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Abstract: Metal–organic framework (MOF)-based derivatives are attracting increased interest in
various research fields. In this study, nano-cellulose MOF-derived carbon-doped CuO/Fe3O4

nanocomposites were successfully synthesized via direct calcination of magnetic Cu-BTC MOF
(HKUST-1)/Fe3O4/cellulose microfibril (CMF) composites in air. The morphology, structure,
and porous properties of carbon-doped CuO/Fe3O4 nanocomposites were characterized using SEM,
TEM, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample
magnetometry (VSM). The results show that the as-prepared nanocomposite catalyst is composed of
Fe3O4, CuO, and carbon. Compared to the CuO/Fe3O4 catalyst from HKUST-1/Fe3O4 composite and
CuO from HKUST-1, this carbon-doped CuO/Fe3O4 nanocomposite catalyst shows better catalytic
efficiency in reduction reactions of 4-nitrophenol (4-NP), methylene blue (MB), and methyl orange
(MO) in the presence of NaBH4. The enhanced catalytic performance of carbon-doped CuO/Fe3O4

is attributed to effects of carbon preventing the aggregation of CuO/Fe3O4 and providing high
surface-to-volume ratio and chemical stability. Moreover, this nanocomposite catalyst is readily
recoverable using an external magnet due to its superparamagnetic behavior. The recyclability/reuse
of carbon-doped CuO/Fe3O4 was also investigated.

Keywords: nano-cellulose; MOF; carbon-doped CuO/Fe3O4 nanocatalyst; catalytic reduction;
pollutant remedy

1. Introduction

Recently, metal nanoparticles (NPs) were widely used in the fields of biomedicine and chemical
reactions due to their high selectivity and catalytic efficiency [1–3]. Noble-metal nanoparticles
(gold, silver, etc.) [4–6] and non-noble-metal nanoparticles (copper, zinc, and their oxides, sulfides,
etc.) [7–10] are particularly noticeable. For example, Jiang et al. [11] reported that CuO and Au
domains could greatly improve the photocatalytic activity and stability of Cu2O cubes in the
photocatalytic degradation of methyl orange (MO). Rodríguez et al. [12] reported that potassium
poly(heptazine imide) (PHIK)/Ti-based metal–organic framework (MIL-125-NH2) composites had
superior photocatalytic activity in rhodamine B (RhB) degradation under blue-light irradiation.
Among the applications, metal nanoparticles can also be used for treating wastewater and drinking
water due to their large surface areas and high activity [13,14]. With growing focus on the development
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of cost-effective, efficient catalysts, more attention is being paid to non-noble-metal catalysts, such as
metal-oxide catalysts.

Metal NPs with nanometer-scale dimensions are unstable and tend to aggregate due to their
high surface energy and surface area, which can lead to the loss of catalytic efficiency [15–17].
The concept of immobilization/stabilization of metal NPs onto support/substrates is one of the
effective methods to overcome aggregation of NPs [18,19]. There are many types of substrates/matrices
that can be used to support metal NPs, such as carbon [20,21], silica [22], metal oxide [23],
polymers, etc. [24–26]. Carbon, as a support for metal nanoparticles, provides multiple accessible
channels for diffusion/transport to take advantage of the excellent catalytic functionalities of metal
nanoparticles [27].

In past decades, metal–organic frameworks (MOFs) attracted much attention due to their
porous structures and potential applications in gas storage, molecule separation, chemical sensing,
drug delivery, and catalysis [28–30]. Recently, MOF-based derivative catalysts received more attention
because MOF-derived materials have advantages in terms of tailorable morphologies, hierarchical
porosity, and easy functionalization with other heteroatoms and metal oxides [31,32]. For instance,
Ji et al. used ZIF-67 as a precursor to synthesize a Pt@Co3O4 composite to improve the catalytic activity
of CO oxidation [33]. Yang et al. reported that ZnO nanoparticles prepared via calcination of MOF-5 in
air at 600 ◦C showed excellent photocatalytic degradation of rhodamine B [34]. Niu et al. synthesized
a hybrid catalyst consisting of Cu/Cu2O NPs supported on porous carbon for the catalytic reduction
of 4-nitrophenol (4-NP) using HKUST-1 as a precursor [27].

The direct pyrolysis/thermolysis treatment of MOFs is a simple and controllable method to
prepare various metal oxides in a one-step process. By following it, we can successfully synthesize
carbon-doped CuO/Fe3O4 composite catalysts for organic pollutant reduction. Herein, we prepared
carbon-doped CuO/Fe3O4 composite catalysts via direct calcination of HKUST-1/Fe3O4/CMF
composites under air. We then applied the as-prepared carbon-doped CuO/Fe3O4 composite catalysts
for the catalytic reduction of 4-NP. Its catalytic performance, in comparison with a CuO/Fe3O4

composite from HKUST-1/Fe3O4 composite and CuO, is remarkably better, which is attributed
to the fact that carbon doping can (1) minimize the aggregation of CuO/Fe3O4, (2) provide high
surface-to-volume ratio and chemical stability for the catalyst in contact with the target pollutants,
and (3) enhance the catalytic activity of the CuO/Fe3O4 catalyst. Furthermore, the carbon-doped
CuO/Fe3O4 composite catalyst has excellent efficiency in the reduction of methylene blue (MB) and
methyl orange (MO). The features of the carbon-doped CuO/Fe3O4 composite catalyst are as follows:
CuO acts as the effective catalyst, with the doped carbon having the three functions discussed, and the
magnetic Fe3O4 supports easy reuse/recycling of the catalyst using a magnet.

2. Experimental

2.1. Materials

Cellulose microfibrils (CMF) (~4.0 wt.%) from Cellulose Lab; trimesic acid (H3BTC), copper (II)
acetate monohydrate, ethanol, and hydrochloric acid (HCl, 37%, w/w) from Sigma-Aldrich; methylene
blue, ferric nitrate nonahydrate (Fe(NO3)3·9H2O), ferrous sulfate (FeSO4·7H2O), citric acid anhydrous,
and sodium hydroxide (NaOH, 50%, w/w) from Fisher Scientific were used in this study. All other
chemicals were of analytical grade and used without further purification.

2.2. Synthesis of Magnetic Carbon-Doped CuO/Fe3O4 Nanocomposite Catalyst

Fe3O4/cellulose microfibril (CMF) composites were prepared using chemical co-precipitation of
aqueous ferrous and ferric ions, and the procedures were similar to those described in the literature [35].
CMF (7.5 g, ~4%, w/w) was diluted to 0.3 wt.% with distilled water and stirred for 5 min at
1000 rpm. The diluted CMF suspension was further treated in a sonicator (QSON-ICA) for 5 min to
disperse the individual nanocellulose, followed by heating at 65 ◦C and bubbling with nitrogen for
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10 min under magnetic stirring (500 rpm) to remove the dissolved oxygen from the CMF suspension.
Then, citric acid (1 mg) and diluted HCl solution (1 mL, 2 mol/L) were added to the above solution,
followed by the successive additions of 1.3 mmol Fe(NO3)3·9H2O and 0.65 mmol FeSO4·7H2O solid
samples with nitrogen bubbling and magnetic stirring. The function of citric acid was to protect
the as-prepared Fe3O4 NPs from being oxidized by the dissolving oxygen in water. A dilute NaOH
solution (10 mL, 2 mol/L) was added drop-wise into the above system, followed by bubbling with
nitrogen and magnetic stirring (500 rpm) for 120 min at room temperature. The obtained Fe3O4/CMF
composites (using a magnet) were washed three times with distilled water in a centrifugation step
(4000 rpm, 10 min).

Copper (II) acetate monohydrate was dissolved in distilled water. Fe3O4/CMF nanocomposites
and H3BTC were dispersed in ethanol and then treated in a sonicator (QSON-ICA) for 5 min.
The ethanol solution containing Fe3O4/CMF composite and H3BTC was added to the aqueous system.
The color of the solution changed from light blue to blue-black immediately, and the system was stirred
continuously for 4 h. The final HKUST-1/Fe3O4/CMF composite was washed in a centrifugation step
(4000 rpm, 10 min) with distilled water and absolute ethanol three times. Then, the drying was done at
50 ◦C under vacuum.

The synthesized HKUST-1/Fe3O4/CMF composites were placed in a ceramic boat,
then transferred to a muffle roaster, which was operated under the conditions of 500 ◦C, air atmosphere,
and a heating rate of 20 ◦C/min, before being held at 500 ◦C for 5 h; the procedures were similar to
those described in the literature [36]. After cooling to room temperature, the sample was washed
several times with distilled water and absolute ethanol in a centrifugation step (4000 rpm, 10 min),
and finally dried in a vacuum at 60 ◦C for 5 h.

2.3. Characterization

Transmission electron microscope (TEM) analyses were conducted with a JEOL JEM 2011
transmission electron microscope at 200 kV. Scanning electron microscope (SEM) analyses were
conducted with a JEOL JSM 6400 scanning electron microscope. The powder X-ray diffraction (PXRD)
patterns of the prepared samples were collected using an X-ray diffractometer with Cu-Kα radiation
(40 kV, 30 mA). The patterns were recorded in the region of 2θ from 10◦ to 80◦ with a scan step of
0.02◦. The chemical binding energies of the respective ions in the samples were measured using X-ray
photoelectron spectroscopy (XPS, ESCALa-b220i-XL electron spectrometer, Thermo Fisher Scientific
K-Alpha, UK) under 300-W Al-Kα radiation. The magnetic properties were measured with a vibrating
sample magnetometer (VSM), a physical property measurement system, at 300 K, as a function of the
applied magnetic field between −80 and 80 kOe. The ultraviolet–visible (UV–Vis) diffuse reflectance
data were collected with a UV–Vis spectrophotometer (Evolution 201, Thermo Scientific) equipped
with an integrated sphere.

2.4. Evaluation of Catalytic Performance

The catalytic reduction of 4-nitrophenol (4-NP) using NaBH4 was chosen as the model reaction
for investigating the catalytic performance of magnetic carbon-doped CuO/Fe3O4 nanocomposite
catalysts. Typically, catalytic reduction of a 30-mL 4-NP solution (1 mmol/L) was carried out in a beaker
(100 mL) by continuously stirring at room temperature. Upon the addition of NaBH4 (10 mM) into the
4-NP solution, its color changed immediately from light yellow to dark yellow due to the formation
of 4-nitrophenolate ions (formed from the high alkalinity of NaBH4) [37]. Then, the dark-yellow
color faded with time (due to the conversion of 4-NP to 4-aminophenol (4-AP)) after the addition of
carbon-doped CuO/Fe3O4 nanocomposite catalyst (5 mg) (Scheme 1). UV–Vis adsorption spectra
were recorded using a UV–Vis spectrophotometer in the range of 250–550 nm. When the reaction
completed, the catalyst was easily separated from the solution using an external magnet due to its
good magnetic performance.
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Scheme 1. Catalytic reduction of 4-nitrophenol to 4-aminophenol.

During the degradation process of organic dyes, 30 mL of dye solution (10 mg/L) and NaBH4

(10 mM) were mixed in a beaker (100 mL) by continuously stirring at room temperature. Then, 5 mg of
carbon-doped CuO/Fe3O4 nanocomposite catalyst was added to the reaction system, and the catalytic
process was monitored using the UV–Vis spectrophotometer. When the reaction ended, the catalyst
was readily separated from the solution using an external magnet.

3. Results and Discussion

3.1. Structure and Morphological Characterization

MOFs can be readily converted to metal-oxide composites, which take advantage of their original
morphology and porosity. The as-prepared HKUST-1, HKUST-1/Fe3O4, and HKUST-1/Fe3O4/CMF
composite samples were then calcinated to obtain the nanoporous metal-oxide particles, generating
nanoporous CuO, CuO/Fe3O4, and carbon-doped CuO/Fe3O4 composite catalysts, respectively.
Pyrolysis/thermolysis of HKUST-1/Fe3O4/CMF composites led to the formation of porous
carbon-doped CuO/Fe3O4 composites.

The size and the morphology of the synthesized materials were investigated using a transmission
electron microscope (TEM) and scanning electron microscope (SEM). Figure 1 shows the SEM and
TEM images of HKUST-1/Fe3O4/CMF composites and carbon-doped CuO/Fe3O4 composites after
calcination in air. HKUST-1 crystals and Fe3O4 nanoparticles were uniformly loaded onto the surface
of CMF (Figure 1). The nanocellulose MOF-derived porous carbon-doped CuO/Fe3O4 composite was
then obtained through a calcination process under air at 500 ◦C for 5 h. The Brunauer–Emmett–Teller
surface area (SBET) of the carbon-doped CuO/Fe3O4 sample was 38.7 m2/g, which was much higher
than that of the CuO/Fe3O4 sample (0.042 m2/g) obtained from the calcination of HKUST-1/Fe3O4.
The resultant carbon-doped CuO/Fe3O4 composite inherited largely the original porous morphology
of HKUST-1. Based on the mapping images, the conclusion was that both Cu and Fe elements dispersed
well in the carbon-doped CuO/Fe3O4 composite catalyst.

XPS analysis was employed to investigate the elemental composition on the surface of different
composites. For the XPS spectrum of carbon-doped CuO/Fe3O4 composite catalyst (Figure 2a),
the main peaks were C1s, O1s, Fe2p, and Cu2p, centered at around 285 eV, 530 eV, 720 eV, and 930 eV,
respectively. The C1s XPS pattern of the sample is shown in Figure 2b. The spectrum contains two peaks
at 285 eV and 288.5 eV, which may be attributed to carbon (sp2 hybridization) in the sample, and the
Cu–O–C bonds or Fe–O–C bonds, respectively. Figure 2c shows the Cu2p core-level XPS spectrum of
the composite catalyst. The Cu2p1 and Cu2p3 binding energies for the composite catalyst were 952.8
and 932.7 eV, respectively, indicating the presence of CuO in the composite catalyst. Similar results
were reported in the literature [38,39]. The Fe2p3 and Fe2p1 binding energies (Figure 2d) for the
composite catalyst were 710.7 and 725.4 eV, respectively, which agrees with published results [35,40],
confirming the presence of Fe3O4 in the composite catalyst.
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Figure 2. (a) High-resolution X-ray photoelectron spectroscopy (XPS) survey spectra of the
carbon-doped CuO/Fe3O4 composite catalysts. (b) High-resolution XPS scans over C1s peaks of
the carbon-doped CuO/Fe3O4 composite catalysts. (c) High-resolution XPS scans over Cu2p peaks
of carbon-doped CuO/Fe3O4 composite catalysts. (d) High-resolution XPS scans over Fe2p peaks of
carbon-doped CuO/Fe3O4 composite catalysts.
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The crystalline nature and the composition of the as-synthesized products were characterized
using PXRD. The crystalline phases of CuO, such as (110), (11-1), (111), (20-2), (020), (202), (11-3), (31-1),
and (220) are shown in Figure 3a, which are consistent with those reported in the literature [41,42].
These results support the conclusion that HKUST-1 was transformed into CuO via calcination under
the present conditions. In the XRD pattern of carbon-doped CuO/Fe3O4 composite, the diffraction
peaks and relative intensities were indexed to Fe3O4 (JCPD NO. 19-0629) and CuO (JCPD NO. 05-0661).
This indicates that CuO and Fe3O4 were both obtained via calcining HKUST-1/Fe3O4/CMF composites
under air. No other C-related impurity peaks were detected; a similar result was reported in the
previous research [43].
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Figure 3. (a) Powder X-ray diffraction (PXRD) patterns of carbon-doped Fe3O4/CuO composite
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The magnetic behavior of the carbon-doped Fe3O4/CuO composite catalyst sample was evaluated
at 300 K. Its magnetization saturation value (Ms) was 15.1 emu·g−1, suggesting a good magnetic
property (Figure 3b). Thus, the magnetic carbon-doped Fe3O4/CuO composite catalyst could be
readily separated from the reaction system using a magnet for the recycling process.

3.2. Catalytic Reduction

In this study, we investigated the application of carbon-doped CuO/Fe3O4 composite catalysts
for the catalytic reduction of 4-nitrophenol. In Figure 4a, the results are shown for the catalytic
reduction of 4-NP to 4-AP in the presence of NaBH4 and carbon-doped CuO/Fe3O4 composite
catalysts. The reduction process was followed based on the UV–Vis spectrophotometry. It shows that
the absorbance at 400 nm (4-NP) decreased gradually as a function of time, while the absorbance at
290 nm (due to 4-AP) increased, confirming the catalytic reduction of 4-NP to 4-AP [44]. The catalytic
reduction was almost complete within 10 min at room temperature, and the color of the solution
changed from yellow to colorless. Similar results were also reported in the literature; Bordbar et al. [45]
found that, using CuO/ZnO nanocomposites, catalytic reduction of 4-NP to 4-AP (using NaBH4 as the
reducing agent) was completed in several minutes.

The kinetics of calcined CMF, CuO, CuO/Fe3O4, and carbon-doped CuO/Fe3O4 composites
are shown in Figure 4b. In the absence of catalyst, the reduction of 4-NP by NaBH4 was negligible.
In each case, the pseudo-first-order kinetic prevailed. The calcined CMF also had a negligible effect on
the reduction of 4-NP. The rate constants (k) for CuO, CuO/Fe3O4, and carbon-doped CuO/Fe3O4

composite samples were 1.3 × 10−3 s−1, 3.6 × 10−3 s−1 and 6.5 × 10−3 s−1, respectively. In the case
of CuO, the catalytic activity was the lowest due to the aggregation of CuO nanoparticles, while the
catalytic efficiency of carbon-doped CuO/Fe3O4 composites was much better than that of CuO/Fe3O4,
demonstrating that carbon doping is effective for enhancing the catalytic activity of the catalysts.

The catalytic reduction of 4-NP by NaBH4 using metal-oxide nanoparticles (CuO) has
two steps [46]: (1) borohydride ions are adsorbed onto the nanoparticle surface, forming active
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surface-hydrogen, while 4-NP is also adsorbed onto the nanoparticle surface; (2) active hydrogen
attacks the positively charged nitrogen in the nitro group of 4-NP, followed by the addition of two
hydrogen atoms, producing 4-AP.
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Cationic and anionic organic dyes were chosen to further investigate the catalytic properties of
carbon-doped CuO/Fe3O4 composite catalyst. As shown in Figure 5a, for cationic dye (methylene blue),
in the presence of NaBH4 and carbon-doped CuO/Fe3O4 composite catalyst, the absorbance at 660 nm
(MB) gradually decreased as a function of time; furthermore, the catalytic reduction was completed
within 6 min at room temperature (the color of the solution was colorless).

The results from methyl orange (an anionic dye) are shown in Figure 5c. Under otherwise the
same conditions, the color change (from orange to colorless) was slower than that for MB (Figure 5a,
from blue to colorless). The pseudo-first-order rate law was also valid here (Figure 5d). For the
carbon-doped CuO/Fe3O4 composite catalyst, the rate constant (k) was 2.4 × 10−3 s−1 for MO, while it
was 12.9 × 10−3 s−1 for MB.

We compared the catalytic performance of the carbon-doped CuO/Fe3O4 composite catalyst
for the reduction of 4-NP, MB, and MO, with other related ones from the literature (Table 1).
As shown, the carbon-doped CuO/Fe3O4 composite catalyst showed much improved results, and the
pseudo-first-order rate constant (k) for the nanocomposite catalyst from the present study was indeed
consistently higher than that reported in the literature. The improved results may be attributed to the
unique original morphologies associated with HKUST-1.

Table 1. Comparison of the catalytic performance for the reduction of 4-nitrophenol, methylene blue
(MB), and methyl orange (MO) using the carbon-doped CuO/Fe3O4 composite catalyst and other
reported catalysts in the literature. NP—nanoparticle.

Pollutant Samples Concentration of Pollutant Time (min) k (s−1) Reference

4-Nitrophenol Agnp-PSAC 0.02 mM 25 3.9 × 10−3 [47]
CF-AuNPs 1 mM 11 0.17 × 10−3 [48]

CuO 0.1 mM 32 5.8 × 10−3 [49]
CuO/Fe3O4/C 1 mM 10 6.5 × 10−3 This work

Methylene Blue Au/Fe3O4@C 0.01 mM 10 5.5 × 10−3 [50]
AuNPs 1 mM 9 4.0 × 10−3 [51]

Fe3O4@polydopamine-Ag 0.1 mM - 7.2 × 10−3 [52]
CuO/Fe3O4/C 0.03 mM 6 12.9 × 10−3 This work

Methyl Orange Ag–γ-Fe2O3 0.3 mM 30 1.53 × 10−3 [53]
Ag-CuO 0.006 mM 120 0.3 × 10−3 [54]
Ag@Fe 0.1 mM 14 1.6 × 10−3 [55]

CuO/Fe3O4/C 0.03 mM 25 2.4 × 10−3 This work
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Figure 5. (a) Time-dependent UV–Vis absorption spectra of methylene blue (MB) with the carbon-doped
CuO/Fe3O4 composite catalyst in the presence of NaBH4; (b) the corresponding first-order kinetic plot
(absorbance at 660 nm, ln(At/A0)) versus reaction time for the reduction of MB; At and A0 represent
the absorbance of MB (660 nm) at designated time t and t = 0, respectively; (c) time-dependent UV–Vis
absorption spectra of methyl orange (MO) with the carbon-doped CuO/Fe3O4 composite catalyst in
the presence of NaBH4; (d) the corresponding first-order kinetic plot (absorbance at 460 nm, ln(At/A0))
versus reaction time for the reduction of MO; At and A0 represent the absorbance of MO (460 nm) at
designated time t and t = 0, respectively.

From the viewpoint of practical application, the recycling/reuse of the catalyst is of critical
importance. In the present study, after the catalytic degradation experiments, the magnetic
carbon-doped CuO/Fe3O4 composite catalyst was readily separated from the reaction system using
an external magnet. The used catalysts were collected, and rinsed with distilled water several times.
After a thorough washing process, the recovered magnetic catalyst was reused in the subsequent run
of catalytic reduction of 4-NP under identical conditions, and the same process was repeated five
times. The results are shown in Figure 6. The catalytic performance of the magnetic carbon-doped
CuO/Fe3O4 composite catalyst decreased only slightly (the 4-NP reduction ratio decreased from 100%
to 96%) after five cycles. Similar results were obtained in the reuse/recycling experiments of the
as-prepared magnetic carbon-doped CuO/Fe3O4 composite catalyst during the catalytic reduction of
MB and MO. Therefore, the as-prepared magnetic carbon-doped CuO/Fe3O4 composite catalyst is a
promising system for practical applications.
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4. Conclusion 

In this study, a nano-cellulose/MOF-derived carbon-doped CuO/Fe3O4 composite catalyst was 
successfully fabricated through pyrolysis/thermolysis of the HKUST-1/Fe3O4/CMF composite. The 
resultant carbon-doped CuO/Fe3O4 composite catalyst took advantage of the original porous 
morphology of HKUST-1; consequently, the carbon-doped CuO/Fe3O4 composite catalyst exhibited 
high catalytic activity for the reduction of 4-NP and organic dyes (MB and MO). In addition, the 
carbon-doped CuO/Fe3O4 composite catalyst showed good reusability/recyclability after five cycles. 
Notably, this strategy can be extended to the preparation of other functional MOF-based derivatives. 
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4. Conclusions

In this study, a nano-cellulose/MOF-derived carbon-doped CuO/Fe3O4 composite catalyst
was successfully fabricated through pyrolysis/thermolysis of the HKUST-1/Fe3O4/CMF composite.
The resultant carbon-doped CuO/Fe3O4 composite catalyst took advantage of the original porous
morphology of HKUST-1; consequently, the carbon-doped CuO/Fe3O4 composite catalyst exhibited
high catalytic activity for the reduction of 4-NP and organic dyes (MB and MO). In addition,
the carbon-doped CuO/Fe3O4 composite catalyst showed good reusability/recyclability after
five cycles. Notably, this strategy can be extended to the preparation of other functional
MOF-based derivatives.
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