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ABSTRACT

The chromosome of Escherichia coli is riddled with
multi-faceted complexity. The emergence of chromo-
some conformation capture techniques are provid-
ing newer ways to explore chromosome organiza-
tion. Here we combine a beads-on-a-spring polymer-
based framework with recently reported Hi–C data
for E. coli chromosome, in rich growth condition,
to develop a comprehensive model of its chromo-
some at 5 kb resolution. The investigation focuses
on a range of diverse chromosome architectures of
E. coli at various replication states corresponding
to a collection of cells, individually present in dif-
ferent stages of cell cycle. The Hi–C data-integrated
model captures the self-organization of E. coli chro-
mosome into multiple macrodomains within a ring-
like architecture. The model demonstrates that the
position of oriC is dependent on architecture and
replication state of chromosomes. The distance pro-
files extracted from the model reconcile fluorescence
microscopy and DNA-recombination assay experi-
ments. Investigations into writhe of the chromosome
model reveal that it adopts helix-like conformation
with no net chirality, earlier hypothesized in experi-
ments. A genome-wide radius of gyration map cap-
tures multiple chromosomal interaction domains and
identifies the precise locations of rrn operons in the
chromosome. We show that a model devoid of Hi–C
encoded information would fail to recapitulate most
genomic features unique to E. coli.

INTRODUCTION

The folding of the 4.64 Mb circular chromosome, with a
contour length of 1.6 mm, inside 2-4 �m long spherocylin-
drical cell (1,2) of Escherichia coli (∼1.5 �m3 in volume)
is a complex process, mediated by numerous factors and
cues. Several decades’ investigations on chromosomal DNA

of E. coli have rendered a picture of a highly condensed
form called the nucleoid which is a dynamic macromolecu-
lar complex of the genetic material and nucleoid associated
proteins (NAPs) along with proteins such as RNA poly-
merases (RNAP) (3). The multitude of experiments on E.
coli chromosome have highlighted a ring-like architecture
of nucleoid whose organization results from a combination
of processes including DNA supercoiling (4), nucleotide as-
sociated proteins (NAPs)-induced condensation of DNA
(5), crowding and non-equilibrium processes like transcrip-
tion (3). In rapidly growing E. coli cells, nucleoid is severely
compacted at the centre of cytoplasm with ribosomes being
strongly concentrated at the periphery of the nucleoid (6).
The multiscale organization underlying the E. coli nucleoid
is only slowly getting recognized.

A set of classic experiments, including fluorescence mi-
croscopy (7,8) and site-specific recombination assays (9)
had indicated spatial proximity and increased interactions
among genetically distant DNA sites, giving birth to the
idea of organization into a ring-like chromosomal archi-
tecture comprised of four large macrodomains, namely
Ori (O), Ter (T), Left (L), Right (R) and two Non-
Structured regions––Right (NS-R) and Left (NS-L). These
macrodomains are considered to be spatially segregated
from each other (7,8). Another investigation via fluores-
cence labeling of the genetic loci had proposed a model in
which E. coli nucleoid displays a linear order of the loci dis-
tribution along the axial dimension of spherocylinder (10).
More intriguingly, recent experimental studies brought into
light the helical folding of the chromosome (11–14). In par-
ticular, it was found that the circular chromosome twists
along the long axis to form a helix like, achiral conforma-
tion.

The complexity underlying bacterial chromosome has
motivated a series of computer simulation studies and mod-
els to describe the architecture of E. coli chromosome. Some
of them are based on coarse-grained models (6,15–17),
while others used a more fine-grained approach for bacte-
ria with base pair or approaching base-pair resolutions (18–
21). While these models significantly contribute to our cur-
rent understanding on E. coli chromosome, most of these
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models are phenomenological in nature and lack attempts
in integrating experimental data.

In the first data driven model for E. coli chromosome,
ChIP-chip data for RNAP was integrated into a fine grained
polymer model (22). On the other hand, the emergence of
high resolution chromosome conformation capture data in
bacterial cells (23–26) has helped detect the interaction fre-
quency between any two genomic loci in the whole genome
of an organism and build data-informed models of bacte-
rial chromosomes. Hi–C has the unique ability to deter-
mine the interaction frequency map of whole genome of an
organism at high resolution (27). The ensemble nature of
the resulting contact frequency matrices automatically in-
corporate the inherent stochasticity of the chromosome’s
interactions. Using Hi–C and super-resolution microscopic
imaging the 3D chromosome conformation of Mycoplasma
pneumoniae was determined (26). Similarly, experimentally-
restrained whole-chromosome models for Caulobacter cre-
sentus had earlier been reported by Umbarger et al. (28),
Le et al. (25) and Yildirim et al. (29). All of the above data
driven approaches show that with emerging experimental
techniques, one can enrich a computational model via in-
tegrating it with experimental data. Such theoretical stud-
ies can introduce specificity such as macrodomain forma-
tion, their locations and relative sizes for a bacterium into
its model(s).

An early attempt at deducing the chromosome contact
maps for E. coli was reported by Cagliero et al. (23) at a
resolution of 20 kb. In this regard, the most recent report
of 5 kb resolution Hi–C interaction maps of E. coli chro-
mosome has been a key breakthrough (24). It brings out
the salient features of the multiscale organization underly-
ing the E. coli chromosome architecture. It also opens up
promising opportunities for developing higher resolution
and quantitative model for the same. In the current work,
we present computer simulations of the E. coli chromosome
by integrating beads-on-a-spring polymer model with re-
cently reported Hi–C interaction matrix of E. coli chromo-
some (24). The Hi–C interaction maps are considered to
be obtained from experiments involving a large ensemble
of cells in nutrient rich condition (LB media, 37◦C), each
constituted of chromosome(s) at diverse replication stages
in their respective phase of cell cycle. Accordingly, to ac-
count for the variability in the number of chromosomes
and the amount of DNA present in a cell due to replica-
tion in rich growth condition in our model, we consider
multiple distinct chromosomal architectures representative
of different replication stages. As would be detailed in the
article, the chromosome models of E. coli, developed at a
5 kb resolution, introduce replication forks or arms com-
mensurate with the specific replication stage, unify multi-
ple existing hypothesis related to E. coli chromosome’s ar-
chitecture and demonstrates long-range organization into
multiple macrodomains. In addition, the presented Hi–C
integrated chromosome model unifies a wide array of inde-
pendent experimental data such as fluorescence microscopy
data (7), recombination assay (9) and precedent simula-
tions. As would be revealed in the text that follows, the
model vividly manifests the multiscale and multi-faceted or-
ganization of a replicating bacterial chromosome, namely a

helical, macro-domain separated morphology and the CID
boundaries in the vicinity of rRNA operons (22).

MATERIALS AND METHODS

Figure 1 outlines the schematic of the integrative method
used in the current work to generate the chromosome struc-
tures via combination of beads-on-a-spring model and Hi–
C contact matrices. Below we detail different segments of
the methods employed in the current work.

Hi–C data processing

We used the data made available by Lioy et al. (24) with the
GEO accession number GSE107301. SRA (Sequence Read
Archive) files were splitted into both reads of pair-end se-
quences using fastq-dump. We used hiclib python library
(https://bitbucket.org/mirnylab/hiclib) provided by Leonid
Mirny’s group for further processing of the fastqs. Using
hiclib, iterative mapping was performed with a minimum
sequence length of 20 bp and a step length of 5 bp. Align-
ment reads were saved in BAM (Binary Alignment Map)
files and processed according to 5 kb resolution and fil-
tered using hiclib default fragment level filtering functions,
namely: duplicates, large, extreme, dangling ends, etc. and
they were binned into 928 bins according to 5 kb resolution.
Further bin level filtering was performed to remove low cov-
erage bins, bins with only small area sequenced and diago-
nal and adjacent to diagonals bins. Then the raw matrix was
extracted using h5py python library from HDF5 file gener-
ated by hiclib library, we also set the two extreme elements
on the off-diagonal of the matrix to zero, since they also
are reads from adjacent regions of the chromosome, due to
the chromosome being circular. The matrix is then normal-
ized by using sequential component normalization (SCN)
(30) in which, first all the column vectors were normalized
to one using euclidian norm followed by each row vector
and the whole process was iterated until the matrix become
symmetric again (three iterations in our case). The normal-
ized matrix is converted to a contact probability matrix by
dividing each row by its maximum value (31) followed by a
resymmetrization of the matrix (Figure 1A).

Model details and interaction potentials

Hi–C measurements involve a large ensemble of cells with
chromosomes at diverse replication stages in their respective
cell cycle. While in nutrient rich growth condition (LB me-
dia at 37◦C), the cells would predominantly have two par-
tially replicated chromosomes coexisting in the cell interior,
there also would be simultaneous occurrence of chromo-
somes at other possible replication stages in diverse cells
present in different phases of cell cycle. Specifically, we
model three representative chromosomal architectures con-
fined within a spherocylindrical cell (see SI Methods section
1.1 and Supplementary Figures S1–S3): non replicated sin-
gle chromosome (G = 1.0), partially replicated single chro-
mosome (G = 1.8) and partially replicated a pair of chro-
mosomes (G = 3.6), with the topology of each architectures
taken from the data compiled by Bremer and Dennis (32).

http://https://bitbucket.org/mirnylab/hiclib
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Figure 1. A schematic of the method used to generate an ensemble of final chromosome structures. (A) Contact probability matrix from Hi–C experiment.
(B) Expanded section of the matrix. (C) The experimental contact probabilities are mapped onto bond distances and bond strengths. dij is the initial
distance between particles i and j. With Hi–C incorporated as harmonic restraints, the polymer is energy minimized along with the confining potential. (D)
The energy minimized conformation is subjected first to molecular dynamics, then stochastic dynamics. (E) From the trajectory obtained via the stochastic
dynamics, 200 snapshots were extracted at equal intervals from the last 1000 frames to get 200 initial conformations. (F) The initial conformations are
subjected to another stochastic dynamics to obtain an ensemble of conformations. (G) The inter-particle distances obtained from the last 2000 frames of
the 200 trajectories (2000 × 200) are used to calculate a simulated Hi–C contact probability matrix. (H) The simulated Hi–C contact probability is filtered
and compared with the experimental matrix to validate the model.

Supplementary Figures S2 and S3 provide schematics of
the topology of each chromosomal architecture employed
in the current work. The amount of DNA present is de-
noted by the G value of the cell. G = 1.0 means that there is
one single unreplicated chromosome present. Thus the total
amount of DNA in a cell will be G × 4.64 × 106 bp. For ease
of explanation, we hereby define ‘backbone’ as the 4.64 Mb
of the total DNA in the cell from which the rest of the DNA
has replicated. The extent of partial replication is modeled
by introducing replication fork following Bremer and Den-
nis (32) (see description in SI Methods section 1.2). We com-
pute the Hi–C interaction map as an ensemble-average of
that obtained from each of three chromosomal architecture.
We modeled the E. coli chromosome(s) as a beads-on-spring
polymer(s) with each bead representing a 5 × 103 bp (i.e.
5 kb) nucleotides, which is the resolution of Hi–C interac-
tion maps. The number of beads present in the system is
G × 928 (G × 4.64 × 106 bp/5 kb). The 5 kb nucleotides
are indexed and annotated as per the genetic sequence of
wild type E. coli MG1655 (GenBank ID: U00096.2) and
modeled as non-overlapping van der Waals particles. The
polymer beads are subjected to a spherocyllindrical con-

finement (see SI Methods section 1.3.1) commensurate with
average dimension of E. coli at 37◦C in LB media (axial
length (including end-caps) of 2.482 �m and the diameter of
0.933 �m (1)) (See Supplementary Figure S1). As detailed
in the SI Methods 1.1, based on an approximate volume
fraction of the chromosome of 0.15 (33) (with respect to
cell volume) and the spherocylindrical confinement dimen-
sions, the individual bead diameter (�) was determined to
be 50.286 nm. All non-adjacent beads of the polymer, in-
cluding those connected by Hi–C bonds, have been allowed
to interact with each other via a purely repulsive potential
Vnb(r ) = A

r12 , where A = 4��12. For the simulations, A = 1.0
kJ mol−1 �12 has been used (see SI Methods section 1.3.2).

ki j = k0e− (Di j −σ )2

w (1)

Adjacent beads of the polymer(s) are connected by strong
(300 kJ mol−1�−2) harmonic springs with � as the equilib-
rium bond length. Hi–C contacts are also modeled as har-
monic springs but with distance–dependent force constants
and probability-dependent bond lengths (Figure 1B). Here
it should be noted that beads belonging to a replication fork
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have Hi–C restraints present only among beads of that same
fork. Beads from two different replication forks are not con-
nected via any Hi–C restraints. The same assumption has
been applied for inter chromosome Hi–C interactions, i.e.
two independent replicated chromosomes do not have any
Hi–C interactions between them. For beads present in repli-
cation forks, we mapped them to their corresponding bead
in the ‘backbone’. To calculate Hi–C interactions among
the beads of a fork, we used the indices of the backbone
beads to which the fork beads have been mapped and cal-
culated their respective Hi–C distances and bond strengths
are per Equations (1) and (2). For multiple chromosomes
coexisting together, we have defined the interaction among
the fork beads in the manner stated above individually for
each chromosome (polymer).

For Hi–C contact probability matrix P, we define the dis-
tance matrix, D as

Di j = σ

Pi j
(2)

where ij suggests the element in the ith row and jth column
of the matrices. The restraining potential between a pair of
Hi–C contacts at a separation of rij is given by VHiC(ri j ) =
1
2 ki j (Di j − ri j )2. It should be noted that the matrix P is a
sparse matrix with large number of the probability matrix
elements being close to zero. Therefore a lot of the elements
in D would be close to ∞. To take this into account, in our
simulations, the force constants for the bonds incorporating
the Hi–C contacts have been modeled as a gaussian func-
tion of the Hi–C distances (Equation 1) (as represented in
Figure 1B and C). It should be noted that the choice of us-
ing Equation (1) is not arbitrary. For G = 1.0, we have also
explored another possible equation (Supplementary Equa-
tion S1) in place of Equation (1) (see SI Methods section
1.3.3), but we found Equation (1) to be a better function for
modeling (see SI Methods section 1.3.3 and Supplementary
Figures S4– S6 for details).

Here, k0 is an amplitude term that determines the upper
limit to the force constants of the ‘Hi–C bonds’. This func-
tion essentially implies weaker values of force constant for
larger distances. This function naturally takes VHiC(Dij) = 0
for Dij = ∞. In Supplementary Equation (S1) in SI Meth-
ods section 1.3.3 and Supplementary Figure S7, k0 and w
are parameters that need to be optimized (see SI Methods
section 1.4 and Supplementary Table S1). The metric used
to optimize w is a Pearson correlation coefficient between
the experimental and the filtered simulated contact prob-
ability matrices. Generation and filtering of simulated con-
tact probability matrices has been performed as explained in
SI Methods section 1.5 and 1.6. The protocol for comparing
matrices has been described in SI Methods section 1.7. To
speed up simulations, we did not harmonically restrain the
specific ‘Hi–C bonds’ whose force constants are lower than
10−6 kJ mol−1�−2 which correspond to gene pairs with con-
tact probabilities lower than 0.33. Such bonds are very weak
and do not impact the conformation(s) of the chromosome
significantly. To implement the effect of spherocylindrical
confinement induced by a E. coli cell, a restraining poten-

tial (Equation 3) has been used

Vres(r ; R0) = 1
2

kres |�r − �R0|2 H(|�r − �R0|) (3)

H is a step function and gets activated only if any chromo-
some bead attempts to get out of the spherocylindrical con-
finement. R0 is the center of the spherocylinder. kres deter-
mines extent of elasticity of the cell boundary. For simula-
tions, we have used 310 kJ mol−1�−2.

Simulation details

All simulations are performed using the open source pack-
age GROMACS 5.0.7 (34). The source code of the program
was modified by us to implement the interaction poten-
tial function of the spherocylindrical confinement. All other
bonded and non-bonded interaction potentials were intro-
duced by using default GROMACS utilities. To prepare the
initial configurations, we used appropriate ring like topolo-
gies for three different values of G (1.0, 1.8, 3.6) (Supple-
mentary Figures S2 and S3), as provided by the database of
Bremer and Dennis (32). We energy minimized the topolo-
gies followed by 2 × 106 step long molecular dynamics and
another 2 × 106 steps of stochastic dynamics (SD) (35).
Then 200 snapshots were extracted from the last 1000 steps
of the SD trajectory at equal intervals to obtain 200 inde-
pendent initial configurations (see SI Methods section 1.8).
Each of the 200 initial configurations were independently
subjected to stochastic dynamics in NVT ensemble (Figure
1e and f). The temperature of the system was maintained
using Langevin thermostat at 310K, corresponding to good
growth condition of the bacteria. The time step for equili-
bration or production run is 0.001 tred (see SI Methods sec-
tion 1.9 for units). Each of the 200 simulations has been run
for 2.5 × 106 steps within which the system reached equili-
bration properly (Supplementary Figure S8). For all simu-
lations, we saved the coordinates of the system at an interval
of 1000 steps. Thus the number of configurations saved for
each simulation will be steps

1000 , giving rise to 2500 frames from
each of the 200 simulation trajectories. The time taken to
simulate a single trajectory of 2× 106 steps for G = 3.6 on a
modest workstation (one single core of an Intel i5-8600K @
3.6 GHz) took approximately only 1 h, suggesting a time-
efficient protocol. The last 2000 frames from each trajectory
(hence a total of 200 × 2000 frames) have been used for fur-
ther analysis.

RESULTS AND DISCUSSION

Simulations reconstruct experimental Hi–C data

For E. coli in LB media at 37◦C, corresponding to rapidly
growing cell, the chromosome undergoes multiple rounds of
replication before cell division. As mentioned in SI Meth-
ods section 1.2, we use a parameter called the G value of
the chromosome to indicate the extent of replication of the
chromosome (32). It is a ratio of the total DNA present
in a given chromosome to the amount of DNA present in
a non-replicated chromosome. In rapidly dividing cells, a
distribution of G values is present in an ensemble of cells.
To simulate a representative ensemble, we consider three
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distinct cases of G: G = 1.0 (non-replicated chromosome),
G = 1.8 (partially replicated single chromosome) and G =
3.6 (partially replicated twin chromosomes).

To verify our model, we first compare the simulated Hi–C
contact probability map, which has been averaged over con-
tact probability matrices obtained individually for G = 3.6,
1.8, 1.0, with the experimentally obtained contact probabil-
ity map. Figure 2A and B compare the experimental Hi–
C contact probability matrix of E. coli chromosome with
that obtained from our simulations, respectively. A single
intense diagonal indicates a smaller distance with a higher
contact probability between neighbouring chromosomal re-
gions. Absence of a secondary diagonal in the Hi–C inter-
action matrix reflects the lack of contacts between the two
replication arms of the chromosome. A characteristic fea-
ture of prokaryotic chromosome is its circularity. High con-
tact probabilities at the end regions of the Hi–C interaction
matrix in Figure 2B (left most upper and right most lower
corner) assure circularity of the chromosome in the current
model as well.

A Pearson correlation coefficient of 0.88 between exper-
imental and simulated probability matrix indicates a very
good agreement between simulated and in-vivo chromo-
some conformations. For a direct comparison, we also plot-
ted the heatmap of the difference between the experimental
and simulation-derived contact probability matrices (Fig-
ure 2C and the resulting histogram of absolute values from
the difference heatmap (Figure 2D). The difference heatmap
shows that for smaller genomic distances (i.e. bins near
the diagonal) the contact probability is relatively higher in
experimental matrix (blue regions). This can happen due
to the inter-bead, repulsive, non-bonded potential we have
used in our model to reduce chances of significant overlaps
between beads. In practice, the nearby 5 kb regions of the
chromosome may have higher overlaps among them than
what we are estimating using our model. However, the dis-
tribution of absolute values of the difference heatmap in
Figure 2D shows that the disagreement between experiment
and simulation is considerably small as the major difference
is <0.1, suggesting that there is reasonably a good corre-
spondence between experimental and simulated Hi–C ma-
trices, considering that there is also the presence of complex
architecture involving replication fork. Thus our model is
robust for three-dimensional reconstruction of the E. coli
bacterial chromosome and can be explored for investigating
and predicting key features of the chromosome at multiple
length-scales.

As would be discussed in the rest of the article, we zoom
into the details of chromosome conformations at different
replication stages, with emphasis on G = 3.6.

Chromosome conformations for G = 3.6

Figure 3A is a schematic of the topology of the chromo-
somes for G = 3.6. For G = 3.6 (32), we used two polymer
chains each having 1672 beads (Figure 3A) (see SI Methods
section 1.2 for calculation of number of beads). Each poly-
mer chain has four OriCs and four replication forks. Thus, a
total of eight OriCs(magenta) and two difs (black) (Figure
3B) are present inside the cell. Figure 3B is a representa-
tive configuration of the E. coli chromosome. It has been

selected based on the closeness of the contact probability
matrix averaged over the last 2000 frames of this trajectory
to the experimental matrix. We can see that the two chro-
mosomes have occupied each half of the cell and it is evi-
dent from the non-overlapping density profiles that both the
chromosomes are mutually well segregated along the long
axis of the cell. (Figure 3C and Supplementary Figure S9).

Multiple experimental investigations involving E. coli
chromosome have, in the past, proposed the existence of
a set of macrodomains in its genome (7–9). Accordingly,
in our model, we have color-coded the beads as per the
annotation of proposed genetic sequences of chromosome
macrodomains. We find that in each of the chromosomes,
the four macrodomains and the two non-structured regions
have been segregated along the long axis. This can also be in-
ferred from the average densities of the macrodomains and
the non-structured regions, shown in Figure 3D. Overall,
we find a symmetrical orientation of the MDs in their re-
spective cell halves about the mid-cell (denoted by the black
dashed line in Figure 3D) with Ori MDs oriented toward
poles and Ter located at mid-cell. Specifically, we observed
that in our model, a macrodomain organization following
a O1R1L1T1–T2L2R2O2 pattern has a higher probability
of occurrence, apart from possibilities of other sequences
of ordering of the macrodomains (Supplementary Figure
S10). While the model captures the self-organized macro
domains, the specific sequence of organization of these
macrodomains found in the current model, differs slightly
from L1R1L2R2 sequence of organization, which was re-
ported in some experiments as the key sequence of organi-
zation of macrodomain (36,37). However, there is precedent
report of a secondary population of organization having
mirror-symmetric sequence order R1L1L2R2 by Wang and
coworkers (36), which coincides with the prediction from
current model. Any difference between the current model
and the precedent report might arise from the dynamical
nature of our model and lack of presence of other key com-
ponents such as NAPs in the current model. Nonetheless,
the features shown by a physics-based model, which only in-
corporates Hi–C restraints at a 5 kb resolution, is promising
and the introduction of replication arms make this model
more realistic. We also observe that the oriCs have local-
ized themselves at the poles of the cells. This is an important
event as just before cell division, which probably is the case
for G = 3.6, oriCs orient themselves toward the poles (38)
which our model recovered properly and will be discussed
in details in the upcoming sections.

Reconciling with existing fluorescence and recombination
measurements

The existence of fluoroscence microscopy data for the inter-
focal distances between various loci throughout E. coli
chromosome (24) allowed us to compare distances from our
simulated model with fluorescence mircroscopy-based mea-
surement. A Pearson correlation coefficient of 0.85 (Fig-
ure 4A) shows reasonably good agreement between distance
calculated from our model and fluorescence mircroscopy-
determined inter-focal distances. Since the distances are cal-
culated in real units (�m), the slope of the fit gives us the
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Figure 2. (A) Heatmap of experimental contact probability matrix. (B) Heatmap of simulated (filtered) Hi–C contact probability matrix. The matrix has
been obtained by averaging over the ensemble of Hi–C matrices calculated for each G , namely G = 3.6, G = 1.8 and G = 1.0. (C) Heatmap of difference
between contact probability matrix (simulated – experimental matrix), negative number or blue color indicates higher probability value in experimental
matrix and positive number or red color indicates higher probability in simulated matrix. The regions of maximum divergence (encircled pink off-diagonal
arms) appear near location of oriCs and difs and may be due to the presence of replication forks. (D) Distribution of absolute differences between the two
contact probability matrices(experimental and simulated).

relative size of the simulated chromosome with the in-vivo
counterpart.

Two loci, namely, oriC and dif are known to play a piv-
otal role in E. coli chromosome division and segregation
(8,10,39). OriC is the origin of replication from where repli-
cation of chromosome starts and dif is another locus present
in the Ter macrodomain and opposite to oriC in terms of ge-
nomic distance. Dif is the last region on the chromosome to
be replicated after which the two chromosomes segregate. In
exponentially dividing cells close to division, oriC is known
to be localized at cell poles while dif should be opposite to
oriC (36). To investigate the location of these two loci in
our model, we plotted their average positional distributions,
as obtained from the simulation trajectories. As we can see
from Figure 4B, oriC is mainly localized near the poles (also
labeled in snapshot in Figure 3B. The flat tail of the oriC
comes from the replication forks present in each of the chro-
mosomes. We also see that dif is mostly present, opposite to
the oriC, at mid-cell. The distribution of distance between
oriC and dif (Figure 4C) shows that the average distance be-
tween the two loci is also close to the diameter of the cell.
Together, these distributions show that these two loci are

axially present opposite to each other while oriCs localizes
themselves to the cell’s poles, which is an important feature
of the rapidly dividing E. coli cells near cell division. Upon
clustering all the chromosome conformations based on the
oriC-dif distance and distance based RMSD (DRMSD) as
given in Equation (4) (40) (Supplementary Figure S11) we
see that the chromosome conformations have very localized
distributions of OriC-diff distances, with major values rang-
ing between 0.6 and 0.8 times of the cell diameter. We also
see that there is finite but small structural variability among
the obtained conformations with respect to the cluster av-
erage Hi–C contact probability matrices. (Supplementary
Figure S12).

DRMSD =
√√√√ 2

N(N − 1)

N∑
i

N∑
j>i

| ri j − rre f
i j |2 (4)

where rij is the distance between beads i and j and rre f
i j is

the distance between the same pair of beads in a reference
conformation.
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Figure 3. (A) Schematic for the chromosome topology for G = 3.6. (B) Snapshot of the equilibrated chromosome from a representative trajectory with
macrodomains colored. oriCs have been colored in magenta and also have been encircled. Dif loci have been colored in black. (C) Linear density of
chromosomes along the long axis. (D) Average density of each macrodomain and non-structured regions, averaged over 200 trajectories and 2000 frames
with respect to the cell’s long axis. The dashed black line denotes midcell.

Using a method reported previously by Hacker et al. (22),
our model has been able to predict recombination assay per-
centages. We first obtained an exponential fit between ex-
perimental percentage of recombinants and distances calcu-
lated for such loci pairs from simulations (Figure 4D). The
fit suggests a good correlation with R2 value of 0.769. Using
the fit, we calculated the percentage of recombination for re-
ported pairs of loci (9) and plotted the percentages with re-
spect to their genomic distances. Figure 4E plots representa-
tive recombination data for loci attR22 and compares with
the values predicted from the current model . We find that
the prediction captures the peak position reasonably well.
It is noteworthy that the model misses the small shoulder
in the experimental data (orange), located to the left of the
maximum, which the model is unable to reproduce. The ge-
nomic distance about which the shoulder is present is short
and we speculate that overestimation of the inter-bead re-
pulsion by our model might be a possible cause. However,
if we compare the predicted recombination for other six loci
(9), (Supplementary Figure S13) we find that there is an
overall good correlation with the experimental data. Specif-
ically, in some loci (in particular attr17 and attl29) the agree-
ment between experiment and prediction from the model is
very encouraging.

Conformations of chromosomes at other stages of replication

For G = 1.8, we employ a topology as depicted in Figure 5A
with four oriCs and 1 dif (32). This is a special case of G =
3.6 where instead of two chromosomes there is only one par-

tially replicated chromosome. From Figure 5B and D, we
see that here also oriCs(magenta) have localized themselves
toward the poles of the cell, while dif (black) remains at mid-
cell.

Finally, G = 1.0 corresponds to the scenario of unrepli-
cated chromosome in the ensemble of cells, (Figure 6A).
Figure 6B depicts that loci oriC(magenta) and dif(black) in
chromosome corresponding to G = 1.0 are present close to
mid-cell. We also see from Figure 6C that the chromosome
stays mostly near the middle without populating the ends
which has also been seen in experiments (41). Figure 6D in-
dicates that macrodomain Ori occupies mid-cell and Ter is
relatively more spread out along the long axis with an aver-
age position at mid-cell. Right is positioned to the right of
Ori and Left is on the left of Ori. We also see that the Ter
domain is the most extended of the MDs and has significant
overlap along the long axis with its flanking domains. Such
positioning of MDs are typical in cells which are far from
division (36).

In a previous fluorescence based assay by Wiggins et al.
(10), positions of multiple genetic loci in E. coli cells were
monitored. From their spatial positioning a ‘linearly orga-
nized’ architecture of the chromosome was proposed. In
particular, this investigation hypothesized that these loci
are linearly positioned along the long axis of the chromo-
some. To test this hypothesis in our Hi–C encoded poly-
mer model of the chromosome, we plot the distribution of
three loci oriC, C4 and lac along long axis of cell (Fig-
ure 6E). These are the same loci position measured in
Figure 2A by Wiggins et al. We find that in our model
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Figure 4. (A) Distances measured from our simulations (y-axis) for Hi–C data of E. coli at 37◦C in LB media versus distances measured via fluorescence
microscopy (x-axis), measured at 25◦C in Minimal media. (B) Position distribution of oriC and dif with respect to the cell long axis. (C) Distribution
of distance between oriC and dif relative to cell diameter. (D) Comparison between the recombination frequencies provided by Valens et al. (9) versus
mean physical distance between recombination loci and red line indicates the single exponential fit. (E) A representative plot of recombination frequencies
predicted by mean physical distance, blue: experimental data and red: predicted by simulated data.

as well, these loci are linearly positioned along the long
axis.

Since for G = 1.0, we have a single unreplicated chromo-
some, we are in a position to compare the radius of gy-
rations of macrodomains predicted by the current model
with that of Hacker et al.’s predictions (22) (which also
had modeled a single unreplicated chromosome, albeit at a
nucleotide-level resolution). Figure 6F provides a compar-
ative account of radius of gyration of each of the macro do-
mains between these two models. We see that our model pre-
dicts slightly lower values than that of Hacker et al.’s (22) ,
but the trend of the Rgs remains same across both our model
(for G = 1.0) and that of Hacker et al.’s (22).

The amount of DNA and stage of replication decide the posi-
tioning of oriC and dif

Figure 7 cumulatively compares how the relative position-
ing of oriC and dif in the bacterial cell varies with replica-
tion stages and chromosome architectures corresponding to
G = 3.6, G = 1.8 and G = 1.0 (Figure 7A–C). Figure 7D and
E depicts that for G = 3.6 and G = 1.8, the average prob-
ability densities are almost symmetrical about the mid-cell
with oriC having higher probability toward the poles. This
is more prominent for G = 3.6 than for G = 1.8. For G = 1.0,
i.e. unreplicated chromosome, we see that both oriC and dif
have aligned themselves near mid-cell, which is expected for

exponentially growing E. coli when chromosome replication
has not begun yet (36).

From Figure 7D–F, we can see that as the amount of
DNA being replicated increases, the oriC shifts more to-
ward the poles of the cell. This might be caused due to the
increased amount of DNA containing mostly Ori and its
flanking regions, as replication starts from oriC and moves
bidirectionally with almost equal speed (42). Thus, forks re-
pelling each other might cause the replicated forks to ori-
ent toward the poles. This also explains the broad density
of oriC as there are multiple oriCs present. Fluctuations
from those oriCs should cause non-zero, albeit lower, av-
erage density at non-polar regions of the cell. Dif remains
near mid-cell since it belongs to the non-replicated part of
the ‘backbone’. Overall, we find that our model has been
successful in reproducing the oriC and dif localizations ex-
pected during the replication of the chromosome. From Fig-
ure 7G, we can see that for all the chromosomes at diverse G
values we have simulated, oriC and dif distances do not be-
come more than the diameter of the cell, though they might
not be oriented radially. Additionally, We find that the av-
erage size of the macrodomains do not change much across
various replicated chromosomal architectures, except for
Ter macro domain (Figure 7H). Specifically, Ter shows a
much higher Rg for G = 1.0, which is a signature of a more
expanded Ter conformation(Figure 6D and Supplementary
Table S2).
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Figure 5. (A) Schematic for the chromosome topology for G = 1.8. (B) Snapshot of the equilibrated chromosome from a representative trajectory with
macrodomains colored. oriCs have been colored in magenta and also have been encircled. Dif loci have been colored in black. (C) Linear density of
chromosome along the long axis. (D) Average density of each macrodomain and non-structured regions, averaged over 200 trajectories and 2000 frames
with respect to the cell’s long axis.

The chromosome has no net chirality

Recent experimental investigations (11,13,26,28,29) have
hypothesized that the bacterial chromosome, most likely,
adopts an achiral, helical conformation. To corroborate
predictions from our model with experimental observations
by Marko et al. (11), we divide the cell along the long axis
into 20 equal slices (referred to, from now on, as z-slicing)
and plotted the centre of geometries (COGs) of each slice
(Supplementary Figure S14). We find that the COGs ob-
tained from the z-slices in our model are similar to those
experimentally calculated (11). By fitting the coordinates
obtained from z-slicing to a polygon, we calculated the av-
erage writhe of the polygon, as described by Klenin et. al
(43). We then calculate the writhe of the fitted polygons to
get an idea of the average chirality of the folded conforma-
tions. The writhe values we find have a sharp distribution
(Supplementary Figure S15) about zero which signify that
the chromosome adopts a helix like conformation, and is
achiral. We think that it is also a characteristic feature of a
helical chromosome structure.

Insights on global packing of the chromosome

A common approach for exploring global packing of chro-
mosome, irrespective of its replication status, is the inves-
tigation of scaling of contact probability with respect to
genomic distance (22,27) provided that cell division has
not begun. Earlier, based upon similar analysis of intra-
chromosomal contact probability as a function of genomic
distance, a power law scaling of contact probability between
500 kb and 7 Mb for human chromosome was predicted

(27). For the E. coli chromosome, a power law scaling of –
1 was predicted by Hacker et al. (22). The inverse scaling
of contact probability with genomic distance (∼s−1) is in
agreement with a previously proposed attribute that chro-
mosomes are fractal in nature (44).

Fractal polymers are knot free which is important for the
segregation of daughter chromosomes during cell replica-
tion (22,27,45). An analysis, similar to what Hacker et al.
(22) had performed, to explore the intra-chromosome con-
tact probability as a function of genomic distance, as ex-
tracted from experimentally determined Hi–C matrix, pro-
duces a scaling factor of ∼−0.77, suggestive of deviation
from a perfect fractal. In our current model (Supplemen-
tary Figure S16a) the contact probability scales as ∼s−0.55

in 10 kb to 1 Mb range. On the other hand, scaling of root-
mean-squared (RMS) end-to-end distance with genomic
distance suggests otherwise (Supplementary Figure S16b).
RMS end-to-end distance scales as s0.36 which is close to the
expected value for scaling of RMS end-to-end distance with
genomic distance for a fractal globule polymer which is s1/3.

To confirm the fractal nature we explored the presence
of knots in our ensemble of structures explicitly using an
external python library (https://github.com/SPOCKnots/
pyknotid). Knot analysis revealed that all conformations
are knot free. Though our model has a resolution of only
5 kb per bead and that there are repulsive interactions
among the beads, knots are still likely as we found some
knots in simulations without Hi–C restraints. The fact that
we found chromosome conformation predicted by the cur-
rent model to be knot free is most likely because the Hi–C
restraints did not allow the model chromosome to mix to

https://github.com/SPOCKnots/pyknotid
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Figure 6. (A) Schematic for the chromosome topology for G = 1.0. (B) Snapshot of the equilibrated chromosome from a representative trajectory with
macrodomains colored. OriCs have been colored in magenta and also have been encircled. Dif loci have been colored in black. (C) Linear density of
chromosome along the long axis. (D) Average density of each macrodomain and non-structured regions, averaged over 200 trajectories and 2000 frames
with respect to the cell’s long axis. (E) Distribution of position of three loci: oriC, C4 and lacZ along the long axis (Z-axis) as mentioned by Wiggins
et al. (10). (F) Average radius of gyration of each macrodomain from current model as compared to that given by Hacker et al. (22) for oriC@midcell,
plectonemic model.

an extent which could lead to formation of knots. The ab-
sence of knots implies that the chromosome is not an equi-
librated globule, although it may not fold in a completely
fractal manner.

Insights on local packing of the chromosome

Figure 8A and Supplementary Figure S17 shows the CID
boundaries calculated from the experimental contact prob-
ability matrix. The boundaries have been calculated using
the Directionality Index (DI) algorithm (46) with a window
size of 100 kb (Figure 8B).

We see from Figure 8B that DI on the simulated con-
tact probability matrix provides us with a lesser number of
peaks. Therefore to calculate the boundaries directly from
the structure, we developed a method which we call the Rg
map method. In this method we use a moving window aver-
aging of radius of gyration of continuous segments of chro-

mosome. This approach gives rise to a ‘radius of gyration
map’ (Rg map). Using this approach, we calculated the ra-
dius of gyration of fine-grained segments for each bead (e.g.
for nth bead: the Rg will be calculated for 20 beads start-
ing from n − 10th to n + 9th bead) for all the beads in the
chromosome. Here we calculated the Rg map at a window
size of 20 beads, corresponding to 100 kb genomic segments
to investigate the features of our model pertaining to the
local density of chromosome. This method also enables us
to probe the variation in local density of the chromosome
along it’s contour.

Figure 8C shows the Rg map for a simple case, i.e. for
G = 1.0, at a window size of 20 beads or 100 kb region.
The black vertical lines, in the Rg map, highlight the most
prominent peaks which were calculated with the help of a
peak caller from scipy (47), which is tuned to get the exact
number of peaks as predicted by directionality index (DI)
at 100 kb size. We report a correlation of 0.99 between the
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Figure 7. (A) Schematic for G = 3.6. (B) Schematic for G = 1.8. (C) Schematic for G = 1.0. (D) Average probability of location of oriC and dif for G = 3.6,
with respect to cell length. (E) Average probability of location of oriC and dif for G = 1.8, with respect to cell length. (F) Average probability of location
of oriC and dif for G = 1.0, with respect to cell length. (G) Distributions of oriC-dif distances with respect to cell short axis. (H) Comparison of Rg of
macrodomains among different G values.

positions of the CID boundaries detected by Rg map and
DI (Supplementary Figure S18). Previously it was shown
that the DI boundaries, when visualized with the heatmap
of matrix, appear at the vertices of the triangles along the
diagonal of the matrix. Therefore, we also compared our
Rg map with the diagonal of the heatmap (shown in Fig-
ure 8A). The peak positions calculated from the Rg map
are also marked in the Figure 8C and qualitatively we can
see that these peaks are present at the vertices of triangles
in most of the cases. Therefore, the comparison in Figure 8
suggests that our model is capable of capturing local chro-
mosomal structures such as chromosomal interaction do-
mains (CID). Together, Rg map comes out to be an effective
tool in unraveling the local structure from our simulation
model.

In a study on Caulobacter crescentus, it was found that,
generally, one or many highly expressed genes were present
at the CID boundaries (25). In rapidly dividing cells, the rrn

operons are expressed at a higher rate than other metabolic
genes due to the requirement of ribosomes for protein syn-
thesis (48). Since the Hi–C experiment was also performed
on rapidly dividing cells, high expression of rrn operons was
expected. In another study, rrn operons showed higher tran-
scriptional propensity, measured as RNA/DNA ratio, and
overlap with CID boundaries (49). Therefore, motivated by
previous experiments (25,48,49) and good agreement be-
tween peaks in Rg map and CID boundaries, we compared
the peaks in Rg map with rrn operons’ genomic locations
in E. coli. We found that six of the peaks in Rg map corre-
spond to the genomic location of rrn operons as shown by
bold, black vertical lines in Figure 8C.

Physically, higher Rg value indicates that the chromo-
some segment (in case of Figure 8C––20 beads) is occu-
pying more volume than the adjacent segments of same
length. Similarly, lower Rg value implies that the segment is
compact and occupies lower volume than its adjacent seg-
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Figure 8. (A) The main diagonal of the average contact probability matrix rotated 45◦ clockwise with black vertical lines showing the position of CID
boundaries. (B) Directionality index (100 kb) calculated from simulated matrix for wildtype E. coli (MG1655 in LB at 37◦C in exponential growth phase)
black vertical lines shows the CID (chromosome interaction domains) boundaries, (calculated as given by Le et al. (25)). (C) Radius of gyration map for
wildtype E. coli (MG1655 in LB at 37◦C in exponential growth phase) with respect to genomic coordinates with a moving window size of 20 beads (100
kb), gray and black vertical lines represent the peaks in the map and rrn operon sites respectively.

ments. Therefore our results imply that the local DNA den-
sity is lower in the vicinity of highly expressed genes, a phe-
nomenon earlier observed in the eukaryotic cells (50). These
results suggest similarity with the ‘transcription centric’ ap-
proach used in a previous model (22). These low density re-
gions, i.e. with high Rg value in Rg map are thus equivalent
to plectoneme free regions (PFR) (22). Together, our model,
via encoding Hi–C data, is able to capture all the spatial in-
formations of the chromosome such as macrodomain struc-
ture, plectonemes, CIDs and transcription details.

Assessing the importance of the genomic contacts in chromo-
some organizations

While modeling the Hi–C contact probability data into dis-
tance restraints, we had made use of a sparse interaction
matrix and by design, our model harmonically restrained
only a fraction of the genomic pairs with high contact prob-
ability values in the contact probability matrix (≈7% of the
total number of contacts). To assess the importance of the
small percentage of the Hi–C contact probability matrix
that has been used as an input in the model, we carried
out ‘control simulations’ in which a self-avoiding polymer
chain of same bead numbers (as in Hi–C informed ‘wild-
type’ model) were simulated but no Hi–C restraints were
applied within the chain. Figure 9A depicts a representative
snapshot of the conformation obtained from such ‘control
simulations’ corresponding to G = 3.6. Qualitatively, we can

see from Figure 9B that all the macrodomains overlap sig-
nificantly in control simulations. To quantify the extent of
macrodomain overlaps, we divided the cell volume into a
three-dimensional grid. For each macrodomain pair, we cal-
culated the following ratio

score = Number of grid with densities from both macrodomains
total number of grids with non-zero density

.

Thus, the score will be 1 when there is complete overlap and
0 when there is no overlap. Using the score, we see that all
the macrodomains are relatively well mixed in the control
simulations compared to wild-type chromosome (Supple-
mentary Table S3). They do not possess any localization
and the polymer conformation is purely entropy-driven (6).
Most macrodomains have become disorganized since the
distribution is more spread out, than in wild-type cells. The
polymer also is seen to have expanded to occupy all the vol-
ume available (Supplementary Figure S19). From this we
conclude that presence of Hi–C restraints have induced a
specificity into the polymer that forces it to arrange it’s var-
ious regions into a very particular order(s).

Upon comparison of the generated simulated Hi–C ma-
trix from the control simulations with the experimental ma-
trix, we see that the signature patterns along the diagonal
are mostly absent in contact matrix obtained from the ‘con-
trol simulation’ (Figure 9C, D and S20a). Near diagonal, the
simulated matrix looks much smoother (Figure S20a and
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Figure 9. (A) A color coded snapshot of the random-walk chromosome without Hi–C restraints (control). (B) Average densities of the four macrodomains
and two non-structured regions with respect to the cell long axis. (C) Simulated contact probability matrix without Hi–C. (D) Simulated contact probability
matrix with Hi–C. (E) Comparison of Rg of macrodomains between control and WT.

Supplementary Figure S20b). These patterns correspond to
CIDs on a smaller scale, and macrodomains on a larger ge-
nomic scale. This shows that the contacts, which are impor-
tant, are relatively high in probability and constitute only a
small fraction of the total chromosomal contact probabil-
ity matrix. We also see from the difference heatmap (Sup-
plementary Figure S20c) that the difference between corre-
sponding probability values between the simulation with-
out Hi–C and the experimental contact probability ma-
trix is more prominent for regions which are genomically
closer. The potential loss of the information in a chromo-
some model devoid of Hi–C contact probabilities data (as
in the ‘control simulation’) can be further gleaned from Fig-
ure 9E. We see that all macrodomains derived from ‘control
simulation’ have the same size, suggesting that the localized
interactions are missing. The loss of key contacts also leads
to expanded size for all Macrodomains in the control sim-
ulation.

CONCLUSION

In conclusion, we report a Hi–C data-integrated compre-
hensive model of E. coli chromosome at 5 kb resolution
with replication forks. The model is able to recover and
represent the extent of information Hi–C encodes at dif-
ferent stages of chromosome replication. The model cap-
tures the macrodomain segregation in unreplicated, par-
tially replicated single and twin chromosomes precisely. The
approach presented in the current work is distinct from

other reconstruction algorithms recently used for model-
ing chromosomes (51–53) as the structures obtained from
these algorithms do not produce an ensemble of structures
and also requires scaling by another experimental data,
such as fluorescence microscopy, to have the conformations
commensurate with cell-sizes. On the contrary, the current
model quantitatively reconciles numerous, independent ex-
perimental measurements on E. coli such as distances mea-
sured from flouroscence microscopy (7), experimental re-
combination assay percentages (9) and linear densities (41).
The model predicts a roughly linear organization of chro-
mosome regions, in line with experimental investigation
(10). The model predicts that in oriC and dif are located
at the mid-cell diametrically opposite to each other in ex-
ponentially dividing cells for non-replicated chromosome,
while oriCs get localized at or toward the poles for repli-
cating chromosomes, which was also seen from experiments
(36). For the case of a non-replicating chromosome, our re-
sults are also consistent with the predictions the plectone-
mic model proposed by Hacker et al. (22) where oriC was
located at the mid-cell. We also were able to predict CID
boundaries and the location of rrn operons using an indige-
nous way of analyzing the radius of gyration of the chro-
mosome segments for the non-replicating chromosome. All
these results reflect upon the multitude of information Hi-C
already encodes and our model being able to capture them
properly. We claim that the protocol for conformation gen-
eration is simple and fast with a high efficiency in reproduc-
ing experimental observations.
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Taken together, the model brings out the multiscale and
multi-faceted organization of bacterial chromosome, man-
ifesting a helical, macrodomain-segregated morphology at
large scale and CIDs at a fine-grained scale. Finally, a con-
trol model, which does not incorporate Hi–C data, shows
that the multiscale organization and domain-segregation do
not appear in such model. Several proteins, such as NAPs,
regulate these two factors for proper growth of the bacte-
ria. The role of NAPs in maintaining overall chromosome
conformation remains to be explored. Though we did not
investigate the dynamics of the chromosome, but by incor-
porating mass of each bead one can, in practice, explore the
chromosomal dynamics. Incorporation of other experimen-
tal data would act as refinements on the ensemble averaged
Hi–C which has been used as the basis for the modeling.
Multiscale simulations can also be attempted in which the
coarse-grained interactions can be designed the way we in-
corporated bonds using Hi–C.
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