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Accumulating evidence indicates that liquid–liquid phase separation (LLPS) is

the basis of the formation of membrane-less compartments in cells. This

biomolecular condensate represented by phase separation may influence

epigenetics in cancer stem cells (CSCs), a small subpopulation of cancer cells

responding to the initiation, maintenance, metastasis, and therapy resistance of

cancer. Understanding the underlying biophysical principles and the specific

characteristics of biocondensates would provide insights into the precise

blocking of potential tumor targets, thereby fundamentally curbing tumor

occurrence, recurrence and metastasis. In this review, we summarized the

key phenomenon and experimental detection of phase separation and the

possibility of regulating the stemness of CSCs through phase separation. We

believe that the mechanism of phase separation in CSCs will open up new

avenues for the mystery of tumor formation, and modulating phase separation

will be a great strategy for CSC-targeted tumor therapy.
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Introduction

The liquid compartments for liquid–liquid phase separation (LLPS) are spherical in

shape, with fusion and fission phenotypes, and exhibit high internal mobility and high

rates of exchange with the surrounding environment (1). For a long time, scientists have

observed that biomacromolecules in cells are not distributed uniformly in the aqueous

environment but instead form distinct compartments in the nucleus, cytoplasm or cell

membrane. Cells use these compartments to organize cellular biochemical reactions,

making these processes relatively independent, highly ordered, and efficient. Membrane-

bound organelles use phospholipid bilayers to encapsulate intracellular biomolecules.

There are also numerous nonmembrane-bound compartments in eukaryotic cells,

postsynaptic densities in synapses, and protein spots at DNA damage repair sites

(2, 3). According to recent studies, these nonmembrane-bound compartments share a
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similar assembly mechanism, termed liquid–liquid phase

separation, and are collectively named biomolecular

condensates. The phase-separated compartments further

undergo a phase transition to specify their distinct material

properties (4). The interactions of these phase-separated

multivalent domains are abundant not only in the cytoplasm

but also in epigenetic processes, such as the recognition of

epigenetic modifications by their readers and the interaction

between the complex composed of transcription factors and

DNA sequences. Brangwynne’s group applied the CasDrop

system to study three studied proteins (FUS, BRD4, and

TAF15) forming the ‘LLPS’ phenomenon, which accompanied

the sense and restructures of the genome in the nucleus (5).

Phase separation is widely associated with the development

and disease (6). Although LLP research is still in its infancy, it is

advancing rapidly, and it is clear that LLPS plays a crucial role in

the development of pathophysiological conditions. The

underlying mechanisms for LLPS are the regulation of

transcription (7), genome organization (8), immune responses

(9), and neuronal synaptic signaling (10), specifically in cancer

(11), neurodegenerative diseases (12), and COVID-19 (13, 14).

In 2009, Brangwynne’s group discovered that the RNA in

Caeno-rhabditis elegans embryos and the protein-containing

conjugate P granules were agglomerated spheres formed by

protein phase separation (15). In 2011, another study also

found that a dense cluster of genetic materials and proteins

had droplet-like behaviors in the cell nucleus. Phase separation

has important applications in organisms, such as the aggregation

of proteins and nucleic acids involved in gene regulation, RNA

processing, and other life processes (16). In biological

applications, it is beneficial for the fabrication of nanofibrous

scaffolds, which have interconnected porous structures. The

latter facilitates cell migration, nutrient/waste exchange, and

uniform cell and nutrient distribution (17). In addition, the

phase separation beneficially allows the fabrication of

interconnected porous scaffolds with complex geometries (17).

Thus, phase separation is a valuable method for nanofibrous

scaffold preparation for bone tissue engineering applications. It

also shows significant implications in designing small molecule

compounds to modulate the entry of functionally important

guest molecules into aggregates for phase separation. Fang et al.

identified some compounds that could block the entry of TDP-

43 into stress granules intracellularly and thereby inhibit its

accumulation of TDP-43 protein in neurons in amyotrophic

lateral sclerosis with frontotemporal dementia (ALS/FTD)

lesions (18).

It is interesting to investigate the roles of phase separation in

regulating the characteristics of cancer stem cells (CSCs) and

explore a new strategy for the treatment of tumors. CSCs were

first identified in leukemia in 1997 (19) and subsequently found

in breast cancer in 2003 (20). Leukemic stem cells have been

shown to display the CD34+CD38− surface marker phenotype,

in which the loss of CD38 distinguishes these cells from normal
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hematopoietic stem cells (19). Al-Hajj et al. (7) demonstrated

that CD44+CD24−/(low) Lineage− cells isolated in eight of nine

patients with breast cancer had the capacity to form tumors

when serially transplanted into immunocompromised mice (20).

CSCs have been identified in other solid tumors, including brain

tumors, lung cancer, colon cancer, and melanoma (21–23). CSCs

can self-renew, give rise to progeny that are different from them,

and utilize common signaling pathways (24). Cancer stem cells

may be the source of all the tumor cells present in a malignant

tumor, the reason for the resistance to the chemotherapeutic

agent used to treat the malignant tumor, and the source of cells

that give rise to distant metastases (25). Briefly, CSCs are

believed to be an important target for novel anticancer

therapeutics (26). The source of CSCs is thought to be

mutation of stem cells (CSCs originate from differentiated

malignant cells that reactivated stem-like features leading to

de-differentiation) or reprogramming of somatic cells by genetic

or epigenetic regulation. Recent advances in LLPS may provide a

new framework for understanding the relationship between

mutation and CSCs. Studies have shown that key residue

mutations in different amino acids interfere with AKAP95

condensation in opposite directions. Importantly, the activity

of AKAP95 in the regulation of splicing is abolished by

disruption of the condensate, significantly impaired by

hardening of the condensate, and restored by replacing its

condensation-mediated region with other condensation-

mediated regions of an unrelated protein. Furthermore, the

ability of AKAP95 to regulate gene expression and support

stem tumorigenesis requires that AKAP95 forms condensates

with appropriate mobility and dynamics (27). These results link

phase separation to tumor stemness and may provide

opportunities for therapeutic intervention in cancer.

In cancer, epigenetic modifications (DNA methylation,

histone modification, chromatin remodeling, etc.) play an

important role in the ‘inhibition or activation’ of different

genes, especially in maintaining the stemness of CSCs (28, 29).

The recognition of epigenetic modifications (30), including the

interaction of transcription factor complexes with DNA

sequences and the occurrence of autophagy (31), was formed

accompanying phase separation. CSCs are characterized by

dysregulation of diverse cellular processes, which have been

the subjects of detailed genetic, biochemical, and structural

studies (32). However, only recently has evidence emerged that

many of these processes are formed by LLPS, which

compartmentalizes protein and RNA molecules with

related functions.

Therefore, it is salient to explore the relationship between

phase separation and CSCs. In this review, we first summarized

the key phenomenon and experimental detection of phase

separation. Second, we elucidated the role of phase separation

in regulating epigenetics and CSCs, which provided insights into

the molecular mechanism underlying the pathogenesis of

various diseases. Third, regulating phase separation is a good
frontiersin.org
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strategy for inhibiting the stemness of CSCs, thus providing an

approach for CSC-targeted tumor therapies.
Phase separation phenomenon and
experimental detection

The phase-separated proteins initiate, amplify, and

propagate signals efficiently, primarily because they have been

brought into proximity and are at high density. Phase separation

is now recognized as a fundamental biological mechanism

wherein distinct activated molecules assemble into a different

phase from the neighboring constituents of a cell. This process is

important in many reactions, including but not limited to

signaling and transcription. These include the assembly of

adaptors after T-cell receptor (TCR) signaling, the activation

of cytosolic receptors for nucleic acids, and the formation of

inflammasomes. The observation of phase separation in

intracellular cells is a discovery that has important

implications for the study of the function of membrane-less

organelles in regulating cells.
Multivalent interaction-mediated phase
separation

Numerous membraneless organelles assemble via LLPS,

known as condensates, and facilitate the compartmentalization

of cellular functions. In most cases, these structures exhibit

liquid characteristics and are therefore described as bodies,

puncta, granules, droplets, and condensates. We characterized

condensates into three groups, i.e., plasma membrane,

cytoplasm, and nuclear-localized condensates. These

condensates play unexpected roles in various cellular processes

(Table 1). Emerging evidence shows that phase separation also

acts in cargo trafficking pathways by sorting and docking cargos

for translocon-mediated transport across membranes, shuttling

cargos through the nuclear pore complex and triggering the

formation of surrounding autophagosomes for delivery to

lysosomes (59, 60). Brangwynne’s group used the CasDrop

system to show that the ‘LLPS’ phenomenon in the nucleus

could sense and restructure the genome (37). Research on the

nucleolus indicated that a dense cluster of genetic materials and

proteins also showed droplet-like behaviors in the cellular

nucleus (6). Phase separation driven by the multivalent

interaction of molecules can form aggregates and precipitate

solutions known as multivalent phase separation. This droplet

formation of biological macromolecules through multivalent

interaction is called LLPS (2) (Figure 1). Multivalent

interaction refers to the process in which a multivalent ligand

binds and cooperates with one or more receptors with enhanced

functional affinity (apparent affinity). The multivalent
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interactions of intracellular biological macromolecules include

the linear modification of functional domains, oligomeric

proteins, and the appearance of multiple site proteins

(phosphorylation, methylation, acetylation, and ubiquitination)

(61). One well-known example is the proline-rich motif (PRM)

and Src homologous 3 (SH3) domains, a pair of regular

interacting domains existing in many intracellular proteins,

forming phase separation droplets when mixed in a series of

purification experiments (62). Simultaneously, the formation of

droplets has a significant concentration and valence dependence.

Multivalent phase separation has unique physical characteristics,

including fluidity, meltability, and recovery after fluorescent

bleaching. In addition to the domains with a regular structure,

many proteins also contain regions without a fixed structure,

called intrinsically disordered regions (IDRs) or intrinsically

disordered proteins (LCDs). LCDs are usually only enriched

for residue types such as Gly, Ser, Tyr, and Gln and have a strong

amino acid preference and self-sustaining aggregation potential.

They can also form multivalent phase separation due to the

unique amino acid distribution (63, 64).

The interactions between proteins and proteins and nucleic

acids are influenced by the biological macromolecule phase

separation process. RNA-binding proteins containing IDRs

can self-isolate, and RNA can enhance the phase separation of

these proteins (65). It has been reported that 47-fold repeated

CUG and CAG sequence RNA can be phase-separated

spontaneously in vitro, which proves that the nucleic acid can

be phase-separated by itself for the first time and supports the

phenomenon of phase separation in the nucleus (66). Phase

separation in the nucleus is closely related to epigenetic

regulation and thus regulates cellular function. Therefore, it is

urgent to detect phase separation with effective methods.
Experimental detection of
phase separation

With the development of new methods and techniques,

LLPS will continue to be probed for both in vitro and in vivo

experiments (Table 2). The most universal methods are ordinary

optical microscopy in vitro and the ‘optoDroplet’ system

technique in vivo.

At the in vitro level, first, the phase-separated system has the

characteristic that the solution changes from clear to turbid,

forming oil droplet-like particles observed by an ordinary optical

microscope in vitro (3, 67). Second, another droplet formation

assay in vitro was developed to measure small-molecule

partitioning into nuclear condensates and to study the

behavior of small molecules within these droplets (70). The

ability of MED1, BRD4, SRSF2, HP1a, FIB1, and NPM1 to form

has been confirmed with this assay in vitro (70).

At the in vivo level, first, the widely accepted standard for

phase separation detection is fluorescence recovery after
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photobleaching (FRAP). The FRAP method can be generally used

to measure the mobility of proteins inside the cell or its organelles

by calculating the diffusion coefficient of green fluorescent protein

(GFP) and some other fluorescent proteins in the cells (5).

Therefore, FRAP can verify the speed at which the target

protein recovers fluorescence in a short period and determine

whether the active area has a frequent material exchange with the

surrounding environment. Second, the controllable phase

separation system is the ‘optoDroplet’ system reported by

Brangwynne et al. in 2017. This showed that concentrated

phases are driven by IDR of various RNA/protein (RNP)

human proteins, such as the fusion of sarcoma (FUS), dead-box

helicase 4 (DDX4), and heterogeneous nuclear ribonucleoprotein

A1 (HNRNPA1) (37). To investigate phase separation in the

nucleus, researchers have explored a photo genetic platform called
Frontiers in Oncology 04
‘CasDrop’ that can induce localized condensation of droplets at

specific genomic sites (5) (Figure 2). CasDrop includes dead Cas9

(dCas9) fused with SunTag (dCas9-ST) (6), a single-chain variable

fragment (scFv) fused with superfolder GFP (sfGFP), the

optogenetic dimerization protein iLID (scFv-sfGFP-iLID) (15)

and TR-mch-sspB. The dCas9-ST protein anchors the system to

specific genetic loci (71); scFv-sfGFP-iLID protein is a

photosensor polymer, and the target protein IDRs are labeled

sspB. The CasDrop system added genome-targeting

programmability and optogenetic controllability. This system

can quantitatively and locally study the phase separation of

multiple proteins. These techniques contribute to the role of

phase separation in gene expression and epigenetics in cells.

What are the mechanisms of phase separation in regulating

gene expression?
TABLE 1 Summary of evidence used for LLPS.

Localization Compartment Protein (s) Refs

Cytplasm P Granules PGL-1 (15)

Cytoplasm Synthetic SH3/PRM (NCK and N-WASP) (2)

Stress Granule hnRNPA 1 (33)

Whi3 droplets Whi-3 (34)

Cell Stress Pab (35)

Centrosome SPD-5 (36)

Synthetic Opto-FUS; Opto-hnRNPA1; Opto-DDX4 (37)

P Granules PGL-1 (38)

Innate immune cGAS (39)

Cell stres Sup35 (40)

Synthetic Synthetic FUS fusion (41)

P Granules MEG-3; PGL-3 (42)

Nucleus Nucleolus – (6)

Nuages (granules) DDX-4 (43)

Cell Stress EWS; TAF15; FUS (44)

Stress Granule FUS (45)

– Nephrin (46)

Nucleolus NPM1; FIB1 (47)

Splicing TDP43 (48)

Heterochromatin HP1a (49)

Heterochromatin HP1a (30)

Splicing FUS; HnRNPA1; TDP43; EWSR1; TAF15 (50)

Transcription MED1; BRD4 (51)

Transcription RPB1; MED19 (52)

Transcription OCT4 (53)

Transcription ERa (54)

SPOP droplets SPOP/DAXX (11)

Synthetic Synthetic BRD4/Cas9 (5)

Nucleolus Nucleolus FIB-1 (55)

Plasma Membrane Plasma Membrane LAT (56)

Pyrenoid Carbon fixation Rubisco/EPYC1 (57)

Nucleus; cytoplasm Synthetic Opto-FUS; Opto-hnRNPA1; Opto-TDP43;
Opto-DDX4; Opto-PGL1

(58)
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Mechanism of phase separation
formation by posttranslational
modifications

Both protein translation modifications (PTMs) and

epigenetic regulation are important for protein modification

and function. PTMs refer to chemical modification by adding

different chemical groups to the amino acid residues of proteins

(72). Phase separation is involved in the formation of PTMs,

which keeps proteins with a certain function.
Phase separation and protein translation
modifications

PTMs play an important role in regulating protein function

and phase separation formation in eukaryotes. PTMs include

multiple modification mechanisms, such as methylation,

acetylation, phosphorylation, adenylation, ubiquitination, and
Frontiers in Oncology 05
ADP-nucleoglycation. Among them, serine/tyrosine

phosphorylation, arginine methylation (43, 73), and

sulfonylation (74) have been reported to control the phase

separation process (75). For example, Tau phosphorylation (p-

tau217 and p-tau181), a hallmark of the pathology Alzheimer’s

disease (AD) (76), promotes aggregation and phase separation in

vitro (77).

However, protein phosphorylation also inhibits phase

separation. Autophagosome and proteasome formation in the

autophagy process. Mammalian target of rapamycin complex 1

(mTORC1) inhibits the droplet-like formation of Atg13 by

inducing Atg13 phosphorylation at the ser428/9 site (4).

Under acute hyperosmotic pressure, phase separation mediates

the formation of proteasomes that promote the degradation of

ribosomal and misfolded proteins. The proteasome inhibitors

MG-132 and b-AP15 and the p97 inhibitor NMS-873 can inhibit

the formation of phase separation simultaneously (78). Dual-

specificity tyrosine phosphorylation-regulated kinases 3

(DYRK3), the human homolog of MBK-2, also induces the

dissolution of several membraneless organelles during mitosis,
FIGURE 1

The formation of phase separation.
TABLE 2 Summary of experimental detection for phase separation.

Equipments/Methods Applications Disadvantages Refs

Ordinary optical microscope Visualized the structure and composition of these
biomolecular condensates

Condensates must be antibody-stained
or fluorescently labeled

(3,
67)

Confocal microscopy and
superresolution imaging

Detailed information on biomolecular condensates (13,
68)

FRAP, FLIP, and FCS Known to the fluidity of the condensates Composition, concentration, and function of these biomolecular
condensates are not well understood

(69)

optoDroplet Known to the role of condensates in promoting
biological function or dysfunction

Difficult operation and expensive (37)
frontiers
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indicating that PTMs are important for the assembly and

disassembly of P granules mediated by phase separation (79).
Phase separation and epigenetic
modification

Phase separation is also involved in epigenetic regulation

that maintains the stability of the organism’s genome. Epigenetic

regulation modulates subsequent gene expression and

participates in a variety of biological processes, mainly

methylation and histone modification (methylation,

acetylation, phosphorylation, etc.), and chromatin remodeling

(80, 81).

Methylation
Both DNAmethylation and RNAmethylation are important

nucleic acid modifications in gene expression regulation and

biological processes. Methyl-CpG-binding protein 2 (MeCP2) is

a chromatin organizer. MeCP2 induces compaction and LLPS of

nucleosomal arrays in vitro and further enhances the formation

of chromatin condensates by DNA methylation. The results

identified a novel mechanism by which phase separation

underlies MeCP2-mediated heterochromatin formation (82).

Revers ib le RNA methy la t ion modifica t ion (N-

methyladenosine (mA)) is the most common nucleotide

modification in mRNA and is involved in various processes of

mRNA metabol i sm, inc luding but not l imi ted to

posttranscriptional splicing, translation efficiency, and

regulation of mRNA stability (83, 84). Recent studies

demonstrated that the cytosolic mA-binding protein YTH N6-

methyladenosine RNA binding protein 1 (YTHDF1) and its
Frontiers in Oncology 06
siblings YTHDF2 and YTHDF3 undergo LLPS in vitro and in

vivo (85). The number and distribution of mA sites can influence

transcriptome composition during cell phase separation.

Incubation with LC+ YTH protein showed that 50 nt RNA

with more m6A (10) modifications could significantly promote

phase separation, but m6A (1 or 5)-modified RNA had no

significant effect on phase separation (86, 87). Therefore, phase

separation regulated the cellular characteristics that were

modified by mA mRNA.

Phase separation and histone modifications
Eukaryotic chromosomes are enriched with specific histone

modifications. Constitutive heterochromatin is a largely silent

chromosome compartment, partly characterized by H3K9me2

and 3. Heterochromatin protein 1 (HP1) (H3K9me2 and

3’reader’) interacts with SUV39H1 (H3K9me2 and 3 ‘writer’)

and forms complexes with H3K9me2 and 3-modified

chromatin. The H3K9me2- and H3K9me3-labeled nucleosome

arrays and related complexes undergo phase separation by

forming droplets that are rich in macromolecules, resulting in

the regulation of the general mechanism of chromosome

compartmentalization. These droplets are reminiscent of

heterochromatin, as they are dense chromatin-containing

structures, are resistant to DNase, and exclude the general

transcription factor II B (TFIIB) (88). Although LLPS of HP1a
is known to contribute to heterochromatin organization,

another study has shown that histone H1 condenses into

liquid-like droplets in the nuclei of HeLa cells and then serves

as a scaffold for the separation of heterochromatin domains from

DNA (89). Therefore, phase separation regulates cellular

characteristics associated with the condenses and segregation

of HP1.
FIGURE 2

CasDrop phase separation detection system.
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Phase separation and
chromosome remodeling

Chromatin remodeling is another important epigenetic

regulatory mechanism. By forming remodeling complexes, the

entanglement density of chromatin is changed, which affects the

binding of transcription factors with DNA sequences and further

regulates gene expression (90). The advent of high-throughput

genome sequencing technology, such as chromatin

immunoprecipitation sequencing (ChIP-seq) (91, 92), high-

throughput chromatin conformation capture (Hi-C) (93, 94),

and assays for transposase accessible chromatin (ATAC-seq)

(95, 96), have promoted the rapid development of chromatin

three-dimensional (3D) structures. Phase separation not only

largely accumulates in the nucleus but also has an important

relationship with the spatial structure of chromatin. In 2019,

Gibson et al. reported that purified tandem nucleosomes could

form phase separation with high efficiency with the participation

of histone H1 in vitro. Since tandem nucleosomes are the most

basic structural unit of chromatin, the formation of finer

chromatin structures is likely to occur on this phase-separated

aggregate (8). Via LLPS, HP1a protein forms a liquid-phase

stable compartment, which contains chromatin and repels

molecules such as RNA polymerase, leading to the first step in

the formation of heterochromatin (30).

Phase separation and chromatin remodeling of the

brominated polyglycoprotein 4 (BRD4), FUS, and TATA-box

binding protein associated factor 15 (TAF15) proteins were

observed with the Casdrop system. Studies have shown that

Drosophila HP1a protein undergoes liquid–liquid demixing in

vitro and nucleates into foci that display liquid properties during

the first stages of heterochromatin domain formation in early

Drosophila embryos. Furthermore, in both Drosophila and

mammalian cells, heterochromatin domains exhibit dynamics

that are characteristic of liquid phase separation, including

sensitivity to the disruption of weak hydrophobic interactions,

reduced diffusion, increased coordinated movement and inert

probe exclusion at the domain boundary. The result shows that

heterochromatic domains form via phase separation and mature

into a structure that includes liquid and stable compartments

(30). Mao et al. described nonmembranous structures in the

nucleus, such as the nucleolus, Cajal body, and promyelocytic

leukemia (PML), which tended to form in low-density

chromatin regions (97). To further study why droplets tend to

repel chromatin that is preferentially generated in regions with

low chromatin density, Shin et al. established a mathematical

model of the mechanical interaction between aggregates and

deformable chromatin networks and suggested that all regions of

chromatin density could form small droplets. However, when

the droplets were enlarged to a size resolvable by an optical

microscope, they tended to form in regions of low chromatin

density (5). These properties of phase separation are

summarized as a chromatin filtration model; that is, the phase

separation of proteins binding to specific gene sites can shorten
Frontiers in Oncology 07
the distance of genes and exclude gene regions without binding

sites. This ensures the accumulation of super transcription

factors in regions with loose chromatin structure, folding

chromatin and promoting the expression of active genes.
PTM and epigenetic modification
regulate cancer stem cells

This biomolecular condensate represented by phase

separation may influence epigenetics in normal cells and

cancer cells, especially CSCs, a small subpopulation of cancer

cells responding to the initiation maintenance metastasis and

therapy resistance of cancer (98). It is well known that the

characterization of CSCs is regulated by PTM and

epigenetic modification.
PTM regulates cancer stem cells

PTMs play an important role in cell signal transduction. For

example, epidermal growth factor (EGF) is essential for the

maintenance and growth of GSCs (99). Quantitative

phosphoproteomic analysis of EGF-stimulated GSCs was

performed to acquire network-wide information on the

molecules related to stemness maintenance. As a result, a total

of 6073 phosphopeptides from 2282 phosphorylated proteins

were identified, leading to the quantitative classification of 516

upregulated and 275 downregulated phosphorylation sites (100,

101). After quantitatively analyzing the proteome and

phosphorylated proteome of 45 medulloblastoma samples,

Archer et al. showed that tumors had a similar level of RNA

expression but differed significantly at the posttranscriptional

and posttranslational levels. The posttranslational modification

of MYC was found to be associated with poor prognosis in group

3 tumors. Currently, many studies are focused on proteomics,

which can provide a more comprehensive functional reading for

future therapeutic strategies (102).
Epigenetic regulation of cancer
stem cells

The occurrence of CSCs has different regulatory

mechanisms, but most of them are closely related to epigenetic

processes (90) (Figure 3). DNA methylation of specific genes

regulates the proliferation and differentiation of progenitor cells

and is the basis of the stemness of CSC expression. Knockout of

DNA methyltransferase 1 (DNMT1) maintains the

characteristics of CSCs by maintaining the cell proliferation

capacity and inhibiting differentiation. The m6A demethylase

AlkB homolog 5 (ALKBH5) maintains the tumorigenicity of
frontiersin.org

https://doi.org/10.3389/fonc.2022.922604
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiao et al. 10.3389/fonc.2022.922604
GBM stem-like cells by maintaining forkhead box m1 (FOXM1)

expression and the cell proliferation program (103). Histone

modification regulates the stemness of CSCs. EZH2 inhibits

DACT3 and activates the Wnt/b-catenin pathway to maintain

the self-renewal ability of CSCs (104). Knocking out the BMI1

gene inhibits the cloning and sphere formation ability of CSCs

(105). Studies have shown that abnormal levels of the histone

demethylases lysine demethylase 6A (KDM6A) and KDM6B are

associated with pediatric acute myeloid leukemia (AML) (106).

Moreover, modification of histone proteins (H3K9ac, H3K27ac,

H4K16ac, etc.) play a key role in the progression and prognosis

of head and neck squamous cell carcinoma (107). Chromatin

remodeling changes the density of chromatin entanglement and

then affects the binding of transcription factors to DNA

sequences. In human malignant rhabdomyosarcoma,

inactivation of SNF5 enhances Gli expression and promotes

the proliferation of CSCs (108). The role of the 3D genomic

structure in guiding the functional characteristics of GSCs shows

that CD276 is located in a structurally conserved region of GSCs
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and is also part of its stemness network and could be targeted

with an antibody−drug conjugate to curb self-renewal (109).

Phase separation regulates
cancer stem cells by
epigenetic modification

First, phase separation is closely related to stem cell

differentiation by modulating the cell cycle process. The

DYRK3 enzyme promotes the mixing of phases when the cell

divides, ensuring that the chromosomes separate and the cell

contents divide correctly. If the phase separation is abnormal

during cell division, the separation of chromosomes is

incomplete, and they may be incorrectly assigned to daughter

cells (79). Phase separation is an embodiment of epigenetic

regulation that regulates the self-renewal of CSCs (110).

Speckle-type POZ protein (SPOP), located in the nucleus, is

the ligand of the substrate of cullin-3 cycloubiquitin ligase. The
FIGURE 3

Epigenetic regulation of cancer stem cells. DNA methylation mostly occurs in CG-rich gene regions, which are catalyzed by DNA
methyltransferase 1 (DNMT1). DNMT1 regulates DNA methylation and de novo synthesis of enzymes, which is the key to maintaining the
characteristics of cancer stem cells (CSCs). Histone modification often occurs at the amino end of the histone, which is exposed to chromatin
and can be modified by various chemical groups. Polycomb group proteins (PcGs) are important proteins catalytically inhibitory to histone
modification, mainly by polycomb repressive complex 1 (PRC1) and PRC2 composition. The activity of PRC2 subunits from H3K9me and
H3K27me EZH2 catalytic histones and the activity of PRC1 subunits BMI1 catalyze histones to form H2A ubiquitination. Both of them play the
role of silencing genes and upregulating their expression levels, which can be directly detected with the increase in CSCs. Chromatin
remodeling is another important epigenetic regulatory mechanism. The chromatin remodeling protein SNF5 can alter the DNA conformation by
interacting with the promoter region of the target gene. Inactivating SNF5 or reducing its expression can promote the proliferation of CSCs.
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cancer-related SPOP mutation interferes with the recruitment of

ligase substrates, leading to the accumulation of proto-

oncoproteins, triggering phase separation of SPOP and

colocalization of membrane-free organelles in cells. The

substrate phase separation of the E3 ligase is the basis of

ubiquitin-dependent protein stable ubiquitination (11). It can

be speculated that phase separation promotes cancer occurrence

through ubiquitination and might promote the tumorigenicity

of CSCs.

Second, protein phase separation could impact chromosome

remodeling. In both Drosophila and mammalian cells, a

heterochromatin formation model suggested that the LLPS of

HP1a protein might be the result of the increased binding

degree of HP1a to chromatin polymer (30). Specifically, HP1a
forms small droplets through phase separation, which ‘seals’ a

specific genome, resulting in the target genes being silenced.

Studies have confirmed that protein phase separation is involved

in cellular structure and helps to maintain genome stability.

Furthermore, mutational analyses have revealed a finer, innate

compartmentalization in Hi-C experiments that likely reflects

contacts involving smaller domains/complexes. Proteins that

bridge (modified) DNA and histones in nucleosomal fibers.

The HP1a-H3K9me2/3 interaction represents the most

evolutionarily conserved paradigm that could drive and

generate the fundamental compartmentalization of the

interphase nucleus. This has implications for the mechanism

that maintains cellular identity to be a terminally differentiated

fibroblast or a pluripotent embryonic stem cell. Furthermore,

HP1a plays an important role in the formation and function of

CSCs (49). Tau protein plays an important role in the biology of

stress granules and the stress response of neurons. The results

show that the interaction of tau phosphorylation with RNA and

the RNA-binding protein TIA1 is sufficient to drive phase

separation of tau at physiological protein concentrations,

without the requirement of artificial crowding agents such as

PEG. Using this system, they further demonstrated that TIA1

also promotes tau oligomerization and vitrification.

Interestingly, they find that TIA1 exhibits a selective ability to

copartition with tau under physiological conditions, which

speaks to the importance of TIA1 in tau biology. Finally, they

observe that the tau produced by in vitro interactions with TIA1

and RNA is highly neurotoxic, unlike other conformers of tau

produced in vitro. The discovery will help advance drug

development to screen for potential compounds that prevent

the formation of tau oligomers (111).

Finally, the phase separation process had a prominent role in

the formation of the 3D genome conformation (112). Advances

in 3D chromatin folding technology have made genome

conformation play a prominent role in transcriptional

regulation. Characterizing genome structures has profound

implications for cancer (113). In adult glioblastoma, a new

relationship between 3D genome architecture and stemness

properties in GSCs has been reported. In particular, by
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integrating multiple genomics and structural genomics data

sets, it was discovered that there is an unexpected link between

immune-related genes and self-renewal programs in GBM.

CD276 is part of a stemness network in GSCs and can inhibit

self-renewal through antibody−drug conjugates. The 3D genome

structure could guide the functional characteristics of GSCs, and

CD276 inhibitors could decrease the GSC population in

GBM (109).

In the future, phase separation may regulate CSCs through

histone modification, chromosome remodeling, and 3D genome

architecture. Phase separation may weaken the tumorigenicity of

CSCs by regulating epigenetic modification, thereby inhibiting the

occurrence of cancer, and may achieve therapeutic tumorigenesis.

Various types of therapeutic strategies targeting CSCs have

been developed, including targeting cell surface markers, signal

transduction pathways, the microenvironment, and metabolic

patterns of CSCs, as well as other strategies, such as pro-CSC

differentiation and immunotherapy targeting CSCs. A

monoclonal antibody targeting CD133 exhibited a significant

killing effect on CD133+ GSCs (114). Many studies on the Notch

pathway in CSCs have shown that activation of Notch promotes

cell survival, self-renewal, and metastasis and inhibits apoptosis.

Aberrant Notch signaling (Notch1 and Notch4) promotes the

self-renewal and metastasis of breast and hepatocellular

carcinoma stem cells (115, 116). Sox2 belongs to the family of

high-mobility group transcription factors and is also a key

transcription factor in maintaining the self-renewal ability of

tumor-initiating cells (TICs). Knocking out Sox2 inhibits

glioblastoma cell proliferation and tumorigenicity (117).

Inhibiting Sox2 also decreased metastasis in invasive cutaneous

squamous cell carcinoma (SCC) (118).

Therefore, phase separation plays an important role in

regulating the stem cells of CSCs, and regulating phase

separation may become a potential strategy for targeted

therapy of CSCs. The phenomenon of phase separation in cells

has only discussed ‘structural encapsulation’ and ‘selective

enrichment and rejection’ but cannot explain how phase

separation is regulated in cells. Answering this question will

help us clarify the mechanism of phase separation in tumor

formation. Then, we can precisely block phase separation as

potential tumor targets. Thus, more investigation and a greater

understanding of phase separation are needed to generate novel

therapeutics for cancer.
Conclusions and perspectives

Phase separation does provide an attractive model by which

to explain the division of the nucleus and the regulation of the

many different biochemical reactions that take place in the

nucleus. Although most of the liquid condensates described

above were identified many years ago, it has only now become

possible to mechanistically dissect their dynamics during
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different biological processes, ranging from the transcriptional to

the translational level. However, an increasing number of

questions have also emerged. For example, what is the

underlying mechanism in the regulation of biomolecular

condensates by their material properties? How do disease-

associated mutations or PTMs regulate the physical properties

of condensates? How to regulate LLPS to achieve the desired

therapeutic CSCs remains to be explored. Overall, although the

field of LLPS is young and rapidly developing, this mechanism

has undoubtedly revolutionized our understanding of various

biological activities and tumor disease conditions. It is expected

that basic research in LLPS and oncological diseases will

continue to be refined and translated into clinical practice.
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