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Abstract

Macaı́ba palm seed kernel is a source of lipids and phenolic compounds. The objective of

this study was to evaluate the effects of macaı́ba palm seed kernel on anxiety, memory, and

oxidative stress in the brain of health and dyslipidemic rats. Forty rats were used, divided

into 4 groups (n = 10 each): control (CONT), dyslipidemic (DG), kernel (KG), and Dyslipi-

demic kernel (DKG). Dyslipidemia was induced using a high fat emulsion for 14 days before

treatment. KG and DKG received 1000 mg/kg of macaı́ba palm seed kernel per gavage for

28 days. After treatment, anxiety tests were carried out using the Open Field Test (OFT),

Elevated Plus Maze (EPM), and the Object Recognition Test (ORT) to assess memory. In

the animals’ brain tissue, levels of malondialdehyde (MDA) and total glutathione (GSH)

were quantified to determine oxidative stress. The data were treated with Two Way ANOVA

followed by Tukey (p <0.05). Results demonstrated that the animals treated with kernel real-

ized more rearing. DG and KG groomed less compared with CONT and DKG compared

with all groups in OFT. KG spent more time in aversive open arms compared with CONT

and DKG compared with all groups in EPM. Only DKG spent more time in the central area in

EMP. KG and DKG showed a reduction in the exploration rate and MDA values (p <0.05).

Data showed that macaı́ba palm seed kernel consumption induced anxiolytic-like behaviour

and decreased lipids peroxidation in rats’ brains. On the other hand, this consumption by

healthy and dyslipidemic animals compromises memory.
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Introduction

Lipids are increasingly recognized for their role in brain function, especially membrane lipids

involved in cell signaling. As part of neuronal composition, lipids can influence subjective per-

ception, mood, and emotional behavior. Long-term changes in diet can influence lipid compo-

sition in the brain, and can directly affect the release of neurotransmitters and neurotrophins

from presynaptic membranes, influencing both cognitive and motor functions. The anxio-

lytic/antidepressant effects of diet may result directly from an increase in the supply of lipids

which are involved in synaptic plasticity, preserving and improving cognitive functions [1–4].

A study involving different types of unsaturated lipids yielded protective effects for neural

tissues, preventing behavioral changes including depression and anxiety disorders in the treated

animals [5]. In animals treated with olive oil, was observed decreases in anxiety and depressive

behavior, in addition to long-term memory improvements [6]. A similar study treating animals

with fish oil reported improvements in anxiety, depression, and cognition behaviors [7].

Yet when consumed in excess, lipids can lead to metabolic disorders such as obesity which

is associated with brain disorders, and cognitive decline, a manifestation of neurodegenerative

disease [8–10]. An experimental study involving administration of palmitic acid, a saturated

fatty acid, augmented anxiety-like behavior in animals [11]. Animals fed high-fat diets (HFD)

reveal reduced levels of brain-derived neurotrophic factor in the hippocampus, reduced neuro-

genesis, and impaired learning as compared to animals fed standard diets [12–14]. Changes in

hypothalamic-pituitary-adrenal axis functions that comprise cognitive and behavioral func-

tions are often due to excessive consumption of lipids, causing deficiencies in emotional pro-

cesses and in stress response [15]. However, we do not know if dyslipidemia can induce brain

changes and how the consumption of food source of lipids and antioxidants compounds can

reverse possible damage.

Vegetable lipids present bioactive compounds and numerous associated properties of these

natural compounds in seed oils, we note phenolic compounds and carotenoids [16,17]. An

increasing number of studies associate the potential of lipids derived from seeds and kernels

with protective effects on the neurological system. Kernel, found in tropical regions, are rich in

plant diversity, and especially favor the discovery of new active ingredients [18–20].

Macaı́ba is the fruit of the macaibeira (Acrocomia intumescens Drude), a palm tree that natu-

rally occurs in northeastern Brazil. The fruit is typical of the region with exotic and intense fla-

vors and aromas. It presents a hard surrounding outer shell protecting a secondary starch layer

(mesocarp or pulp), and at the center of the fruit, a hard endocarp occurs with one or two ker-

nels. Kernel contains about 27% of lipid and a higher concentration of total phenolics [21–23].

There are few studies assessing the potential and quality of macaı́ba pulp and oil [22,24]. A

research confirmed the anti-inflammatory and diuretic activities of the pulp’s oil in rats [25].

However, there is no scientific evidence of the effect in human or animal health induced by the

consumption of macaı́ba palm seed kernel.

Based on the above, it is expected that the macaı́ba palm seed kernel will present protective

and antioxidant effects, with anxiolytic activity and memory preservation in health rats or with

dyslipidemia. The aim of this study was to evaluate the effects of macaı́ba palm seed kernel on

anxiety behavior and short-term memory in adult health and dyslipidemic Wistar rats.

Materials and methods

Seed kernel extraction from macaı́ba palm

The macaibeira fruits were obtained from palm trees located in the city of Areia, -6.963845 /

-35.749738, state of Paraı́ba, northeast region of Brazil. Registration in the national system for
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the management of genetic heritage and associated traditional knowledge (SISGEN):

ADD854A.

To obtain macaı́ba palm seed kernel flour, the peel and pulp was removed from the macaı́ba

fruit, chestnut was broken and kernel were removed. After obtaining the kernel, the films sur-

rounding the kernel were removed and taken to grind to obtain the flour. The flour was taken to a

drying oven with air circulation at 55˚C (± 1˚ C) during 24 hour. The flour was sieved to eliminate

larger grains; then stored in a vacuum and kept on refrigeration until the moment of use.

Determination (macaı́ba palm seed kernel) phenolic compounds and total

antioxidant activity

Extraction. The constituents of the macaı́ba palm seed kernel were extracted with 80% of

ethanol and evaluated for ABTS removal capacity, iron reducing activity (FRAP), total pheno-

lic and total flavonoids. One gram of macaı́ba palm seed kernel was inserted into a test tube

and 10 ml of solvent was added. The test tube was left at room temperature for 60 minutes,

and after filtration the volume was completed to 10 ml with the extraction solvent and stored

in a freezer (-18˚C) until analysis. All extractions were performed in triplicate.

Determination of total phenolic compounds (TPC). To estimate the total phenolic com-

pounds, the methodology described by Liu et al. [26] was used with minor modifications.

Briefly, 250 μl of extract was mixed with 1250 μl of a 1:10 diluted Folin–Ciocalteu reagent. The

solutions were mixed well and incubated at room temperature (27˚C) for 6 minutes. Then,

1000 μl of 7.5% sodium carbonate solution (Na2CO3) was added, and again incubated in a

bath at 50˚C for 5 minutes. The absorbance of the reaction mixtures was measured at 765 nm

using a spectrophotometer (BEL Photonics, Piracicaba, São Paulo, Brazil). The absorbance of

the extract was compared with a standard curve of gallic acid to estimate the total phenolic

compound (TPC) concentration in the sample. TPC were expressed in mg of gallic acid equiv-

alents (GAE) per hundred grams of macaı́ba palm seed kernel based on dry weight (DW).

Determination of total flavonoids. The total flavonoid content was measured using the

colorimetric assay developed by Zhishen et al. [27]. A known volume (0.5 ml) of the extract

was added to a test tube and 150 μl of 5% NaNO2 was added. After 5 minutes, 150 μL of 10%

AlCl3 was added; and after 6 minutes, 1 mL of NaOH 1 M, followed by the addition of 1.2 mL

of distilled water. The sample absorbance was read at 510 nm spectrophotometry (BEL Pho-

tonics, Piracicaba, São Paulo, Brazil). The absorbance of the extract was compared with a stan-

dard catechin curve to estimate the concentration of flavonoid contents in the sample. The

flavonoid content was expressed in mg of catechin equivalents (QE) per hundred grams of

macaı́ba palm seed kernel based on dry weight (DW).

Determination of total carotenoids. Total carotenoids were determined by the Higby

method [28]. The extracts were prepared using 1 g of macaı́ba palm seed kernel macerated in

10 mL of hexane PA and calcium carbonate, remaining protected from light for 12 hours

under refrigeration. Subsequently, centrifugation was performed at 5724 xg for 10 minutes for

later reading using a spectrophotometer (BEL Photonics, Piracicaba, São Paulo, Brazil) at 450

nm. The kernel extracts were previously macerated with 50% acetone, which was discarded,

and calcined sand was added. The results were calculated using the formula: Total carotenoids

= (A450 x 100)/(250 x L x W), where A450 = absorbance; L = width of the cuvette in cm; and

W = quotient of the sample mass in grams to the final dilution volume in mL.

Determination of total yellow flavonoids. Total yellow flavonoids were determined

according to the method of Francis [29]. The extracts were prepared using 1 g of the macaı́ba

palm seed kernel in 10 ml of extractive 95% ethanol/1.5 NHCl (85:15) solution, remaining pro-

tected from light for 12 hours under refrigeration. Afterwards, centrifugation was performed

PLOS ONE MacaÍba palm seed kernel consumption reduces anxiety and compromise memory in rat

PLOS ONE | https://doi.org/10.1371/journal.pone.0246184 March 17, 2021 3 / 19

https://doi.org/10.1371/journal.pone.0246184


at 7244 xg for 15 minutes, for later reading with a spectrophotometer (BEL Photonics, Piraci-

caba, São Paulo, Brazil) at 374 nm. The results were calculated using the formula: dilution fac-

tor x absorbance/76.6.

Antioxidant activity-FRAP method. The FRAP method was carried out according to

Benzie and Strain [30], with modifications proposed by Pulido et al. [31]. In this assay, 3.6 mL

of FRAP reagent (0.3 M, pH 3.6 acetate buffer, 10 mM TPTZ (2,4,6-Tris(2-pyridyl)-s-triazine),

and 20 mM ferric chloride) were mixed with 200 μl of diluted extract in distilled water and

incubated for 30 minutes at 37˚C. The FRAP solution was used as a reference reagent, and the

absorbance was read with a spectrophotometer (BEL Photonics, Piracicaba, São Paulo, Brazil)

at 593 nm. The results were expressed in μmol of trolox equivalents per gram of macaı́ba palm

seed kernel on a dry weight basis (DW) (μmol TE/g-1).

Antioxidant activity-ABTS method. The ABTS (2,2’-azino-bis (3-ethylbenzothiazoline-

6-sulfonic acid) diammonium salt) method was performed according to the methodology

described by Surveswaran et al. [32], with modifications. The ABTS radical was formed from a

reaction of 140 mM potassium persulfate with a 7 mM ABTS (2,20-azino-bis(3-ethylbenzothia-

zoline-6-sulfonic acid) diammonium salt stock solution, kept in the dark at room temperature

for 16 h. For analysis, the ABTS radical was diluted in distilled water until a solution with an

absorbance of 700nm ± 0.02 nm at 734 nm was obtained. A 100μL aliquot of each extract was

homogenized with 500μL of the ABTS radical. The absorbance of the samples was reading

with a spectrophotometer (BEL Photonics, Piracicaba, São Paulo, Brazil) at 734 nm after 6

minutes of reaction. The results were expressed in μmol of trolox equivalent per gram of

macaı́ba in dry weight (DW) (μmol TE/g-1). Where A0 is the absorbance of the control, and

for the absorbance of the sample, the effective concentration revealed a 50% radical inhibition

activity (IC50), expressed in mg extract/mL, which was determined from the graph of free radi-

cal scavenging activity (%) against the concentration of the extract.

Animals and diet

In this study, forty male Wistar rats weighing 200-250g were used from the breeding facility of the

Nutrition department of the Federal University of Pernambuco. The animals were housed in indi-

vidual metabolic cages, with controlled room temperature (22 ± 1˚C), a constant light-dark cycle

(12 hours each), humidity of ± 65%, and receiving feed and water ad libitum. Four groups were

formed (n = 10) according to the treatments: 1) Control Group (CONT)—treated with distilled

water; 2) dyslipidemic group (DG)—receiving a high fat emulsion (HFE) and distilled water; 3)

kernel group (KG)—receiving distilled water, and an macaı́ba palm seed kernel; and 4) dyslipi-

demic kernel group (DKG)—receiving a HFE, and macaı́ba palm seed kernel. Dyslipidemic

administrations in the DG and DKG dyslipidemic experimental groups began two weeks before

starting treatment with macaı́ba. The CONT and KG groups received distilled water in the same

proportion in this period; both administered for 14 days through an esophageal tube. Macaı́ba

palm seed kernel (1000 mg/kg of animal weight) was administered daily in the KG and DKG

groups, while CONT and DG received distilled water in the same proportion through an esoph-

ageal tube, during 4 weeks. All animals had access to food and water ad libitum. The experimental

protocol followed the ethical recommendations of the National Health Institute Bethesda

(BETHESDA, USA) for care and use of experimental animals, and was approved by the Ethics

Committee for Animal Use of the Federal University of Campina Grande #057–2016.

Induction of dyslipidemia

Before starting treatment, dyslipidemia according to the methodology adapted from Xu et al.

[33] was induced in the dyslipidemic groups, by means of an HFE. To prepare a 420 ml
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solution (HFE), we used: 168 g of lard, 4.70 g of cholesterol, 32.5 g of pasteurized powdered

egg yolk (Salto’s1), 8.4 g of bile acid, 42 ml of glycerol, 4.2 g of propiltiouracil and warm dis-

tilled water to complete the volume of 420 ml. The solution was stored in the refrigerator and

before use heated in a water bath at 42˚ C daily.

The HFE was administered through gavage (at 10 ml/kg of rat weight), once a day, for 14

days prior to the start of treatment. After this period, the animals no longer received HFE.

Behavioral tests

Open field test. At 48 hours from the end of treatments, all animals were submitted to

anxiety testing using the open field device. With a 40-watt incandescent lamp at its center, sus-

pended from a height of 46 cm from the floor, the “open field” consists of a circular metal

arena in white, about 1 meter in diameter, surrounded by a wall (40 cm height), and the floor

is subdivided into 17 fields; 3 concentric circles (respectively: 15, 34, and 55 cm in diameter),

subdivided into 16 segments, and a central circle. The open field is a test used to assess anxiety

behavior and exploratory activity in rats.

Each animal was placed at the center of the open field and observed for 10 minutes. During

this period, evaluations of ambulation; number of segment crossings by the animal (all four

legs), rearing, and grooming parameters were performed. The device was cleaned with 70%

alcohol and paper towels before starting the tests, and after each animal change, the arena was

cleaned with 10% alcohol and paper towels. Manipulation of the animals was always performed

by the same researcher. The sessions were recorded with a video camera installed on the ceiling.

Elevated Plus Maze Test (EPM)

Using the Elevated Plus Maze (EPM) test, anxiety behavior was also assessed. Each animal was

placed in a maze made of wood in the shape of a cross, elevated from the ground and formed

by two arms with walls and two open (perpendicular) arms. The frequency of entries and time

spent by the animal in each type of arm is analyzed. For this type of test, it is observed that the

animal tends to explore both types of arms, yet entering and staying for longer in the closed

arms. When the level of anxiety is higher, the percentage of entries and time spent by the ani-

mal in open arms is lower [34,35].

This test was performed with all experimental groups at 24 hours after the ORT. The animal

was placed in the center of the device, facing one of the closed arms, where free exploration

was allowed for 5 minutes. The following behavioral categories were analyzed: number of

entries into the open and closed arms, the time spent in each of the arms, and time spent in the

central area. The sessions were filmed in a low light environment with a video camera installed

on the ceiling.

Object recognition test

Twenty-four hours after the OFT, the object recognition test was performed, using the open

field apparatus (white metal circular arena, diameter 100 cm, height 46 cm), to assess the ani-

mals’ short-term memory. The test consists of first getting the animals used to the open field in

the absence of any object, where the can animals freely explore the arena for 10 minutes. After-

wards, in the training session, the animal is placed in the open field with object A1 (familiar

object) and object A2 (unfamiliar) where exploration is allowed for 10 minutes. After this

training session, at 180 minutes the short-term memory test is performed, where object A1

continues, and object A2 is replaced by object A3 (a new object), and an exploration time of 3

minutes. The animal’s exploration time involves sniffing and touching the object with its front

legs and/or snout [36]. We used heavy plastic objects with different colors and shapes.
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Before starting the test, the device, and objects are cleaned with 70% alcohol and after each

change of animals and objects, both the device and the objects themselves are cleaned with

10% alcohol and paper towels. All sessions are recorded with a video camera attached to the

device’s ceiling.

The results are expressed as a percentage of the total exploration time (computed in sec-

onds). Object recognition index determination is based on the proportion of new object explo-

ration to familiar object exploration (tnew/(tnew + tfamiliar)) [37].

Determination of macaı́ba palm seed kernel and brain fatty acid profiles

Lipid extraction. Two grams (2 g) of macaı́ba and each brain sample were weighed in a

50 ml Becker (wet sample) and then 30 ml of a chloroform: methanol (2: 1) mixture was

added. The contents were then transferred to a deep glass container (the side covered with alu-

minum foil) and stirred for 2 minutes with the help of a grinder. The mixture was filtered

through qualitative filter paper in a 100 ml graduated cylinder with a polished mouth. The ves-

sel walls were then washed with 10 ml of the chloroform: methanol solution which was filtered

with the previous volume. The total volume of the filtered extract from the graduated cylinder

was recorded with the cylinder closed, and to 20% of the final volume of the filtered extract,

1.5% sodium sulfate was added. The mixture was then stirred with the graduated cylinder

closed, and given time for the phases to separate. It was observed that the upper phase was

approximately 40% and the lower phase was approximately 60% of the total volume. The vol-

ume of the lower phase was recorded, and the upper phase was discarded by suction with a

graduated pipette. To quantify the lipids, a 5 ml aliquot of extract (lower phase) was separated

with a volumetric pipette and transferred to a previously weighed beaker. This was placed in

an oven at 105˚C, so that the solvent mixture could evaporate, taking care that the fat was not

degraded by the heat. After cooling in a desiccator, the beaker was weighed, and the weight of

fat residue was obtained from the difference [38].

Fatty acid methylation. An aliquot of the lipid extract was used, calculated for each sam-

ple according to the fat content found in the lipid measurement and performed according to

the Folch, Less and Stanley method [38], by adding 1 ml of internal standard (C19: 0) and a

saponification solution (KOH). The solution was then heated to reflux for 4 minutes. The esteri-

fication solution was added immediately afterwards, returning the solution to heating under

reflux for a further 3 minutes. Afterwards, the sample was allowed to cool before subsequent

washes with ether, hexane, and distilled water, obtaining an extract (with methyl esters and sol-

vents), which was conditioned in a properly identified amber glass until the solvents were

completely dried. After drying, a suspension in 1 ml of hexane was prepared and packed in a

flask for further chromatographic analysis. The aliquots of the saponification and esterification

solutions were determined according to the methodology described by Hartman and Lago [39].

Gas chromatography analysis. The analyses were performed in a gas chromatograph

(VARIAN 430-GC, California, USA), coupled to a fused silica capillary column (CP WAX 52

CB, VARIAN, California, USA) with dimensions of 60 m × 0.25 mm; and a 0.25mm film thick-

ness was used with helium as the carrier gas (flow 1ml/minute). The initial oven temperature

was 100˚C programmed to reach 240˚C, increasing 2.5˚C per minute for 30 minutes, totaling

86 minutes. The injector temperature was maintained at 250˚C and the detector at 260˚C.

Esterified extract, in 1.0 μl aliquots, was injected into the Split/Splitless injector. Chromato-

grams were recorded using the Galaxie Chromatography Data System software. Fatty acids

were identified by comparing the retention times of the methyl esters of the samples with

Supelco Mix C4-24/C19 standards. The fatty acid results were quantified by normalizing

methyl ester areas and are expressed in percentage per area.
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Oxidative stress markers

At the end of the experimental tests, following a six-hour fast, the animals were anesthetized

with ketamine hydrochloride (50mg/kg) and xylazine (20mg/kg), and then euthanized by car-

diac puncture. The brain was then removed for analysis to determine total glutathione and

malondialdehyde.

Determination of total glutathione (GSH). The total content of glutathione (GSH) was

quantified as described by Anderson [40]. The brain tissue samples were broken up into small

pieces and then homogenized (Ultra Stirrer Homogenizer, Model 80) with 5% trichloroacetic

acid in a 1:20 (w / v) ratio, in an ice bath. The homogenates were centrifuged at 9000 xg (15

minutes at 4˚C) and the supernatants used to quantify the total glutathione content. In a

96-well plate, the homogenous supernatant in duplicate, PBS-EDTA buffer and dithiobisnitro-

benzoic acid (DTNB) were added, promoting the transformation from reduced glutathione

(GSH) to oxidized glutathione (GSSG). With the addition nicotinamide adenine dinucleotide

phosphate (NADPH) in each well, there was a reduction in GSSG by the action of glutathione

reductase, constituting an essential redox cycle to maintain the integrity of the cell protective

system. Total glutathione was measured immediately in a Polaris1microplate reader (Celer

Biotecnologia S. A.) at 412 nm. The results were expressed as nmol/g of tissue. All reagents

were purchased by Sigma-Aldrich1 (St Louis, MO, USA).

Determination of malondialdehyde (MDA) levels

Malondialdehyde (MDA) concentrations were determined in the animals’ brain tissue as

described by Esterbauer and Cheeseman [41]. The samples were thawed, chopped and homog-

enized (Ultra Stirrer Homogenizer, Model 80) with Tris HCl buffer (pH = 7.4) at a 1: 5 (m/v)

ratio. The homogenate obtained was centrifuged at 2500 g for 10 minutes at 4˚C, when chro-

mogenic reagent (1-methyl-2-phenylindol 10.3mM and acetonitrile 3:1) and hydrochloric acid

(HCl—37%) were then added to the supernatant. Then, placed in a water bath, with agitation,

at 45˚ C, for 40 minutes and, subsequently, taken to centrifugation at 2500 xg, for 5 minutes, at

4˚C. The MDA content was calculated through interpolation with a standard 1,1,3,3—tetra-

ethoxypropane (10mM) curve, hydrolyzed during incubation with HCl at 45˚C for 40 min,

generating MDA. One molecule of MDA reacts with two molecules of the chromogenic reac-

tive, 1-methyl-2-phenylindole, to obtain a stable chromophore. The absorbance reading was

performed on a Polaris1microplate reader (Celer Biotecnologia S. A.) at 586 nm, and data

expressed in nmol/g of tissue. All reagents were purchased by Sigma-Aldrich1 (St Louis, MO,

USA).

Chemicals

2,20-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt—ABTS (Chemical

formula C18H24N6O6S4; Sigma); 2,4,6-Tris(2-pyridyl)-s-triazine—TPTZ (Chemical formula

C18H12N6; Sigma); (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid–Trolox

(Chemical formula C14H18O4; Sigma); β-Nicotinamide adenine dinucleotide 20-phosphate

reduced tetrasodium salt hydrate—NADPH (Chemical formula C21H26Na4O14P3H2O;

Sigma); Acetone (Chemical formula CH3COCH3; VETEC); Aluminum Chloride (Chemical

formula AlCl3; NEON); Calcium carbonate (Chemical formula CaCO3; NEON); Catechin

Hydrate (Chemical formula C15H14
. 6H2O; Sigma); Chloroform (Chemical formula CHCl3;

VETEC); DTNB 5,50-Dithiobis (2-nitrobenzoic acid) (Chemical formula C14H8N2O8S2;

Sigma); Ethanol (Chemical formula C2H5OH; VETEC); Ether (Chemical formula (C2H5)2O;

CLAE J.T. Baker—Plillipsburg, USA); Ferric chloride hexahydrate (Chemical formula

FeCl3�6H2O; NEON); Folin–Ciocalteau’s phenol reagente (Sigma); Gallic Acid (Chemical
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formula (HO)3C6H2CO2H; Sigma); Glacial Acetic acid (Chemical formula CH3CO2H;

VETEC); Glutathione reductase (Chemical formula C10H17N3O6S; Sigma); Hexane (Chemical

formula C6H14; CLAE J.T. Baker—Plillipsburg, USA); Hydrochloric Acid (Chemical formula

HCL; NEON); Methanol (Chemical formula CH4O; CLAE J.T. Baker—Plillipsburg, USA);

Potassium hidroxide (Chemical formula KOH; VETEC); Potassium Persulfate (Chemical for-

mula K2S208; NEON); Sodium acetate (Chemical formula CH3COONa; NEON); Sodium car-

bonate (Chemical formula Na2CO3; NEON); Sodium hydroxide (Chemical formula NaOH;

NEON); Sodium Nitrite (Chemical formula NaNO2; NEON); Sodium sulfate (Chemical for-

mula Na2SO4; F. MAIA); Trichloroacetic acid–TCA (Chemical formula C2HCl3O2; Sigma).

Statistical analysis

The results were expressed as mean ± standard deviation. The ANOVA Two Way Analysis of

Variance test was used, followed by the Tukey post-test. Statistically significant differences

were considered with p< 0.05. All data were analyzed using GraphPad Prism1 version 5.01

(GraphPad Software Inc., San Diego, CA, USA).

Results

Determination of phenolic compounds, total antioxidant activity and fatty

acid composition of macaı́ba palm seed kernel

The data with the determination of phenolic compounds and total antioxidant activity of

macaı́ba palm seed kernel are reported in Table 1. The fatty acid composition of macaı́ba palm

seed kernel is shown in Table 2.

Effects of macaı́ba consumption on anxiety

Open field test. According to the results, DG, KG and DKG showed less ambulation than

CONT (Fig 1A). The statistical analysis by two-way ANOVA showed significant effects of dys-

lipidemia [F(1.24) = 19.94, p = 0.0002], no significant effects of kernel consumption [F(1.24) =

3.372, p = 0.0787], and interaction between dyslipidemia and kernel consumption [F(1.24) =

10.67, p = 0.0033].

Both groups treated with macaı́ba realized more rearing than CONT and DG (Fig 1B).

Two-way ANOVA statistical analysis showed non-significant effects of dyslipidemia [F(1.32) =

1.716, p = 0.1995], significant result by macaı́ba consumption [F(1.32) = 55.38, p< 0.0001], and

no interaction between dyslipidemia and kernel consumption [F(1.32) = 1.582 p = 0.2176].

The grooming was decreased in DG and KG compared to CONT and DKG compared to all

groups (Fig 1C). Two-way ANOVA statistical analysis showed significant difference of dyslipi-

demia [F(1.52) = 29.85, p<0.0001], kernel consumption [F(1.52) = 38.34, p< 0.0001], and no

interaction between dyslipidemia and kernel consumption [F(1.52) = 1.194 p = 0.2796].

Table 1. Total phenolic, flavonoids, carotenoids content and antioxidant activities of macaı́ba palm seed kernel.

Macaı́ba palm seed kernel

Total phenolics (mg GAE/100g) 50.90 (±0.00)

Total flavonoids (mg CE/100g) 39.38 (±0.00)

Yellow flavonoids (mg/100g) 0.37 (±0.01)

Total carotenoids (mg/100g) 0.39 (±0.00)

Total Antioxidant Activities

FRAP (μmol TE/g) 0.06 (±0.00)

ABTS (μmol TE/g) 0.85 (±0,00)

https://doi.org/10.1371/journal.pone.0246184.t001
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Table 2. Fatty acids1 composition of macaı́ba palm seed kernel.

FATTY ACIDS

No. of Carbon Atom MACAÍBA PALM SEED KERNEL

SATURATED

Caprylic C8:0 4.02

Pelargonic C9:0 0.01

Capric C10:0 3.84

Undecylic C11:0 0.05

Lauric C12:0 28.50

Tridecylic C13:0 0.06

Myristic C14:0 11.28

Pentadecylic C15:0 0.03

Palmitic C16:0 9.73

Margaric C17:0 0.05

Stearic C18:0 4.93

Behenic C22:0 0.09

Tricosylic C23:0 0.02

Lignoceric C24:0 0.10

TOTAL 62.71

MONOUNSATURATED

Myristoleic C14:1 ω-5 -

Palmitoleic C16:1 ω-7 0.06

Heptadecenoic C17:1 ω-7 -

Oleic C18:1 ω-9 27.74

Vaccenic C18:1 ω-7 -

Gondoic C20:1 ω-9 0.23

Erucic C22:1 ω-9 -

TOTAL 28.03

POLYUNSATURATED

Linoleic C18:2 ω-6 2.98

Alpha Linolenic C18:3 ω-3 -

Eicosadienoic C20:2 ω-6 -

Dihomo Gamma Linoleic C20:3 ω-6 -

Eicosatrienoic C20:3 ω-3 -

Arachidonic C20:4 ω-6 -

Eicosapentaenoic (EPA) C20:5 ω-3 -

Adrenic C22:4 ω-6 -

Docosapentaenoic (DPA) C22:5 ω-3 -

Docasahexaenoic (DHA) C22:6 ω-3 -

TOTAL 2.98

UFA/SFA Ratio 0.49

MUFA/SFA Ratio 0.45

PUFA/SFA Ratio 0.05

Total of fatty acid ω-9 27.97

Total of fatty acid ω-6 2.98

Total of fatty acid ω-3 -

1Fatty acids in g/100 g of total fatty acids. SFA: Saturated fatty acids; MUFA: Monounsaturated fatty acids; PUFA: Polyunsaturated fatty acids; UFA: Unsaturated fatty

acids (MUFA + PUFA).

https://doi.org/10.1371/journal.pone.0246184.t002
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Elevated plus maze test (EPM). KG and DKG groups presented decreased entries in the

open arms as compared to the CONT and DG groups (Fig 2A) (p<0.05). DG group also

showed a reduced number of entries than CONT (p<0.05). The statistical analysis by two-

way ANOVA showed significant effects of dyslipidemia [F(1.44) = 3.953, p = 0.05], kernel con-

sumption [F(1.44) = 92.62, p< 0.0001], and interaction between dyslipidemia and kernel con-

sumption [F(1.44) = 327.6, p = 0.008].

Both groups treated with macaı́ba palm seed kernel (KG and DKG) spent more time in

open arms (p<0.05) as compared to CONT and DG groups (Fig 2B). The statistical analysis of

EPM data by two-way ANOVA showed significant effects of dyslipidemia [F(1.52) = 210.5,

p< 0.0001], kernel consumption [F(1.52) = 1257, p< 0.0001], and interaction between dysli-

pidemia and kernel consumption [F(1.52) = 327.6, p< 0.0001].

Consistent with these results, DKG group stayed longer in the central area when compared

to all groups (p<0.05) (Fig 2C). Two-way ANOVA statistical analysis showed significant

effects of dyslipidemia [F(1.44) = 27.92, p< 0.0001], kernel consumption [F(1.44) = 14.5,

p = 0.0004], and no interaction between dyslipidemia and kernel consumption [F(1.44) =

0.8694 p = 0.3562].

Fig 1. Effect of macaı́ba palm seed kernel on the (A) ambulation, (B) rearing, and (C) grooming parameters in the anxiety test using the open field apparatus. Values

expressed as mean and standard deviation (Two way ANOVA); Legend: CONT = Control group; DG = Dyslipidemic group; KG = AFS treated group; DKG = Group

treated with HFE and AFS. Different letters mean significant difference; p<0.05.

https://doi.org/10.1371/journal.pone.0246184.g001

Fig 2. Effect of macaı́ba palm seed kernel on (A) number of entries in the open arms, (B) time spent in the open arms, and (C) time spent in the central area using the

elevated plus maze apparatus. Values expressed as mean and standard deviation (Two way ANOVA); Legend: CONT = Control group; DG = Dyslipidemic group;

KG = AFS treated group; DKG = Group treated with HFE and AFS. Different letters mean significant difference; p<0.05.

https://doi.org/10.1371/journal.pone.0246184.g002
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Object recognition test. As for the object recognition test, a reduction in the rate of

exploration of the new object was observed in the KG and DKG groups when compared to

CONT and DG (Fig 3). Two-way ANOVA statistical analysis showed non-significant effects of

dyslipidemia [F(1.44) = 0.8502, p = 0.3615], significant effects of kernel consumption [F(1.44)

= 21.26, p< 0.0001], and no interaction between dyslipidemia and kernel consumption [F

(1.44) = 0.8502 p = 0.8188].

Oxidative stress markers

Total glutathione and malondialdehyde (MDA) content. The brains of dyslipidemic

animals treated with macaı́ba—the DKG group presented a higher concentration of glutathi-

one than the KG group (p <0.05) (Fig 4A). As for MDA levels in the animals’ brains, the ani-

mals treated with macaı́ba palm seed kernel—the KG and DKG groups presented significant

reductions as compared to the CONT and DG groups (p<0.05) (Fig 4B).

Fatty acid composition of the brain

According to the fatty acid profile results for the animals’ brains (Table 3), it can be seen that

in relation to saturated fatty acids, the CONT group presented a greater amount of myristic

acid in the brain as compared to the DG group, and the CONT, KG, and DKG groups pre-

sented higher values of palmitic acid compared to the DG group. Stearic acid was also found in

the animals’ brains, and the animals in the KG and DKG groups presented higher concentra-

tions than the DG group. For monounsaturated fatty acids, the DG group presented higher

values of elaidic and eicosanoic acids as compared to the KG and DKG groups. As for palmito-

leic acid, the DG group presented higher concentrations compared to the CONT and KG

groups.

Higher values of oleic acid were found in the CONT and DG groups, in relation to the KG

and DKG groups. For polyunsaturates, the CONT and DG groups presented a greater amount

of linoleic acid in the brain tissue, (the CONT group as compared to the KG group, and the

DG group as compared to the KG and DKG groups). Eicosatetraenoic acid was also found in

Fig 3. Effect of macaı́ba palm seed kernel on the exploration rate in the short-term memory test. Values expressed

as mean and standard deviation (Two way ANOVA); Legend: CONT = Control group; DG = Dyslipidemic group;

KG = AFS treated group; DKG = Group treated with HFE and AFS. Different letters mean significant difference; p

<0.05.

https://doi.org/10.1371/journal.pone.0246184.g003

PLOS ONE MacaÍba palm seed kernel consumption reduces anxiety and compromise memory in rat

PLOS ONE | https://doi.org/10.1371/journal.pone.0246184 March 17, 2021 11 / 19

https://doi.org/10.1371/journal.pone.0246184.g003
https://doi.org/10.1371/journal.pone.0246184


the animals’ brains, and the KG and DKG groups presented higher values than the DG group.

When compared to the CONT and DG groups, the groups supplemented with macaı́ba pre-

sented lower values of linoleic and eicosatetraenoic acids in brain tissue.

Table 3. Brain fatty acids composition of rats treated with macaı́ba palm seed kernel.

GROUPS

FATTY ACIDS NO. OF CARBON CONT DG KG DKG

SATURATED

Myristic acid (14:0) 1.32 ± 0.01a 1.10±0.01b 1.25±0.22ab 1.28±0.03ab

Palmitic acid (16:0) 22.94±1.21a 21.96±0.02b 23.17±0.17a 23.16±0.03a

Stearic acid (18:0) 21.87±0.01a 21.69±0.01a 22.26±0.13b 22.27±0.21b

TOTAL 46.13 44.75 46.68 46.71

MUFAS

Palmitoleic acid (16:1) 1.10±0.05a 1.28±0.01b 1.01±0.13a 1.15±0.07ab

Elaidic acid (18:1n9t) 5.57±0.20ab 5.89±0.02a 5.51±0.14b 5.45±0.18b

Oleic acid (18:1n9c) 22.50±0.08ab 23.61±0.02a 21.90±0.46b 21.39±0.69b

Eicosanoic acid (20:1) 3.88±0.23ab 4.26±0.01a 3.75±0.32b 3.72±0.05b

TOTAL 33.05 35.04 32.17 31.71

PUFAS

Linoleic acid (18:2n6c) 1.94±0.02a 2.14±0.02a 1.43±0,07b 1.39±0,14b

Eicosatetraenoic acid (20:4n6) 14.31±0.53ab 13. ±0.01a 14,80±0,84b 15.39±0.70b

Docosahexaenoic acid (22:6n3) 4.56±0.32a 4.78±0.01a 4.92±0.19a 4.79±0.17a

TOTAL 20.81 20.20 21.15 21.57

AGP/AGS 0.45 0.45 0.45 0.46

CONT: Control group; DG: Dislipidemic group; KG: Treated with macaı́ba palm seed kernel; DKG: Dislipidemic rats treated with macaı́ba palm seed kernel. MUFAS:

Monounsaturated fatty acids; PUFAS: Polyunsaturated fatty acids. One Way Anova, p<0,05. Different letters mean significant difference.

https://doi.org/10.1371/journal.pone.0246184.t003

Fig 4. MDA and GSH levels in the brain of rats treated with macaı́ba palm seed kernel. Values expressed as mean and standard deviation (Two way ANOVA);

Legend: CONT = Control group; DG = Dyslipidemic group; KG = AFS treated group; DKG = Group treated with HFE and AFS. Different letters mean significant

difference; p<0.05.

https://doi.org/10.1371/journal.pone.0246184.g004
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Discussion

In the present study, the parameters of anxiety, memory, and lipid peroxidation in the brains

of healthy and dyslipidemic rats treated with macaı́ba were analyzed. The results indicate that

macaı́ba palm seed kernel, when offered to healthy and dyslipidemic rats, reduces anxiety and

decreases oxidative stress in the brain of the animals, this, due to the reduction of lipid peroxi-

dation. However, the diet promoted lower memory performance in the animals during the

object recognition test.

To evaluate the anxiety parameters in the present study we used the open field and the ele-

vated plus maze. In the open field higher rearings and less grooming in the groups treated

macaı́ba was observed. Grooming is related to aversive situations. Anxious animals groom

more often [42]. Warneke et al., [43] treated rats with a cafeteria diet and observed an increase

in grooming in adult rats when they were exposed to EPM and no difference when used OF.

Cafeteria diet is composed of palatable foods, such as cookies, chocolate and bread, which are

not sources of antioxidants compounds such as macaı́ba palm seed kernel.

In the present work we also exposed the rats to the EPM. The EPM is a widely used anxiety

model [44–46], and has been validated by Pellow et al. [35] in behavioral, physiological, and

pharmacological approaches. The DKG group animals stayed longer in the central area as

compared to all groups. The KG and DKG animals presented fewer entries into the open arms,

but the time spent in the open arms was longer compared to CONT and DG. Rodents present

an aversion to open and unprotected spaces, and animals that spend more time in open and

unprotected spaces exhibit anxiolytic-like behavior [47]. A similar result was observed in a

study that treated hypercholesterolemic animals with grape seed extract for four months. The

EPM test demonstrated that grape seed extract increases the time spent in the open arms as

compared to the hypercholesterolemic rats [48]. Both the grape seed and the macaı́ba palm

seed kernel are sources of antioxidant compounds, besides that, macaı́ba palm seed kernel

presents a variety of lipids.

An increase in oxidative stress could induce abnormalities and changes in membrane lipids

and proteins [49]. Anxiety, as well as other neurobehavioral changes, can be mediated by oxi-

dative stress damages in the brain [50]. Oxidative stress is an important factor in development

of neurodegenerative and neuropsychiatric diseases, including stress and anxiety [51]. Due to

the brain’s oxygen consumption, relatively low antioxidant defenses, and high fat content, this

tissue is very susceptible to damage caused by oxidative stress [52]. Considering the role of oxi-

dative stress in anxiety-like behavior, oxidative stress markers and antioxidant concentrations

have been evaluated in various animal studies [53]. The results demonstrate that higher levels

of MDA in the neural tissue are predictive of anxiogenic-like behavior [44,54].

Reduction of oxidative stress in the brain tissue of the rats was demonstrated by the

decrease of MDA levels in both treated groups compared with CONT and DKG. MDA is an

oxidative damage product of lipid peroxidation [41]. The DKG presented an increase in brain

GSH levels compared to all groups. The components of the palm seed kernel may have potenti-

ated this effect in DG. GSH is an essential cellular antioxidant that plays a key role in the defense

of brain cells against oxidative stress [55,56]. No significant changes were observed in the levels

of MDA and GSH in the DG, suggesting that the brain is not yet under cellular stress. However,

treatment with macaı́ba palm seed kernel improved the antioxidant effect and reduced levels of

oxidative stress. This also occurred in a study in which there was no increase in the production

of ROS (H2O2) of the soleus muscle fibers in rats fed during a 14-day high-fat diet [57].

This decrease in oxidative stress observed in the rats’ brains treated with macaı́ba are justi-

fied by the presence of phenolics and carotenoids in its composition. The presence of antioxi-

dant compounds in fruits and seeds with antioxidant activity provide protection against
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oxidative stress, act synergistically, and provide better protection for cellular components [58–

61]. Flavonoids, in turn, act in suppressing the release of cytokines, such as IL-1β and TNF-α,

control the exposure of nitric oxide and inhibit the activation of NADPH oxidase, regulating

an activity of clinical and therapeutic transcription factors related to oxidation [62–64]. A sim-

ilar result was observed by Batool el al. [57], in which animals were treated with almond (Pru-
nus amygdalus) for 28 days. After treatment, the animals received an injection of scopolamine,

a drug that reduces the antioxidant activity of certain enzymes and induces oxidative stress

[65]. The almond consumption was able to reduce oxidative stress in the animals’ brains,

equivalent to the results found in the present study. Domı́nguez et al. [66] also observed that

the consumption of pecan oil (Carya illinoinensis) by rats fed high fat diets, reduces oxidative

stress. Cavalieri et al., [67] observed a significant increase in MDA and ROS production in the

brain in the control and HFD (high-fat diet) groups, with the increase in the animals’ age,

observed up to 18 weeks of treatment. However, for the HFD group, this increase was observed

earlier, starting from the third week, and the results were greater each week also in the HFD

group. A significant decrease in GSH and GSH / GSSG was observed at 12 weeks in the control

group. In the HFD group, this decrease was anticipated at 3 weeks.

The present study also evaluated the influence of macaı́ba palm seed kernel on memory

tasks. Learning processes are dependent on neurogenesis, especially in the hippocampus and

cortex where newly formed neurons are recruited to perform pre-existing neural activities

[68,69]. In addition, increased levels of acetylcholine in the frontal cortex and hippocampus

are related to memory improvement through the cholinergic system [70,71]. Evidence suggests

that eicosatetraenoic acid (ARA) and docosahexaenoic acid (DHA) increase the release of ace-

tylcholine, improving the cholinergic system which is involved in long-term potentiation,

modulation processes, and synaptic plasticity [72,73]. In this study, the administration of

macaı́ba palm seed kernel in both healthy and dyslipidemic rats led to the impairment of

memory tasks in the object recognition test (ORT). ARA was found in higher concentrations

in the brains of the animals receiving kernel as compared to the DG group. However there was

no significant increase in DHA levels. A study [73] revealed that the MUFAs and PUFAS pres-

ent in the cashew nut increase levels of DHA in animals’ brains, and are associated with mem-

ory facilitation. The glutamatergic system is also believed to be involved in cognitive function

improvement related to the hippocampus caused by increased DHA [74].

It was observed that the KG group presented lower levels of MUFA (2.7% and 6.7%) com-

pared to CONT and DG groups respectively. The DKG group revealed lower levels of MUFA

(4% and 9.5%) respectively compared to the CONT and DG groups. In addition to these, the

content of linoleic acid in the brain was lower in both groups treated with macaı́ba palm seed

kernel as compared to the two control groups, and revealed lower levels of oleic acid as com-

pared to the DG group. These findings demonstrate that healthy animals treated with macaı́ba

palm seed kernel reveal a reduction in MUFAs in the brain, which is worsened when dyslipide-

mia is present. Both MUFAs and PUFAs are associated with effects in multiple neurotransmit-

ter systems; such as the glutamatergic system, the dopaminergic system, the noradrenergic

system and the serotonergic system [75]. The memory loss presented in the present study can

be explained by the fact that macaı́ba palm seed kernel does not present large amounts of

MUFA or PUFA in its composition. An experimental study treating healthy animals with

macaı́ba, which contain high concentrations of unsaturated fatty acids, revealed increased lev-

els of acetylcholine in the brain and improved memory [76]. In contrast, diets rich in saturated

fatty acids and total fat are related to lower brain levels of brain-derived neurotrophic factor

(BDNF),to neuronal plasticity, and to cognitive decline [11,77]. These findings may justify the

results found in the present study, in which the fatty acids present in the macaı́ba palm seed

kernel compromised the animals’ learning in the memory test.
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Conclusion

Data showed that the consumption of macaı́ba palm seed kernel reduced lipid peroxidation in

brains and induced anxiolytic-like behaviour in health and dyslipidemic rats.

On the other hand, macaı́ba palm seed kernel consumption compromised the rats’ learning

and memory performance. To better elucidate this mechanism of memory impairment, future

analyzes measuring brain-derived neurotrophic factor and neurotransmitters can be

performed.

Supporting information

S1 Data.

(XLSX)

Author Contributions

Data curation: Roberta Cristina de França Silva, Mikaelle Albuquerque de Souza, Jaielison

Yandro Pereira da Silva, Carolina da Silva Ponciano, Daline Fernandes de Souza Araújo,
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