
0.94, 0.95, 0.93, 0.96, 0.97) for focus, certainty, evidence, study type, interaction type, mechanisms, polarity and direction, respectively. The 
novice-level annotators improved from 0.83 to 0.96, while the expert-level annotators stayed in high performance with some improvement, 
from 0.90 to 0.96. In summary, we achieved 96% agreement among each pair of annotators with regard to the eight dimensions. The annotated 
corpus is now available to the community for inclusion in their text-mining pipelines.
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Introduction
Research into drug–drug interactions (DDIs) has been rapidly 
accelerated in recent years (1). DDIs impact patient safety (2) 
and healthcare costs (3) and are a major cause of adverse 
drug reactions. As a result, healthcare information systems 
have implemented clinical alerts that allow the early detec-
tion of DDIs to prevent associated negative outcomes (4). 
The efficacy of these alerts relies heavily on good curation 
of knowledge from the literature that provides reliable and 
comprehensive information about drugs and their interactions 
(5) as well as their clinical impact and underlying pharmaco-
logical mechanisms (6). Such curation depends on effective 
text-mining tools. Text mining can help identify novel DDI 
signals from the literature (7, 8), and as such DDI text mining 
has become an important research area in both pharmacology 
(7) and informatics (9–12). The development of text-mining 
methods often requires well-annotated corpus, where corpus 
construction is guided by documentation, balanced text class 
composition, recoverability and data on annotator agree-
ment (13). In this paper, we will address how DDI shall 
be curated and annotated in a corpus. This corpus will be 

highly valuable for the future text-mining analysis, but the 
text-mining analysis is not in the scope of this paper.

Various techniques have been considered to represent the 
text class composition in the context of published science. One 
scheme, zone partition (14–16), divides the full text of bio-
logical articles into 10 zones, background, problem-setting 
(i.e. the goal of the paper), method, results, insight (i.e. inter-
pretation of the observed data), implication (i.e. implication 
of the author’s work, such as the applications, limitations 
and future work), other (i.e. other kind of information of 
the author’s own work), difference (i.e. statements describ-
ing contrasting relations between zones), connection (i.e. 
statements describing consistent relation between zones) and
outline.

A different scheme, which forms the basis to ours and is 
adopted here (17), emphasized the scientific contents within a 
fragment of text, either a sentence or a sentence fragment, and 
examined dimensions including focus = scientific vs. general, 
polarity—either positive or negative, certainty—the degree 
of confidence about the validity of the assertion, evidence—
whether there is evidential support to the statement, and 
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direction—an increase or a decrease in the level of a phe-
nomenon or an activity.

Three corpora have been specifically developed, pertain-
ing to DDI evidence. In 2011 and 2013, the DDI Extraction 
Challenge Tasks (DDI-ECT) (18–20) provided annotation 
of pharmacological substances and DDI relationships from 
biomedical texts. In the 2011 DDI-ECT, the annotated DDI 
corpus consists of 579 text passages selected from the Inter-
actions field of DrugBank; in the 2013 DDI-ECT, the corpus 
was created using 792 text passages selected from the Interac-
tions field of DrugBank and 233 PubMed abstracts. DDI-ECT 
provided drug annotations by labeling generic name as drug, 
brand name as brand, group name as group and substrate 
name as drug_n, the latter representing a substrate of the drug 
not approved for human use. In addition, DDI-ECT anno-
tated four drug–interaction relationships—the pharmacoki-
netic (PK) mechanism, mechanism; the pharmacodynamic 
(PD) effect of drug interaction, effect; advice regarding drug 
interaction, advice; and the absence of specific information 
regarding DDI, int, which stands for interaction. The PK DDI 
package insert corpus (PK-DDI-PI) (21) provided a second 
body of information regarding evidence for drug interac-
tions and was built utilizing Food and Drug Administration 
(FDA)-approved drug labels, focusing exclusively on anno-
tating DDI relationships. Initially, it differentiated PK DDIs 
from PD DDIs. In the case of a PK DDI pair, one drug, 
referred to as the precipitant, inhibits/induces the pharma-
cokinetics of another drug, referred to as the object, where 
the corpus defined the precipitant/object roles in the pair 
and further labeled each drug in the pair as either an active 
ingredient, product or metabolite, as well as identified the 
positive/negative and quantitative/qualitative modalities for
the pair.

Our group undertook the development of a third annota-
tion scheme to create a PK corpus that focuses more on the 
pharmacokinetics of DDIs (22). It first comprised four classes 
of PK abstracts, including in vivo PK, in vivo pharmacogenetic 
(23), in vivo DDI and in vitro DDI studies. The annotation 
scheme had a 3-layer hierarchical structure, in which the first 
layer annotated entities (drug, dose, enzyme, PK parameter, 
unit, sample size, mechanism, adjective [adj] word and action 
word); the second layer annotated sentences concerning DDI 
(clear DDI, vague DDI or no DDI) and the third layer anno-
tated DDI relationships between two drugs or between a drug 
and an enzyme with respect to in vivo and in vitro evidence 
in a sentence. An in vivo DDI pair was labeled DDI, ambigu-
ous DDI (ADDI) or non-DDI, and an in vitro DDI pair was 
characterized as DDI, drug–enzyme interaction (DEI), ADDI, 
ambiguous DEI (ADEI), non-DDI or non-DEI. Notably, the 
label no DDI in the second layer indicates no DDI evidence in 
a sentence, while the label non-DDI in the third layer indicates 
that a pair of drugs do not have interaction. Table 1 sum-
marizes the main properties all three DDI corpus and their 
annotation schemes. 

Comparison of the general guidelines for corpus anno-
tation with the annotation schemes used for existing DDI 
corpus reveals several obvious gaps. The aforementioned seg-
mentation of most current publications into background, 
materials and methods, results and conclusions sections 
has rendered the zone partition scheme redundant (14–16); 
current DDI corpus does not utilize the five dimensions 

Table 1. Existing corpus of DDIs

Corpus Data sources Annotation schemes

DDI-ECT DrugBank 
sentences

Entities: drug, brand, group, 
and drug_n

Medline abstracts DDI relationships: mechanism, 
effect, advice and inta

PK-DDI-PI FDA drug labels DDI relationships: pharmaco-
dynamics/pharmacokinetics, 
type, role, positive/negative, 
qualitative/quantitative

PK corpus Medline abstracts Entities: drug, dose, enzyme, 
PK parameter, unit, sample 
size, mechanism, adjective 
word, action word

DDI sentences: clear DDI, 
vague DDI, no DDIb

DDI relationships: in vivo
DDI (DDI, ambiguous DDI 
(ADDI), non-DDI) and in 
vitro DDI (DDI, DEI, ADDI, 
ADEI, non-DDI, non-DEI)

Note: inta means interaction; no DDIb means no drug interaction evidence 
in a sentence.

Table 2. Abstract selection criteria

Study type Description

PK in vitro drug 
interaction

Substrate depletion or metabolite formation 
studies between substrate drugs and probe 
inhibitor drugs for metabolism enzymes 
or transporters; and inhibition/induction 
studies between inhibitor/inducer drugs 
and probe substrate drugs for metabolism 
enzymes or transporters

PK in vivo drug 
interaction

Clinical pharmacokinetics studies that com-
pare a substrate drug’s exposure alone to the 
substrate drug exposure co-committed with 
inhibitor or inducer drugs

Clinical drug 
interaction

Phase I/II/III clinical trials with reported drug 
combination and/or single drug toxicity 
data. Pharmaco-epidemiology studies with 
reported toxicities from drug combinations

Drug–nutrition 
interaction

The interaction studies between drugs and 
natural products, including in vitro PK 
experiments, clinical PK studies and clin-
ical/epidemiology studies on efficacy or 
toxicity

Single drug Single drug studies, including in vitro PK 
experiments, clinical PK studies and clin-
ical/epidemiology studies on efficacy or 
toxicity

No drug related Clinical or preclinical studies, but not drug 
related

Case report Single drug or drug combination induced 
Adverse drug effect cases

PD in vitro Cell culture studies on pharmacodynamics, 
but not on pharmacokinetics

of focus, polarity, certainty, strength and direction (17), 
although they offer a much in-depth annotation of drug
pharmacology.

Here we report our efforts combining the advantages 
of multiple annotation guidelines to construct a corpus 
that allows sufficient representation and generalizability of 



Figure 1. Screening and classification of PubMed abstracts for corpus development. PubMed abstracts were initially screened by four annotators into 
DDI-relevant, non-DDI and disagreed data. The four annotators included two experienced ones and two novice ones. The two experienced annotators 
had drug–interaction research experience, and two novice annotators were new bioinformatics master novices with biology and pharmacology 
background. All the abstracts were classified by these four annotators independently, and each abstract was labeled by two annotators. The disagreed 
data were further validated by two experienced annotators.

scientific knowledge, while maintaining the dimensions of 
focus, polarity, certainty, evidence and directionality, and 
includes DDI study type, mechanism and interaction type 
to integrate sufficient science, i.e. pharmacology, within the 
annotation scheme.

Materials and methods
Screening of abstracts for corpus inclusion
Our drug–interaction corpus comprises abstracts from 
PubMed that we screened via a keyword query [‘drug inter-
action’ AND (Type of Study)]. We established abstract selec-
tion criteria (Table 2) to classify the abstracts included in 
our corpus into eight subcategories, three for DDI abstracts, 
including PK in vitro, PK in vivo and clinical, and five for 
non-DDI abstracts, including drug–nutrition interaction, sin-
gle drug, not drug related, in vitro PD and case report. 
Abstract classification was performed by four annotators, two 
experienced ones and two novices. Two experienced anno-
tators included one with a Master’s degree in biology and 
3-year experience in drug–interaction corpus development. 
The second had a Ph.D. in bioinformatics with pharmacology 
training background, and his Ph.D. thesis topic focused on 
PK and drug–interaction corpus development and text min-
ing. The other two novice annotators had either biology or 
pharmacology background. When they participated in this 
annotation project, they just started their training programs 
in bioinformatics. All the abstracts were classified by these 
four annotators independently, and each abstract was labeled 
by two annotators. The disagreed annotations were further 
validated by two experienced annotators jointly for the final 
decision (see Figure 1).

Building the drug–interaction corpus
Annotator characteristics
Our expert group comprised three ‘experienced annotators’. 
The first one has a Master’s degree in biology with 3-year 
experience in drug–interaction corpus development and text 
mining. The second has a Ph.D. in bioinformatics with phar-
macology training background; the Ph.D. thesis topic focused 
on PK and drug–interaction corpus development. The third is 
a second-year Master’s novice in bioinformatics with a Mas-
ter’s degree in biology and 1.5-year drug–interaction corpus 
annotation experience in the lab. Four additional annotators 
were ‘novice annotators’ with either biology or pharmacology 
or informatics background. When they participated into this 
annotation project, they just started their training programs 
in the Indiana University. One is a new research follow in 
clinical pharmacology, who had pharmacology training back-
ground, but no informatics expertise. The other three are new 
master novices in bioinformatics. The three experienced anno-
tators were involved in developing the annotation guidelines. 
These three experienced annotators trained the novice anno-
tators. Note that four of the seven corpus annotators were 
also the ones who classified the abstracts in the previous step 
(Figure 1).

Annotation process
After the identification of positive and negative DDI abstracts 
in the screening stage, the novice annotators read the annota-
tion guidelines and underwent training and practiced anno-
tation at the sentence level, applying the guidelines to five 
abstracts as test examples. Following that training stage, in 
a first round of annotations, abstracts in the corpus were ran-
domly assigned for independent annotation by each of two 



Figure 2. Annotation process for the corpus development. The DDI corpus was constructed by three experienced annotators and four novice 
annotators. Novice annotators received two rounds of training of sentence-level annotation. After the initial training, each abstract in the corpus was 
assigned randomly to two annotators for the first-round annotation. Then the novice annotators underwent additional training. In the second-round 
annotation, the annotators reviewed and revised their annotation. The annotations were validated and finalized by the experienced annotators.

annotators. The novice annotators then received additional 
training that involved discussion of any inconsistencies or con-
flicts in their understanding and application of the guidelines. 
In a second round of annotation, the annotators reviewed 
and revised their first annotations as necessary. In cases of 
disagreement after the second round, one of the three expe-
rienced annotators provided the final annotation. Figure 2 
illustrates the sentence-level annotation process.

Annotation guidelines
Building on the annotation guidelines previously developed 
by Dr Hagit Shatkay and her colleagues [17], the annota-
tion guidelines aim to identify drug–interaction entities and 
evidence of such interaction within the pharmacology-related 
literature. The guidelines delineate the rules and conventions 

for conducting the annotation task and provide case exam-
ples. The unit of annotation is a fragment within a sentence. 
A sentence is fragmented whenever there is a change in the 
annotation value along any of the eight dimensions, namely, 
focus, polarity, certainty, evidence, directionality, study type, 
interaction type or DDI mechanisms.

• Focus Each fragment may convey one or more of the 
following categories:

(i) Scientific content, findings or discovery. We define 
this type of information as science and anno-
tate it with the tag S. The tag S is assigned to 
most sentences that describe prospective or future
study.



(ii) Generic information. This category refers to a 
general statement of knowledge and science that is 
outside the scope of the paper, the structure of the 
paper itself or the statement of the research world. 
Such statement is usually not based on scientific 
experimentation and can reflect an opinion or an 
observation that would probably be considered true 
or valid if made by a layperson. We denote generic 
information using the tag G.

(iii) Methodology. This designation refers to methods 
used in a biological or pharmacological experiment 
or employed in a clinical study and assigned the
tag M.

The focus of a fragment is contingent on context. What 
may be regarded as a scientific finding in one context 
may be considered methodology in another. We only anno-
tated methodology when the fragment contained an indi-
cation that methodology is discussed. In some cases, a 
fragment discussing methodology may also discuss science. 
In such cases, both tags, M and S, are assigned. Other 
cases may require other tag combinations, such as GS, GM
or GMS.

• Polarity A fragment can be stated either positively (P) or 
negatively (N). For instance, the phrase ‘No influence’ 
in the sentence ‘No influence of cimetidine was observed 
on the kinetics of single doses of femoxetine.’ indicates 
a negative polarity (N). As another example, the sen-
tence ‘After multiple doses the plasma concentration of 
femoxetine was significantly increased.’ shows a posi-
tive polarity (P). If the polarity is not clearly stated, for 
example, ‘It is still unknown whether…’, the fragment is
tagged P.

• Certainty Each fragment conveys a degree of certainty 
about the validity of the assertion it makes, which the 
annotation grades on a scale from 0 to 3. The lowest 
degree (0) represents complete uncertainty; that is, the 
fragment explicitly states that there is an uncertainty or 
lack of knowledge about a particular phenomenon (e.g. 
‘it is unknown…’ or ‘it is unclear whether…’). The high-
est degree (3) represents complete certainty, reflecting an 
accepted, known and/or proven fact. The intermediate 
degree (1) reflects low certainty and (2) reflects expres-
sions with high likelihood that are still short of complete 
certainty.

• Evidence This dimension denotes the presence or absence 
of evidence to support the assertion expressed in the frag-
ment, regardless of the fragment’s focus or certainty. This 
category is denoted by a tag starting with the letter E fol-
lowed by one or more digits from 0 to 3 to indicate the 
evidence type or the letter N to indicate the provision of 
numerical evidence within the fragment:

(i) E0 indicates that there is either no evidence in 
the fragment or an explicit statement in the text 
indicates the absence of evidence (‘ICG-001 binds 
specifically to CBP…’).

(ii) E1 indicates a claim of evidence without explicit 
information to verify the claim. The fragment 
does not demonstrate evidence, and there is no 
explicit reference to evidence. The evidence is merely 

asserted to exist in some form, possibly in the pre-
ceding text or in prior experiments, but its location 
is not stated. Note that in this case the indirect 
implication of evidence may not be provided in 
the fragment, but the use of terms referring to 
a previous fragment may imply evidence (‘Previ-
ous studies suggest that ICG-001 binds specifically
to CBP…’).

(iii) E2 signifies the absence of evidence within the sen-
tence/fragment, but the presence of explicit ref-
erence to other papers (citations) to support the 
assertion of evidence (‘Previous studies suggest that 
ICG-001 binds specifically to CBP…[25]’).

(iv) E3 represents the presence of evidence within the 
fragment in one of the following forms:
• reference to experiments previously reported 

within the body of the paper by a direct descrip-
tion of the findings as experimental results (‘Our 
data demonstrate…’);

• use of a verb (typically in the past tense) within 
the statement that indicates an observation or 
experimental finding that is described within the 
paper. For example, ‘We found that…’, ‘We 
see that…’ and ‘The level of …increased over 
time…’; and

• reference to an experimental figure or table of 
data given within the paper.

(v) EN denotes the provision of evidence as the 
numerical results of the experiment described 
within the paper, such values as PK/PD parame-
ters, sample size, drug doses and treatment time 
(‘Omeprazole had no apparent effect on the mean 
(S)-warfarin plasma concentration (379 ng/ml with, 
versus 387 ng/ml without, omeprazole), …’).

Direction/Trend A plus sign (+) indicates a qualitatively 
increased level in a specific phenomenon, finding or activ-
ity, whereas a minus sign (–) indicates a reduced level. 
This tag is introduced to separate the notion of posi-
tive/negative results and assertions from the level of the 
observed phenomenon itself. For example, the fragment 
‘Nitrendipine 20 mg daily led to a significant increase 
in plasma digoxin levels and’ is annotated with the tag 
‘+’ as it discusses an increase in plasman digoxin lev-
els, while the sentence ‘AUC (0,24 h) of digoxin, however, 
was slightly reduced after 1 week of treatment with bosen-
tan.’ receives the tag ‘-’ as it discusses a reduction in
digoxin.
If both reduction and increase of the same phenomenon 
are presented as possible, the fragment is tagged by ±. 
For example, in the sentence ‘Pharmacokinetic drug inter-
actions may result in a decrease or increase in the oral 
bioavailability of some drugs.’, the change of the oral 
bioavailability can be either an increase or a decrease, and 
the fragment is annotated by ±. 

• Study type Each fragment may contain information such 
as experimental method or endpoint that can indicate a 
certain study type, which is indicated by a tag starting with 
the letter V. A subsequent letter indicates the type of study 
or its absence. We define five study types that can be asso-
ciated with a fragment: in vivo (VV), in vitro (VT), clinical 
(VC), do not know (V0) and not applicable (VN).



(i) The study type of the studies that have no drugs in 
them is annotated as VN.

(ii) VV studies are those in which the pharmacokinet-
ics entities of drugs are tested on humans through 
clinical studies.

(iii) VT studies are those in which the pharmacokinet-
ics (PK) and pharmacodynamics (PD) entities of 
drugs are tested on cell or human liver microsome
models.

(iv) VC studies are those in which the pharmacodynam-
ics entities of drugs are tested in clinical studies, 
including randomized clinical trials, prospective or 
retrospective cohort studies and case/control stud-
ies. The endpoints of clinical studies are the identifi-
cation of disease symptoms and adverse drug effects, 
and these endpoints are usually measured accord-
ing to their likelihood and characterized as odds or 
hazard ratios or other risk statistics.

(v) When a fragment discusses more than one type of 
study, the multiple studies are annotated with the 
tags for each type separated by ‘|’. Thus, the discus-
sion of a VV study and a VC study would be tagged
VV|VC.

(vi) The tag V0 is assigned when the study type is stated 
ambiguously and there is no explicit evidence to 
indicate whether the fragment is discussing a VV
study or a VS study.

• Interaction type indicates the relationship between drugs 
and drugs/enzymes occurring in the fragment. The types of 
interactions include single drug (DR), drug–enzyme inter-
action (DE), DDI (24) and no drug discussed (D0). The tag
DR is assigned to indicate that the description of a drug–
drug pair or a drug–enzyme pair in the fragment does not 
specify an explicit interaction between them. If a fragment 
indicates both DDIs and drug–enzyme interactions, it will 
be tagged DD|DE.

• Mechanism represents the mechanism of DDI or drug–
enzyme interaction. Our annotation uses the labels inhibi-
tion (MI), induction (MD), metabolism (MM), transport 
(5), synergism (25), antagonism (MN), additive (MA) 
and not applicable (M0) to differentiate mechanism types. 
When a statement indicates more than one mechanism 
of drug–drug or drug–enzyme interaction, we allow a 
combination of tags, e.g. MI|MM.

Thus, a typical fragment annotation consists of a tag of the 
form:

**[<Integer>][G|M|S]+[P|N][0–3][E[0|N|1 |2|3]] [-|+] ?

[() [VV|VT|VC|V0]* [DR|DE|DD|D0] *[MI|MD|MM|MT|
MS|MN|MA|M0]* [ ]]

<Integer> is the ordinal number of the fragment within its 
sentence, starting at 1.

For instance:

(i) Thus, in this case, the chemistry of the product is similar 
to that of the signal molecules, **1GP3E1(VND0M0)
but there is no complementary relationship to the signal 
sequences. **2GN3E0(VND0M0)

(ii) Treatment of human hepatocytes for 72 h with 2–200
microM thiabendazole produced concentration-
dependent increases in CYP1A2, CYP2B6 and 
CYP3A4 mRNA levels, whereas treatment with buty-
lated hydroxytoluene increased CYP2B6 and CYP3A4 
mRNA levels. **1SMP3EN+(VTDEM0)

(iii) The effect of two different doses of nitrendipine on 
plasma digoxin levels, urinary recovery and systolic 
time intervals was investigated in eight healthy volun-
teers. **1SP0EN([VV|VC]DDM0)

(iv) Effect of saquinavir–ritonavir on cytochrome P450 3A4 
activity in healthy volunteers using midazolam as a 
probe. **1SP3E1(V0[DD|DE]M0)

Quality control analysis
To examine the quality and effectiveness of our guidelines and 
the reliability of the annotations, we assessed the annotation 
agreement between all paired annotators, i.e. inter-annotator 
agreement (IAA). For each pair of annotators, the agreed 
fragmentation is defined by the same number of fragments, 
and their fragmentation boundaries are within two words. 
Therefore, the IAA of fragmentation between two annotators 
among all the sentences in the corpus, (A1, A2), is calculated 
as the number of sentences with agreed fragmentation divided 
by the total number of sentences in the corpus.

The IAAfragmentation among a group of annotators is defined 
as: 

IAA fragmentation is also calculated for eight individual 
subcategories of abstracts defined in Table 2, in which IAA 
is calculated among all the sentences in an abstract subcat-
egory in the corpus. The annotator groups include experi-
enced annotators, novice annotators, between experienced 
and novice annotators and all annotators.

The agreement on an annotation dimension was calcu-
lated only on the fragment that two annotators agreed on

Table 3. Composition of drug–interaction corpus

Corpus Abstracts discussed DDI (DDI) Abstracts not discussed DDI (non-DDI)

Study categories
In vivo DDI 
PK

In vitro DDI 
PK DDI Clinical In vitro PD Drug–nutrition Single drug Case reports

Nondrug 
studies

Abstracts 300 300 300 100 200 200 50 200
# Fragments 4010 3176 4041 760 2871 2540 564 2538



Table 4. Annotation frequency among eight dimensions

Corpus DDI Non-DDI

Study categories
In vivo
DDI PK

In vitro
DDI PK DDI Clinical In vitro PD

Drug–
Nutrition Single Drug

Case 
Reports

Nondrug 
Studies

Focus G 226 144 272 110 263 253 68 306
M 976 218 944 80 664 374 46 382
S 2740 2670 2725 531 1861 1785 440 1727
S|M 65 141 90 38 90 127 10 120
S|G 486 0 1 1 2 1 0 0
G|M 0 3 1 0 1 0 0 3

Polarity P 3325 2868 3510 727 2481 2217 502 2319
N 685 308 532 33 400 323 62 219

Certainty 0 340 315 373 71 244 220 9 198
1 20 31 17 1 9 11 3 5
2 319 319 288 76 187 219 85 280
3 3331 2521 3364 612 2441 2090 467 2055

Evidence E0 319 172 209 39 103 140 61 232
E1 214 197 276 123 113 127 55 202
E2 1 2 1 2 0 2 0 3
E3 2017 2028 2195 553 1669 1551 350 1567
EN 1371 777 1361 43 996 720 98 534

Direction + 488 194 607 121 379 258 41 278
− 389 185 359 75 313 248 59 163
[+|−] 2 2 14 0 1 4 0 1

Study Type VV 1818 93 159 10 996 359 54 14
VT 49 1499 22 396 163 732 0 133
VC 300 46 2620 17 440 534 279 584
V0 1673 1417 1097 233 1125 852 196 585
VN 92 67 77 97 54 27 29 1203
VV|VC 72 5 64 0 95 21 5 1
VV|VT 5 46 2 6 6 15 1 16
VT|VC 1 3 0 1 2 0 0 2

Interaction D0 841 548 1269 291 1048 953 174 2327
 Type DR 1131 857 1321 279 1584 1265 218 201

DD 1871 527 1398 187 155 25 149 5
DE 144 1182 40 2 90 275 19 5
DD|DE 23 162 14 1 4 13 4 0

Mechanism M0 3692 1177 3851 602 2565 1963 526 2334
MI 164 613 69 47 107 315 7 56
MD 55 57 41 36 34 60 9 60
MM 64 880 31 3 90 155 14 16
MT 9 10 4 14 23 0 1 13
MS 1 2 15 33 3 2 0 38
MN 1 4 4 0 0 3 0 1
MA 2 1 10 1 2 0 0 4
MD|MM 2 12 0 0 6 1 0 1
MD|MT 1 0 0 1 1 0 0 0
MD|MI 12 17 1 10 5 18 2 4
MD|MN 0 0 1 0 0 0 0 0
MD|MA 0 0 1 0 0 0 0 0
MD|MS 0 0 0 1 0 0 0 1
MI|MS 0 0 0 5 3 0 0 1
MI|MN 1 1 0 0 0 0 0 0
MI|MT 4 5 3 1 6 0 2 0
MI|MM 2 391 8 1 28 23 3 0
MM|MT 0 2 0 0 2 0 0 0
MM|MN 0 0 0 0 1 0 0 0
MA|MS 0 1 0 0 2 0 0 0
MA|MI 0 0 2 0 0 0 0 0
MS|MT 0 0 0 2 0 0 0 0



its fragmentation. In each dimension, IAAs between a pair of 
annotators and among a group of annotators are calculated in 
Equation (3) and (4), respectively. IAA for each dimension is 
also calculated for eight individual subcategories of abstracts 
defined in Table 2, in which IAA is calculated among all the 
mutually agreed fragments in an abstract subcategory in the 
corpus. 

Results
Drug–interaction corpus
Our DDI corpus consists of 1650 abstracts, of which 900 
discuss DDIs (referred to as DDI) and 750 do not discuss 
DDI (referred to as non-DDI). The positive set included 300 
abstracts each of three types of DDI studies (see descrip-
tions in Table 2): in vivo DDI PK studies, in vitro DDI PK 
studies and clinical DDI studies. The negative set comprised 
five types of studies: in vitro pharmacodynamics (PD) stud-
ies (n = 100); drug–nutrition interaction studies (n = 200); 
single-drug studies (n = 200); clinical case reports (n = 50) and 
nondrug studies (n = 200). We did not include animal stud-
ies. Table 3 summarizes our corpus characteristics and the 
number of fragments within each subcategory of abstracts; 
Table 4 presents the annotation distribution along the eight 
dimensions across the eight study categories.

Inter-annotator agreement on sentence 
fragmentation
IAA was first assessed for the sentence-fragmentation task. 
IAA in fragmentation between any pair of annotators among 
all abstracts was calculated using Equation (2). In the first 
round of annotation, IAA was 0.81, and it increased to 0.92 
in the second round (P < 0.001). Figure 3 shows statistically 
significant improvement in fragmentation agreement for the 
following abstract subcategories: PK DDI in vivo, PK DDI 
in vitro, DDI clinical, PD DDI in vitro, single drug and non-
drug (P < 0.05). Although the improvement in fragmentation 
agreement was not statistically significant for drug–nutrition 
interactions and case reports, their agreements all exceed 0.91 
in the second round of annotations. The fragmentation agree-
ment between any two experienced annotators (EE) (0.92, 
P = 0.003) was higher than that between any novice annotator 
and any experienced annotator (NE) (0.85) in the first round. 
After training, the agreement between two novice annotators 
improved to 0.92 in the second round.

Annotation agreement over the eight annotation 
dimensions
The IAA for the eight annotation dimensions was assessed 
based on the mutually agreed fragmentations. There were 
totally 14 770 mutually agreed fragments in the first round 
and 16 142 fragments in the second round. Figure 4 and 
Table 5 show the IAA during two rounds of annotations. 
In general, IAA was higher in the second round across all 
eight dimensions. The agreement improved significantly in 
seven dimensions: focus (P < 0.001), polarity (P < 0.05), cer-
tainty (P < 0.001), study type (P < 0.001), interaction type 
(P < 0.001) and mechanisms (P < 0.001). Although the agree-
ment increase in direction was not statistically significant 

Figure 3. IAAs in fragmentation for eight abstract subcategories. This figure shows the IAAs (mean ± SEM) of two round annotations for fragmentation 
across eight abstract subcategories. The IAAs of Round 1 are shown as white bars and IAAs of Round 2 are black bars. The asterisk brackets added 
above the bars indicate statistically significant differences. Error bar represents the standard error of mean. The x -axis labels the eight annotation 
dimensions, and y -axis represents the IAA.



Figure 4. IAAs in eight annotation dimensions. This figure shows the IAAs (mean ± SEM) for eight dimensions in Round 1 and 2 annotations. The IAAs 
of Round 1 are shown in white bars and the agreements of Round 2 are black bars. The asterisk brackets added above the bars indicate statistically 
significant differences. Error bar represents the standard error of mean. The x -axis labels the eight annotation dimensions, and y -axis represents the IAA.

Table 5. IAA after two rounds of annotation

IAA First round Second round

Fragmentation 0.82 0.91
Focus 0.79 0.93
Polarity 0.96 0.98
Certainty 0.86 0.96
Evidence 0.71 0.94
Direction 0.92 0.95
Study Type 0.65 0.93
Interaction Type 0.78 0.96
Mechanism 0.9 0.97

(P = 0.053) from the first to the second round, the agreement 
was already very high.

Figure 5 shows in-depth IAA analysis for each of eight 
annotation dimensions among DDI and non-DDI abstract 
subcategories: PK DDI in vivo, PK DDI in vitro, clinical DDI, 
PD DDI in vitro, drug–nutrition, single drug, case reports 
and nondrug. IAAs in Evidence (Figure 5D) and Study Type 
(Figure 5F) were universally improved from the first round 
to the second round among all eight abstract subcategories 
(P < 0.05). Polarity (Figure 5B) and Direction (Figure 5E) 
showed IAA improvement in only two out of eight abstract 
subcategories (P < 0.05) from the first to the second round, 
because their first-round IAAs are relatively high already. 
The other dimensions, such as Focus (Figure 5A), Certainty 
(Figure 5C), Interaction Type (Figure 5G) and Mechanisms 
(Figure 5H), showed IAA improvement in some but not all 
abstract subcategories (P < 0.05).

Inter-annotator agreements between experienced 
and novice annotators
Figure 6 illustrates IAAs between novice and experienced 
annotators (NE) and between two experienced annotators 
(EE) in both rounds. Overall, IAAs universally improved 
from Rounds 1 and 2 among NE and EE annotator pairs 
in fragmentation and eight annotation dimensions. In Round 

1, IAAs of EE were higher than those of NEs in five anno-
tation dimensions, namely, Certainty (P < 0.001), Evidence 
(P < 0.01), Study Type (P < 0.01), Interaction Type (P < 0.001) 
and Mechanism (P < 0.01). For the other three dimensions: 
Focus, Polarity and Direction, EEs had slightly higher IAAs 
than NEs, although not statistically significant. In particular, 
NEs had very low IAAs in Evidence (0.73) and Study Type 
(0.72) during the first round of annotation. In Round 2, NEs 
had IAAs all improved such that their IAAs became almost 
indistinguishable from EE IAAs.

Discussion and conclusion
Our DDI corpus comprises 900 DDI and 750 non-DDI 
abstracts. Each abstract was first broken into text fragments, 
and each text fragment was then further annotated along 
eight dimensions, which included study type, interaction type 
and DDI mechanism as well as focus, polarity, certainty, evi-
dence and directionality. Unlike earlier DDI corpus, our new 
corpus used sentence fragments as its basic annotation unit. 
We also separated our corpus into eight categories of DDI 
or non-DDI abstracts, namely in vitro DDI PK, in vivo DDI 
PK, DDI clinical, drug–nutrition interaction, single drug, no 
drug related, in vitro PD and case report. Although previ-
ous corpora categorized abstracts into DDI and PK categories 
(18–22), the abstracts included in our corpus are further 
categorized, for the first time, into finer categories, namely, 
drug–nutrition, no drug, in vitro PD and case report. In 
addition, our corpus further adds focus, polarity, certainty, 
evidence and directionality.

The most important contribution of our corpus is differ-
entiated DDI evidence in vitro DDI PK, in vivo DDI PK 
and clinical DDI. This will allow future translational DDI 
knowledge gap discovery research, using machine learning 
and artificial intelligence.

To develop a high-quality corpus, seven annotators, 
including three experienced annotators and four novice 
annotators, conducted two rounds of annotations. Novice 
annotators received additional training after the first round 



Figure 5. IAAs in eight annotation dimensions among different abstract subcategories. This figure shows IAAs (mean ± SEM) for each dimension in 
different abstract subcategories. The IAAs of Round 1 are shown as white bars and the IAAs of Round 2 are black bars. The asterisk brackets added 
above the bars indicate statistically significant differences. Error bar represents the standard error of mean. The x -axis labels the eight annotation 
dimensions, and y -axis represents the IAA.

of annotation. Then, in the second round of annotation, 
the novice annotators performed as well as the experienced 
annotators. Agreement in the second round of annotations 
was close between NE annotator pairs and EE annotator 
pairs. IAAs significantly improved in all eight annotation 
dimensions from the first round to the second round, and 
agreement in all dimensions exceeded 92% after the second
round.

In reviewing fragment annotation frequencies reported 
from different abstract types, we notice that some fragments 
or sentences in non-DDI abstracts contain evidence of drug 
interaction, such as DDI and drug–enzyme interaction. This 
creates an additional layer of complexity and a challenge in 
the follow-up retrieval of drug–interaction-related abstracts.

Our DDI corpus can be used by the BioNLP community 
and promote the development of text-mining techniques for 



Figure 6. IAAs between novice and experienced annotators and between two experienced annotators. This figure shows the IAAs (mean ± SEM) 
between novice and experienced annotators (NE) and between two experienced annotators (EE), in fragmentation and eight annotation dimensions.
The IAAs of Round 1 are shown as white bars and Round 2 IAAs are black bars. Error bar represents standard error of mean. The x -axis labels the eight 
annotation dimensions, and y -axis represents the IAA.

the detection of DDI in biomedical text. The corpus described 
in this work, including both the annotated corpus and the 
annotation guidelines, are available at https://github.com/
zha204/DDI-Corpus-Database/tree/master/DDI%20corpus.
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