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FusionAI: Predicting fusion breakpoint
from DNA sequence with deep learning

Pora Kim,1,6,7,* Hua Tan,1,6 Jiajia Liu,1,4 Mengyuan Yang,1,5 and Xiaobo Zhou1,2,3,*

SUMMARY

Identifying the molecular mechanisms related to genomic breakage is an important
goal of cancer mechanism studies. Among diverse locations of structural variants,
fusion genes, which have the breakpoints in the gene bodies and are typically iden-
tified from the split reads of RNA-seq data, can provide a highlighted structural
variant resource for studying the genomic breakageswith expression and potential
pathogenic impacts. In this study, we developed FusionAI, which utilizes deep
learning topredict gene fusion breakpoints basedonDNA sequence and let us iden-
tify fusion breakage code and genomic context. FusionAI leverages the known
fusion breakpoints to provide a prediction model of the fusion genes from the pri-
mary genomic sequences via deep learning, thereby helping researchers a more ac-
curate selection of fusion genes and better understand genomic breakage.

INTRODUCTION

Identifying the molecular mechanisms related to the genomic breakage is one of the important goals of

disease biology studies to understand the origin of new genes and aberrant functional features from

broken genomes. Among diverse locations of structural variants, breakpoints of fusion genes are located

in the gene bodies. Fusion genes are formedmainly through the chromosomal rearrangements initiated by

DNA double-strand breakages. Due to the cost-effectiveness (data creation) and analysis (interpretation),

and usage (diagnosis), there is a huge amount of RNA-seq data accumulated to date. Fusion genes are usu-

ally identified from the split reads (unmapped reads) of RNA-seq data as the form of chimeric transcripts.

These expressed fusion genes can provide a highlighted structural variant resource for studying the

genomic breakages with expression and thereby potential pathogenic impacts. Indeed, the broken

gene context of fusion genes provided the aberrant functional clues to study disease pathogenesis, spe-

cifically in cancer (Kim et al., 2020). However, to predict fusion genes correctly, an inherent limitation of

RNA-seq data and analyses are restricted by diverse combinations of limiting factors, such as different con-

ditions of sequencing depth, read length, read alignment tools and software options, filtering criteria, and

etc., which create many false positives. Most of all, even though, if there is a robust, reproducible, and un-

biased method, we cannot identify the fusion genes that were lowly expressed. Therefore, developing the

sequencing-free prediction method of fusion genes would be helpful and may provide new insights into

the genomic breakage phenomenon in the cell.

Motivated by recent success in the use of deep learning approaches to predict the genomic regulatory el-

ements and alternative splice events from the genomic context (Jaganathan et al., 2019; Zhou and Troyan-

skaya, 2015), we hypothesized that the exon junctional breakpoints of known fusion genes identified from

the split reads of RNA-seq data can be used to construct a deep-learningmodel of predicting the breakage

tendency. Because it is very rare to have and analyze the real genomic breakpoints of fusion genes from the

matched samples’ RNA-seq and whole-genome sequencing (WGS) data, it is hard to have enough number

of fusion events that have the information about the real genomic breakpoints to build a deep learning

model. Furthermore, real genomic breakpoints of fusion genes are usually located in the introns from a

larger percentage across the genome than exons as 1% versus 24% or across transcriptome (4% versus

96%), respectively. Accordingly, the breakpoints at the fusion transcripts are located at the exon junction

boundaries. Therefore, if we build themodel from the RNA-sequence context, there would be no chance to

identify the genomic sequence features relating to the DNA double-strand breakage but may have more

chance to identify some features relating to alternative splicing events, which is very sensitive to the exon

junction boundaries. However, if we study based on the intron sequence that has the real genomic

breakage near to the chimeric exon junctions, then there is a chance to identify genomic breakage features.
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To test our hypothesis, we developed FusionAI, a deep residual neural network that predicts whether a

fusion gene breakpoint at the exon junction-junction area predicted from RNA-seq data will be a potential

fusion gene breakpoint or not, from the sole input of the primary DNA sequence. Through FusionAI, we

also want to understand the genomic features that were highly enriched in the genomic breakpoint

area. FusionAI consists of a deep neural network (DNN) model that classifies between fusion-positive

and -negative breakpoints on the basis of DNA sequences. We used the fusion genes that have exon junc-

tion-junction breakpoints in both fusion partner genes of The Cancer Genome Atlas (TCGA) (Cancer

Genome Atlas Research et al., 2013) among nine different combinations of fusion breakpoint location an-

notated from FusionGDB (Kim and Zhou, 2019) on hg19 genome version (Figure 1A). Among �48K human

fusion gene breakpoints from FusionGDB, there were �33K of fusion breakpoints from TCGA. Of these

TCGA fusions, there were �26K fusions which have the breakpoints located at the exon junction-junction

positions. We used these 26K fusions as the positive data. For the negative data, we made pseudo fusion

breakpoint sequences by stringent criteria with a similar number of �26K (Figure 1B). Then, we divided

these total �52K fusions (�26K positives and �26K negatives) into 70% (�18K positives and �18K nega-

tives) and 30% (�8K positives and �8K negatives) for the training and test data sets, and trained and built

the FusionAI. The input is total 20 kb length DNA sequence from combining of G 5kb flanking sequence

from two breakpoints (Figure 1C). The accuracies for training and test datasets were 97.4% (AUROC =

0.9962) and 90.8% (AUROC = 0.9706) with 0.12 and 0.42 error rate, respectively (Figure 1D).

Except for this validation using the internal independent test dataset of 16K fusion events, we also evalu-

ated the performance of FusionAI by applying it to multiple external independent datasets. Those are

experimentally validated fusion gene datasets such as validated 2200 fusion genes from 675 human cancer

A

D

B

C

Figure 1. Overview of FusionAI

(A) The investigation of fusion gene breakpoints of 48K FGs from FusionGDB identified the BP location across the human

genome.

(B) Making training and test datasets of fusion-positive and -negative breakpoints.

(C) Diagram of fusion gene breakpoints classification by FusionAI.

(D) Effect of the size of the input sequence context on the accuracy.
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cell-lines (Klijn et al., 2015), and Sanger sequencing-based fusion genes in Entrez from ChiTaRs-3.1 (Gor-

ohovski et al., 2017). Furthermore, to see the difference of FusionAI scores between cancer and normal

population, we applied FusionAI to the fusion events from a non-disease population of Genotype-Tissue

Expression (GTEx) (Consortium et al., 2017; Singh et al., 2020). Next, to check the difference of FusionAI

scores between RNA-seq data-based fusions and potential fusions from the WGS data, we ran FusionAI

to the potential fusion genes that might be derived from the structural variants of The Genome Aggrega-

tion Database (genomAD) (Collins et al., 2020) annotated from FGviewer (Kim et al., 2020). From these val-

idations to the real data, we noticed that the application of FusionAI increased the specificity of fusion gene

prediction. To identify the genomic context that has an impact on classifying fusion or not, we investigated

the feature importance scores of 20 nt window across 20 kb sequence. Naturally, the feature importance (FI)

scores reflected the output scores of FusionAI well for classifying fusion-positives and -negatives. Specif-

ically, we studied whether there is a significant enrichment of top 1% (high) FI scores in the fusion-positive

sequence compared to the fusion-negative sequence. Across the fusion-positive 20kb sequence, we inves-

tigated the overlap with 44 human genomic sequence features in diverse categories such as virus integra-

tion sites, multiple types of repeats, structural variant regions, specific chromatin stated regions, and

expression regulating regions. Most of all, from these top 1% FI scored regions of 322 transcription factor

fusion genes, we identified a GC high DNA sequence motif, which might be targeted by SP1. The low per-

centage of FusionAI prediction scores in the healthy population derived fusion genes might reflect a po-

tential validity or tumorigenicity of individual fusion gene breakpoint. In summary, FusionAI is an example

of interpretable scientific deep learning in studying the human genomic breakages with diverse potential

genomic regions related to different cellular mechanisms.

RESULTS

Overview of FusionAI

Prior to constructing the model, we investigated the distribution of the fusion breakpoint location on gene

structures. The majority of the fusion genes are predicted from RNA-seq data, specifically from the un-

mapped split reads which aligned at exon junction-junction positions of two different genes (Figure 1A).

This provides the evidence of the hypothesis that the breakpoints of fusion genes would be located in

the intron since the exons cover the human genome only about 1%, but the introns cover more than

24% of the reference genome, which is equivalent to 4% and 96% in the transcriptome (Venter et al.,

2001). From this context, we used breakpoint information of fusion genes that have both breakpoints at

the exon junction-junction sites among nine different combinations of breakpoints from the TCGA cohort

as the fusion-positive datasets (�26k fusion breakpoints in Table S1) (Figure 1A). Wemade a similar number

of fusion-negative data with strict criteria (Figure 1B. See the STAR Methods section). Using the divided

data from the mixture of fusion-positives and -negatives into 70% and 30% (36K and 16K), we trained

and test FusionAI, respectively. The input is a 20 kb length DNA sequence from combining ofG 5 kb flank-

ing sequence from two breakpoints. The transformed one-hot encoded input resultant into the probability

of fusion breakpoints through passing the deep learning processes including filtering, activation, pooling,

flattening, and fully connected functions (Figure 1C). To examine long-range and short-range specificity

determinants of the input sequence, we compared the scores assigned to fusion-positives by the models

trained on 200 nt, 1k, and 2k of the sequence context versus the full model that is trained on 5k of context

(Figure 1D). Overall, there was no big difference in the accuracy across the results using different sequence

range from the fusion breakpoints. However, to identify the breakpoint-specific genomic context, we

decided to use 5k based model. Then, the accuracies for training and test datasets were 97.4% (AUROC =

0.9962) and 90.8% (AUROC = 0.9706) with 0.12 and 0.42 error rates, respectively (Figure 1D). This perfor-

mance is much better than the traditional machine learning methods like support vector machine (SVM).

To identify the hidden genomic context features specific fusion gene breakpoints, we performed our

studies based on the 5k-based model with a convolutional neural network approach.

Primary sequence-based FusionAI improves the identification of fusion genes

To compare the performance of prediction of fusion genes of FusionAI with other RNA-seq based fusion

gene prediction tools, we chose STAR-fusion and Arriba based on the best performance results from the

accuracy assessment study (Haas et al., 2019; Uhrig et al., 2021). Our training and test datasets are con-

structed based on the genomic breakpoint information. Since the usual RNA-seq based tools require

the input of RNA-seq data, we made the simulation RNA-seq data of the split reads at the exon junc-

tion-junction breakpoints with different read lengths (50, 75, and 100 bp) and different numbers of split

reads (1, 3, 5 split reads, and 10 random around breakpoints) for the fusion-positive and -negative
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breakpoints in our training and test data sets (Figure 2A). We also made simulation RNA-seq data for the

experimentally validated fusion gene breakpoints by Sanger sequencing and RT-PCR from ChiTaRS-

3.1(Gorohovski et al., 2017) and cancer cell-line study(Klijn et al., 2015), respectively. To apply FusionAI

to these data sets, we made the input sequence of 20 kb long (Table S1). As shown in these comparisons

in Figures 2A and 2B, the typical RNA-seq’s limiting factors (i.e., read-length and the number of split reads)

were not problems to FusionAI compared with the general RNA-seq-based fusion prediction tools as

shown in the red triangles in the plots (Figures 2A and 2B; Tables S2–S4). We also checked the individual

fusion genes validated from the most famous fusion gene-positive cell-lines such as K562, MCF7, and NCI-

H660, which are the BCR-ABL1, BCAS4-BCAS3, and EML4-ALK-positive cells, respectively (Figure 2C). Fig-

ure 2D shows that FusionAI has the biggest number of validated fusion genes among the three tools.

A

C

D

B

Figure 2. Performance of FusionAI

(A) Comparison of FusionAI to other methods for fusion gene prediction including 38,000 TCGA fusion genes from

training and test datasets. The plots show the number of true positives and sensitivity from the left.

(B) Comparison of the number of the true positive fusions in �2200 validated fusion genes in �530 cancer cell-lines, and

862 Sanger sequence-based fusion genes that have fusion breakpoints at the exon junction position from ChiRTaRS3.1.

(C) Comparison of predicting fusion genes in three cancer cell-lines (H2228, K562, and MCF7).

(D) Identification of validated fusion genes in three cell-lines.
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Typically, the researchers use multiple fusion gene prediction tools to select the candidates before exper-

imental validation. Compared to the results using only two tools of STAR-fusion and Arriba, additional use

of FusionAI reduced the number of false positives effectively but remained true positives. This can reduce

the cost and efforts for validation. As the sequencing-free fusion predictionmethod, FusionAI can be a use-

ful last step filtering scheme.

FusionAI facilitates a better understanding of the genomic context of fusion gene

breakpoints

We investigated the feature importance (FI) scores using 20 bp window size every 20 bp position along the

20kbp input sequence of our training and test fusion genes. These feature importance scores are the values

reflecting how big impact individual 20 bp length sequences along 20k have to distinguish fusion-positive

and -negative breakpoints. The details on the feature importance scores are in the method section. As

shown in the six most famous fusion genes (BCR-ABL1, EML4-ALK, TMPRSS2-ERG, PML-RARA, RUNX1-

RUNX1T1, and FGFR3-TACC3), the feature importance scores were most high at the breakpoint area (Fig-

ure 3). For the intuitive validation, we checked the performance of FusionAI how much the output scores

classify the fusion-positives and -negatives using the logistic regression approach. As shown in Figure 3B,

FusionAI classifies the fusion-positive and -negative breakpoints significantly (p value <23 10�18). We also

wondered about the relationship between FI scores and FusionAI output scores. Because some fusion

genes had very small values of FI scores (i.e., BCR-ABL1 in Figure 3A), we transformed the original values

of FusionAI and FI scores to the quantile normalized values. Then, we identified the existence of grouping

tendency between fusion-positives and -negatives among the FusionAI output scores, and second and

third principal components as shown in Figure 3C.

High feature importance scored regions provide a landscape of the genomic feature aspect

of fusion gene breakpoints

Todate, thereweremany trials tounderstand thegnomic featuresofbreakageand tostudymultipleeffectsof the

genomicbreakage (Ballingeretal., 2019;Chakrabortyetal., 2020; Fungtammasanetal., 2012;Pengetal., 2006). In

this study, we sought to identify the genomic features of the fusion gene breakpoint area across the human

genome sequences. Overall, the top 1% feature importance scored regions were enriched near to the break-

points among 20Kbp sequence (Figure S1), which is the distribution of median values of the top 1% FI scores

per nucleotide across 20Kbp sequence. We integrated 44 different human genomic features belong five impor-

tant cellular mechanism categories such as integration site category of 6 viruses, 13 types of repeat category, 5

types of structural variant category, 15 different types of chromatin state category, and 5 gene expression regu-

latory category tohave the landscapeof genomic features in the fusionbreakpoint area. For individual features of

these five categories, we counted the unique number of the overlap between feature loci with the top 1% FI

scored regions in every nucleotide across 20k sequence of all fusion genes in both fusion-positive and -negative

groups (Figure 3Di). Theoverall distribution of overlapswas enriched in the fusion genebreakpoint area. Further-

more, overall, the top 1% feature importance scored regions in fusion-positive breakpoints were more overlap-

pedwith genomic features thanoneof fusion-negative breakpoints.We checked thedifferencebetween the two

groups whether the number of overlaps between individual features out of 44 and fusion-positive and -negative

groupusingchi-square test (TableS5).Fromthis study,we foundthat therewasa significantdifference in theover-

lap number of features. Next, we counted the uniquenumber of the overlapped loci of the individual featurewith

all regions of the 20Kbpbreakpoint sequence inboth fusion-positive and -negative groups to seewithout poten-

tial confounding factors in thegenome (Figure S2). Then, the overall patterns between fusion-positive and -nega-

tive breakpoints were similar. These similar patterns might be able to explain the rigorous approach to create

fusion-negative datasets as the reliable combination of two different genomic regions.

Specifically, we counted the unique number of the overlapped loci of the individual feature with all regions

of the 20Kbp breakpoint sequence focusing on the fusion-positive group to see without potential con-

founding factors in the genomes (Figure 3Dii). From this distribution, we identified several genomic fea-

tures that showed different distribution around the breakpoint area. In the repeat category (green back-

ground), two repeats like G-Quadruplex forming repeats and low complexity AT-rich regions were

increased to the breakpoint area. G-Quadruplex (G4) is formed in nucleic acids by sequences that are

rich in guanine. G-Quadruplex is divided into two groups of telomeric quadruplexes and non-telomeric

quadruplexes. The former quadruplexes have been shown to decrease the activity of the enzyme telome-

rase. A large number of the latter quadruplexes were found within gene promoters. On the other hand, Alu,

L1, and L2 repeats were decreased to the breakpoint area. As for the DNA double-strand break repair
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process, a study observed that Alu elements followed the global genome repair kinetics, while LINE-1 el-

ements repaired at a slower rate (Natale et al., 2018). In the chromatin state category (purple background),

1_TssA and 10_TssBiv chromatin states showed increased distribution to the breakpoints. Those states

represent active TSS and bivalent/poised TSS. In the expression regulation category (gray background),

CpG island and promoter regions showed increased distribution around the breakpoints. CpG islands

are normally found at promoters (Sleutels and Barlow, 2002). From these plots, we can see that LINE re-

peats and promoter regions were decreased and increased, respectively, toward both breakpoints of

two fusion partner genes. Long interspersed nuclear element-1 (LINE-1) retrotransposition is a major hall-

mark of cancer accompanied by global chromosomal instability, genomic instability, and genetic

A

D

B C

Figure 3. Feature importance score for understanding genomic breakage

(A) Distribution of FI scores across 20 kb long of six representative fusion gene breakpoints.

(B) Logistic regression result of FusionAI prediction.

(C) Classification between fusion-positive and -negative from FusionAI and FI scores.

(D) (i) Distribution of overlaps between top 1% FI scored regions and 44 different types of human genomic features in both

positive and negative data. (ii) Distribution of overlaps between all regions and 44 different types of human genomic

features.
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heterogeneity, and has become one indicator for the occurrence, development, and poor prognosis of

many diseases (Zhang et al., 2020).

Overall, the distance between the top 1% feature importance scored regions and breakpoints was 70 nt of

themedian, 99.54 nt of mean with 211.28 nt of standard deviations (SDs) as shown in Figure 4A. This statistic

seems to explain the outperformance of the FusionAI-200nt model among others. More interpretations of

the individual features are described below. For the gene list functional enrichment with biological pro-

cesses of Gene Ontology through ToppGene Suite (Chen et al., 2009), we selected the genes that have

the overlap between top 1% feature importance scored regions and individual genomic features (Table S6).

Virus integration sites

Specifically, fusion-positive breakpoints were enriched in the virus integration sites of hepatitis B virus

(HBV) and human immunodeficiency virus (HIV) (Figure 3Di). Gene ontology enrichment test identified

A

B

Figure 4. High feature importance scored regions

(A) Distribution of the distance between the high FI scored regions and the exon junctional breakpoints.

(B) Enriched biological processes in the genes that have overlap with high FI scored regions per individual genomic

feature categories.
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that the high FI scored region genes overlapped with the HIV integration sites were enriched in ‘‘peptidyl-

lysine modification’’ and ‘‘regulation of chromosome organization’’ (Figure 4B). Multiple post-translational

modifications (PTMs) of viral and cellular proteins gain increasing attention as modifying enzymes regulate

virtually every step of the viral replication cycle (Chen et al., 2018). For HBV, ‘‘cell cycle G1/S phase transi-

tion’’ and ‘‘response to unfolded protein’’ were the enriched biological pathways. A hallmark of chronic

HBV infection is known as containing excessive hepatitis surface antigen (HBsAg) in the ER which is linked

to unfolded protein response (Li et al., 2019). A previous study showed that HBV-infected primary human

hepatocytes are enriched in the G2/M phase compared to the predominantly G0/G1 phase of cultured pri-

mary human hepatocytes (Xia et al., 2018).

Repeats

Next, fusion-positive breakpointswere enriched inmultiple types of repeats as shown in greenbackgroundplots

of Figure 3Di. Among 13 types of repeats, Alu repeats, direct repeats, and L1 repeats showed very significantly

different distribution between fusion-positive and -negative groups. Alu elements are the most abundant trans-

posable elements, containing over 1.2 million copies, which comprise 11% of the human genome (Deininger,

2011). It is reportedasenriched in the common fragile sites (Fungtammasanetal., 2012).Direct repeatsare known

for eliciting genetic instability by both exploiting and eluding DNA double-strand break repair systems inmyco-

bacteria (Wojcik et al., 2012). The human LINE-1 retrotransposon is known to create DNA double-strand breaks

(Gasior et al., 2006). There was no specific difference in the structural variants compared to other features. This

might be explained by that our training dataset is made up with the RNA-seq based exon junction breakpoints,

which is different fromWGS-based structural variants.

Chromatin states

The purple background plots are the overlaps with the chromatin state calls, using a 15-state model from

Roadmap Epigenomics Mapping Consortium (Roadmap Epigenomics et al., 2015). As shown in the first

four plots of the purple background ones in the right panel of Figure 3Di, the top 1% feature importance

scored fusion-positive breakpoint area of 50-genes enriched in the active chromatin states, which were

associated with the expressed genes such as active transcription start site (Tss) proximal promoter states

(TssA, TssAFlnk), a transcribed state at the 50 and -30 end of genes showing both promoter and enhancer

signatures (TxFlnk), actively transcribed states (Tx). However, the fusion-negatives were relatively more en-

riched with the high FI scored regions related to the repressed chromatin states. In other words, the break-

points of fusion-positive breakpoints are located at the transcriptionally active chromatin states’ peak re-

gions, but the ones of fusion-negatives are located at the transcriptionally repressed chromatin states’

peak regions. This pattern might be related to the typical roles of the driver fusion genes as the transcrip-

tional activation itself or downstream target genes (Kim et al., 2017, 2018, 2020). This makes sense since the

50-gene partner’s promoters will be used as the promoter of the fusion genes.

Gene expression regulatory

The first plot in the last category of gene expression regulatory with gray color background shows the more

breakpoints of 50-genes (3,684) are located in the CpG island area than 30-genes (678) (Figure 3Di). This

might provide additional evidence for the previous finding that initial chromosomal breakage occurs

directly at or near CpGs (Tsai et al., 2008). Four thousand one hundred sixty five genes in these regions

were enriched in the ‘‘Ras protein signal transduction’’ pathway. The imbalance of the Ras signaling

pathway is a major hallmark of human cancer (Irimia et al., 2004). Furthermore, 3,849 of 4,165 genes

were mainly targeted by MAX interactor 1, dimerization protein (MXI1), and enhancer of zeste 2 polycomb

repressive complex 2 subunit (EZH2). MXI1 is the MYC antagonist, also regarded as a tumor suppressor.

EZH2 is the enzymatic subunit of polycomb repressive complex 2 (PRC2), a complex that methylates lysine

27 of histone H3 (H3K27) to promote transcriptional silencing (Kim and Roberts, 2016). EZH2 is known to

regulate MXI1 by targeting from the harmonizome, a collection of processed data sets gathered to serve

and mine knowledge about genes and proteins (Rouillard et al., 2016). Through the DNA breakage of

fusion genes, these CpGs located genes might be expected to have aberrant regulation governed by

EXH2. The last feature, replication timing has been notified as being associated with the nature of chromo-

somal rearrangements in cancer (Du et al., 2019). Similar to CpGisland, there were 1,101 genes enriched in

the ‘‘regulation of ras protein signal transduction’’ pathway. In the methylation and TAD_boundary fea-

tures, 203 and 68 genes were enriched in the ‘‘positive regulation of catabolic process’’ and ‘‘regulation

of protein catabolic process’’. Overall, this analysis identified enriched biological pathways of ras signal

transduction and cellular regulation of catabolic processes in the gene expression regulatory that share
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the genomic breakages. From this, we can infer the involvement of genomic breakage in the cancer cell

proliferation or maturation, and metabolic reprogramming.

The GC-rich motif is enriched in the breakpoint area of transcription factor fusion genes

Wewondered what DNAmotif sequences exist in high FI scored regions, which are located about 100 ntG

200 SD apart from the exon junction breakpoint. We made a fasta file composed of high FI score regions’

DNA sequences of all fusion-positive breakpoints in training data. Then, we ran MEME to find the motifs

among our input sequences with a maximum number of motifs of 100 and a threshold of E-value of 0.05.

Then, there were 21 motifs that were located in more than 1000 high FI score region sequences. Here,

the E-value of a motif is based on its log likelihood ratio, width, sites, background letter frequencies,

and the size of the training set in their explanation (Bailey et al., 2015) (Figure 5A). From there, we further

investigated the top three motifs of ‘‘CCGCCGCCGCC’’, ‘‘TTMWTTTTTTTTTTTTTTYYT’’ and ‘‘CGGCGG

CGGCGGCGGCGGCGG’’ E-value of 2.1 3 10�165, 9.3 3 10�244, and 1.9 3 10�140 (sorted by GOMO’s

criteria), respectively. Using Gene Ontology for Motifs (GOMOs) tool, we scanned all promoters using

these three motifs individually and identified the targeted genes (Table S7). Then, the genes that have

‘‘CCGCCGCCGCC’’ motif in their promoter regions were enriched in these biological processes such as

‘‘insulin receptor signaling pathway’’, ‘‘activation of protein kinase A activity’’, and ‘‘Wnt receptor signaling

pathway, calciummodulating pathway’’, based on the criteria (E-value% 0.05 and q-value% 0.01 and spec-

ificity = 100% from theGO tree). ‘‘TTMWTTTTTTTTTTTTTTYYT’’ motif was enriched in the genes involved in

these biological processes, such as ‘‘negative regulation of alpha-beta T cell differentiation’’, ‘‘transcription

initiation from RNA polymerase II promoter’’, ‘‘DNA damage checkpoint’’. Last, the genes with

CGGCGGCGGCGGCGGCGGCGG motif in the promoter regions were enriched in these biological path-

ways like ‘‘activation of protein kinase A activity’’, ‘‘insulin receptor signaling pathway’’, and ‘‘positive regu-

lation of phosphoinositide 3-kinase activity’’.

Because 2 of 3 known fusion genes are intra-chromosomal rearrangement events, we also searched DNAmotif

sequences focusing on these events. Then, there was only one motif CCGCSGCCGCCSC

SGCCSCCGCCGCCGCCSCCSCCSCCGCC, which was enriched in these biological processes – ‘‘activation of

protein kinase A activity’’, ‘‘protein amino acid autophosphorylation’’, and ‘‘insulin receptor signaling pathway’’.

In terms of the clinical view of fusion genes, to date, there are two types of themost frequent driver fusion genes

like kinase fusion genes and transcription factor fusion genes for tumorigenesis (Kim et al., 2017, 2018). Since the

major working mechanism of enhanced proliferation through fusion gene is working based on the combination

betweendimerizationdomain at 5’-partnergeneandkinasedomainat 30-partnergene,we investigated themotif

sequence in the high feature importance regions of the fusion genes between the genes that have these domain

combinations. Then we identified the ‘‘HTTTTBTTTTT’’ motif from 389 and this motif was enriched in the ‘‘nega-

tive regulation of alpha-beta T cell differentiation’’ pathway with an E-value of 9.33 10�3. Next, from the high FI

score regions of 322 transcription factor fusion genes, we found a relatively long (28 nt) GC-rich motif,

GCBGGSSGSGGSSGSSSGGGGSGSBGGG (Table S8). The genes with this motif in their promoter regions are

mainly involved in ‘‘insulin receptor signaling pathway’’, ‘‘Wnt receptor signaling pathway, calcium modulating

pathway’’, ‘‘positive regulationofphosphoinositide3-kinaseactivity’’, ‘‘positive regulationof transforminggrowth

factor b receptor signaling pathway’’, ‘‘positive regulation of osteoblast differentiation’’. For example, Figure 5B

shows thedistribution of thisGC-richmotif sequenceacross 20kb sequenceofTMPRSS2-ERG fusiongene (Table

S9). Interestingly, this GC-richmotif sequencewas located around the breakpoint of the 50-gene. TMPRSS2-ERG

is knownasdependenton theexpressionofSp1 (Meisel Sharonetal., 2016),which is a transcription factorbinding

toGC-richmotifs (Koutsodontis et al., 2002). Figure 5Cshows22 recurrent transcription factor fusiongenes,which

areexpressed inmore than3 samples. Specifically, 17 fusiongenesof these22wereboundbySp1as shown in the

searching result from ENCODE transcription factor target database and TRRUST (Consortium, 2011; Han et al.,

2018). In total, 220 genes involved in transcription factor fusion genes have thisGC-richmotif. Of these, 51 and 38

genes were transcription factors and epigenetic factors, respectively. Unique 80 genes of these two groupgenes

were annotated as mainly involved in the diverse epigenetic mechanisms as shown in Figure 5D such as ‘‘DNA

methylation and alkylation’’, ‘‘histone modification’’, ‘‘transcription regulation’’, ‘‘cellular response to ROS’’, and

etc. From this result, wemay infer that the transcription factor fusion genesmight regulate their downstream tar-

gets by using epigenetic mechanisms.

Chimeric transcripts from the non-disease tissues have a low FusionAI score

Fusion genes formed by the chromosomal rearrangements are the hallmark of cancers from genomic

instability. However, chimeric transcripts are also existing in non-cancerous cells and tissues
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(Babiceanu et al., 2016; Finta and Zaphiropoulos, 2002; Li et al., 2009; Yuan et al., 2013). We wondered how

FusionAI output scores would reflect this difference of the sample sources of fusion genes. To compare the

prediction of FusionAI from diverse cohorts, we integrated the fusion genes whose breakpoints are located

at the exon junction-junction loci from TCGA, cancer cell-lines, and Sanger transcripts from Entrez, GTEx,

genomAD (Tables 1 and S2). We compared the ratio of the fusion genes whose FusionAI score is greater

than or equal to 0.5. Here GTEx representing the healthy population was used to see how FusionAI predic-

tion is different between cancerous and non-cancerous samples. Overall, fusion genes of the cancer co-

horts, the top four groups in Table 1, had FusionAI output scores bigger than 0.5 in 93% of fusion gene

breakpoints. However, if the fusion gene was common or exists in a healthy population only, then the ratio

of the fusion genes with exon junctional breakpoints as predicted fusion-positive by FusionAI was

A

B

C D

Figure 5. Consensus motif sequences in the high FI scored FG-positive regions and enriched biological processes.

(A) Identified DNA sequence motifs in fusion-positive breakpoint area of multiple groups such as all fusion-positives,

intra-chromosomal events of fusion-positives, kinase fusion genes with dimerization and kinase domain, transcription

factor fusion genes.

(B) Distribution of the GC-rich motif across 20 kb length sequence in the isoforms of TMPRSS2-ERG fusion gene.

(C) Transcription factor fusion genes that have GC-rich motifs.

(D) Enriched biological processes of those genes that have GC-rich motifs.
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decreased to 83% and 64%, respectively. Currently, we do not fully understand themeaning of this different

ratio, but we guess this difference might be reflecting a validity or tumorigenicity of individual fusion gene

breakpoint. genomAD, the whole genome-based structural variant data from diverse clinical cohorts, was

used to see how FusionAI prediction is different between RNA-seq or WGS-based fusion genes. From the

previous study for visualizing the functional features of fusion genes at four different levels, FGviewer, we

found 1,037 potential fusion genes whose breakpoints of the structural variants detected from genomAD

v2.1 of 15K population WGS data were located on the gene bodies. Of 1,037 fusion genes, 823 were the

cases that have the exon junction-junction breakpoints. Among these, only 46 cases have been predicted

as fusion-positive candidates by FusionAI (5%). Here, we used fusion genes anticipated as having exon

junction-junction breakpoints from structural variants for genomAD. The small ratio might be from the

different sequencing types of data and not expressed as the fusion transcript.

DISCUSSIONS

Our study suggests that FusionAI predicts fusion gene breakage with high specificity and expands the find-

ings beyond a conventional RNA-seq fusion gene analysis by combining deep-learning predictions with

empirical evidence in user-specific RNA-seq data. From the study on high feature importance scored re-

gions, we found that the overall distance between the high FI scores and breakpoints was 70 nt median,

99.54 nt mean with 211.28 nt standard deviations. This might explain one of the reasons why the Fusio-

nAI-200nt model outperformed other models using different flanking sequence lengths.

Before finalizing the FusionAI model using the exon junction-junction breakpoints of both fusion-positive

and -negative groups, we tried to build the initial version model by comparing the 20 Kbp sequence of

fusion-positive breakpoints located at exon junction-junction boundaries versus one of fusion-negative

breakpoints located in any location of the gene body (any regions of exon and intron). This initial model

showed better performance than the current finalized model with an accuracy of 99.7% and 98.2% for

training and test data, respectively. However, we recognized a potential issue regarding the design of

the comparison since this model can highlight and give more weights on the exon junction regions

(exon-intron boundary) compared with the intronic breakpoints. The learned features from the initial

version model might mostly be the ones that are significantly related to the exon junctions like splicing sig-

nals. To avoid this wrong conclusion, we redesigned our modeling using only exon junction-junction break-

points for both fusion-positive and -negative data and finalized FusionAI. Even though we are comparing

the same conditions of exon junction-junction data, FusionAI found fusion-positive breakpoints well. In the

future, enough validated data of the chimeric transcripts with specific breakpoints formed by the

Table 1. Comparison of FusionAI scores among the fusion genes in pan-cancer and healthy tissues

Dataset Desc.

Sequencing

type

# jj fusion

genes

# jj fusion

genes

(FusionAI

score >0.5) Percentage (%)

TCGA Fusion genes in

training data

RNA-seq 18,210 18,207 99.98

TCGA Fusion genes in

test data

RNA-seq 7,759 7,383 95.15

Klijin et al. Fusion genes from

cancer cell-lines

RNA-seq 2,162 2,066 95.56

ChiTaRS 3 Fusion transcripts Sanger

sequencing

862 807 93.62

GTEx Fusion genes

common in cancer

RNA-seq 646 537 83.13

GTEx Fusion genes not in

cancer

RNA-seq 925 634 68.54

genomAD WGS based

predicted

fusions

Whole genome

sequencing

923 46 4.98
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trans-splicing mechanism in the RNA level would better explain the detailed exon junctional features that

we found in this study.

To ensure the independence of the datasets and avoid overfitting, we checked the consistency by re-training our

model withmodified sample grouping strategies which ensured complete independence between training and

test sets. First, to select the test datasets, we checked the number of fusion gene events per chromosome. We

picked up the top-five chromosomes, which have the largest number of fusion events, including chr1, 11, 12, 17,

and 19. For the fusion events of each chromosome out of these five chromosomes, we held out these as the test

data and randomlypicked20k fusion events (10k positive+10k negative events) from the remaining fusion events

as the training data set. We trained and tested using these new data sets. The average accuracy for the new

training and test data sets was 82.9% (AUROC = 0.904) and 81.6% (AUROC = 0.889), respectively (Table S10).

As shown in this result, our model per chromosome shows a consistent result.

Our trial for comparing the fusion gene breakpoints of different disease state, such as cancer versus normal,

found that FusionAI prediction gives higher scores for the cancerous fusion breakpoints. If there are a plen-

tiful number of fusion gene breakpoints at the DNA level that will be accumulated in the future, we will be

able to build the genomic level breakpoint-based model and can bring deeper insight into the breakage

mechanisms. Having enough amount of the real genomic breakpoints of the massive fusion genes to

perform artificial intelligence approaches will need a long time and many efforts. We hope we can make

more precise new models based on the genomic breakpoint-based training data, not by exon junctional

breakpoints in near future.

We identified a high GC motif around the breakpoint area of the transcription factor fusion genes. To do

this we investigated the most frequent DNA motif sequences based on the genomic breakpoint DNA

sequence of hg19. To ensure this motif from the most recent human genome GRCh38, we also searched

the consensus DNA motif sequences from the 20 Kbp sequence at the breakpoints after lifting over

from hg19 to GRh38. Then, we identified multiple high GC motifs around the high feature importance

scored regions of 330 TF fusion genes (Table S11), which shows the consistency and reliability of our find-

ings based on the hg19 version human genome.

Our study used the deep learning method to better understand the genomic breakage context focused on the

fusion genes, which are the highlighted ones as expressed structural variants. Much work remains to be done to

understand the humangenomebreakage indiverse diseases, a greater understanding of the genomic breakage

mechanisms could pave the way for novel candidates for therapeutic intervention. Our findings using the Fusio-

nAI model would enhance our understanding of the fusion gene context. We hope FusionAI could serve as the

initial platform for the efficient investigation of genomic breakage events.

Limitations of the study

If we had enough data of real genomic breakpoint information, then we could identify correct genomic

breakpoint features. However, due to the limited data of fusion breakpoint information replying on mainly

RNA-seq data, we could not have the real genomic breakpoint information. We hope we can build a more

accurate fusion genomic breakpoint classifier in the future based on the genomic breakpoint information.
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edu).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Open reading frame annotation of known

fusion genes

Kim and Zhou, 2019 https://ccsm.uth.edu/FusionGDB/

Fusion gene breakpoint information of TCGA

fusion genes

Kim and Zhou, 2019 https://ccsm.uth.edu/FusionGDB/

Fusion gene breakpoint information of cancer

cell-lines

Klijn et al., (2015) N/A

Fusion gene breakpoint information of Sanger

sequencing

Gorohovski et al., (2017) http://biodb.md.biu.ac.il/chitars.prv

Fusion gene breakpoint information of GTEx

cohorts

Singh et al., (2020) N/A

Fusion gene breakpoint information of

genomAD cohorts

Kim et al. (2020) https://ccsmweb.uth.edu/FGviewer

Simulation RNA-seq data of all validation sets This study https://compbio.uth.edu/FusionGDB2/

FusionAI

Fastq files for RNA-seq of K562 Sequence Read Archive (SRA) in NCBI Sequence Read Archive accession: SRR521460

Fastq files for RNA-seq of MCF7 Sequence Read Archive (SRA) in NCBI Sequence Read Archive accession: SRR064286

Fastq files for RNA-seq of H2228 Sequence Read Archive (SRA) in NCBI Sequence Read Archive accession:

DRR016705.1s

Virus integration site information Tang et al., (2020) https://bioinfo.uth.edu/VISDB

Repeatmasker Bao et al., (2015) http://www.repeatmasker.org

MicroSatellite DataBase (MSDB) Avvaru et al., (2020) https://data.ccmb.res.in/msdb

Structural variant breakpoint information of

genomAD

Lappalainen et al., (2013) https://www.ncbi.nlm.nih.gov/dbvar

Chromatin state calls using a 15-state model Roadmap Epigenomics et al. (2015) N/A

Location of CpGisland, Methylation,

Promoters

Lizio et al. (2019) https://fantom.gsc.riken.jp/5

Replication timing-specific peak regions Davis et al. (2018) https://www.encodeproject.org

Common TAD boundaries of five human cell-

lines

Akdemir et al., (2020) N/A

TRRUST2.0 Han et al., (2018) http://www.grnpedia.org/trrust

ENCODE Transcription Factor Targets ENCODE Project Consortium, 2011 https://maayanlab.cloud/Harmonizome/

dataset/

ENCODE+Transcription+Factor+Targets

Software and algorithms

FusionAI software This study https://compbio.uth.edu/FusionGDB2/

FusionAI

FusionAI model training This study https://compbio.uth.edu/FusionGDB2/

FusionAI

STAR-fusion Haas et al. (2019) https://github.com/STAR-Fusion/STAR-Fusion

Arriba Uhrig et al. (2021) https://arriba.readthedocs.io/
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The training and test data, and simulation RNA-seq data are available on https://compbio.uth.edu/

FusionGDB2/FusionAI.

FusionAI model and preprocessing codes available on https://compbio.uth.edu/FusionGDB2/FusionAI.

Any additional information required to reanalyze the data reported in this work paper is available from the

Lead Contact upon request.

METHOD DETAILS

FusionAI architecture and training using deep learning

To train the FusionAI DNN, we downloaded the fusion gene breakpoint information of 48K of fusion genes

from FusionGDB. Since most of the fusion genes are predicted from the split reads of RNA-seq data and

the real genomic breakpoints would be located in the intron, we used the sequence of known fusion genes

that have the exon junction-junction breakpoints to train the FusionAI model. Out of �48K known fusion

events, there were �33K fusion genes from the TCGA cohort and �26K fusions had the breakpoints at

the exon junction-junction position (j-j BP combination). To make fusion negative breakpoints data, we

excluded 17,110 genes, which are involved in 48K known human fusion genes, among 43K GENCODE

genes. From the rest of those genes (27,116), which are not known as involved in any fusion genes, we

randomly chose two genes as fusion partners. Then, we filtered out potential false cases from the unnec-

essary multiply mapped cases and breakpoints belong to the repeat region, paralogs, or pseudogenes us-

ing RepeatMasker, Duplicated Genes Database, and HUGO database’s pseudogenes. This is the typical

pre-process by the fusion prediction tools to filter out false positives. We also excluded the gene pairs

with neighboring gene relationships to exclude the potential read-through cases. In the case of the

intra-chromosomal fusion genes, we set the minimum distance as 100Kbp between randomly chosen

two breakpoints across gene bodies. Then, from the chosen two breakpoints after several filtering steps,

a 20Kbp long DNA sequence was made by conjugating G 5K bp sequence from each BP of two partner

genes. Through this procedure, we created �26K fusion-negative breakpoint sequence data. Based on

these DNA sequences, we trained a multiple-layer DNN. The input of the model is a sequence of 20 kb

one-hot encoded nucleotides. The output is two probabilities corresponding to fusion-positive and -nega-

tive breakpoints that sum to one. Our DNN consists of two convolutional layers with filter sizes (20, 4) and

(200, 1), one max pooling, one flatten, and two dense layers preceding the output layer. Themodel involves

2,672,002 parameters including both weight matrix and bias at related layers (Figure S3). 36.4K BPs (�70%)

from a combined total of 52K BPs (26K j-j combination BPs and 26K non-FGBPs) were used in the training

step (further divided to 80% for training and 20% for validation), and the rest 15.6K BPs (�30%) was used for

an independent test. The performance (accuracy and loss) during the training process is illustrated in Fig-

ure S4. We then tested the trained model on both the 26K original training samples and the 15.6K test sam-

ples. The accuracies for training and test datasets were 97.4% (AUROC = 0.9962) and 90.8% (AUROC =

0.9706) with 0.12 and 0.42 error rates, respectively. This performance is much better than the traditional

machine learning method, SVM, which yielded an accuracy of 79% and 72% for training and test data,

respectively (Figure 1D).

Feature importance score

To calculate the feature importance score (FIS), we masked 20 bp each time by setting all the 20 values to

zero and measured the change of prediction outcome upon this masking. We slide this 20 bp window one

nucleotide each time (i.e., stride = 1) along the whole 20K input sequence and repeated the procedure to

obtain the FIS for all the 20bp segments. In this way, we got 20,000-20 + 1 = 19,981 FIS for each input

sequence.

Creating simulation RNA-seq data of training and test data to run STAR-fusion and Arriba

We made simulation RNA-seq data of the split reads at the exon junction-junction breakpoints with

different read lengths (50, 75, and 100 bp) and a different number of split reads (1, 3, 5 split reads, and

10 random around breakpoints) based on the fusion-positive and -negative breakpoints in training and
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test datasets. Using random module of python, we chose random numbers once, three, and five times

based on the seed length of 25bp as the transcript’s broken position with 0 to 5 varied distance between

the 50-genes’ exon sequence to the breakpoint and the 30-genes’ exon sequence from the breakpoint to

make the split reads at the exon junction site with different read length. We also made 10 random split

read sequences with a 10bp distance gap among the read alignments.

Model evaluation on ChiTaRS-3.1

We downloaded the fusion gene information from ChiTaRS-3.1 (Gorohovski et al., 2017). Among these, we

only used the validated fusion genes by the Sanger sequencing approach, which is the typical way of vali-

dation of identified fusion genes from the Entrez transcript database by the National Center for Biotech-

nology Information (NCBI). Among these, 862 fusion genes had the breakpoints at the exon junction-junc-

tion positions. For these cases, we made a 20kb long DNA sequence as the input of FusionAI and ran it.

Furthermore, to compare the performance with STAR-fusion and Arriba, we also made the simulation

RNA-seq data of the split reads at the exon junction breakpoints with different read lengths and the

different numbers of split reads. We used the default option based on GENCODE v19 genome for running

STAR-fusion and Arriba.

Model evaluation on 2,200 fusion genes from 520 cancer cell-lines

We downloaded the fusion gene information of the 2,269 validated in-frame fusion genes from 529 cancer

cell-lines by Klijn et al. (2015). Out of these, 2,162 fusion genes had the breakpoints at the exon junction-

junction positions. For these cases, we made a 20kb long DNA sequence as the input of FusionAI and

ran it. To test STAR-fusion and Arriba, we also made the simulation RNA-seq data the same way we did

for evaluation on ChiTaRS-3.1 data as the input data above.

Comparison with existing fusion gene prediction tools for three cell-lines

K562 is a myelogenous leukemia cell-line with the most famous fusion gene, BCR-ABL1. MCF7 is the most

studied breast cancer cell-line with multiple identified fusion genes. H2228 is the non-small cell lung cancer

cell-line with the EML4-ALK fusion gene. We ran STAR-fusion and Arriba for these cell-lines’ RNA-seq data

which were downloaded from the Sequence Read Archive (SRA) of NCBI (Leinonen et al., 2011) with SRA

accession of SRR521460, SRR064286, and DRR016705.1 for K562, MCF7, and H2228, respectively. To run

FusionAI, we made 20kb long DNA sequences based on the breakpoints that were predicted by STAR-

fusion and Arriba. For validation, we also made FusionAI input data for the experimentally validated fusion

genes among these three cells from the work by Klijn et al.

Identification of DNA sequence motif

First, we assembled the sequence of the top 1% feature importance scored regions into the merged

sequence contigs and saved them fasta format file was after checking a continuous alignment. Then, to

identify the most frequent DNA sequence motifs, we used MEME by MEME Suite (Bailey et al., 2009)

with the ‘any number of repetitions’ option and identified enriched DNA sequence motifs around the

broken regions by fusion genes for individual interested fusion gene groups such as all fusion-positives,

intra-chromosomal fusion-positives, kinase fusion genes, and transcription factor fusion genes. We used

the default threshold of p-value, 1E-4 as used in MEME Suite. After identifying the most frequent motifs,

we ran GOMO to identify the enriched GO biological process of the genes that have the binding sites

of our finding motifs in their promoters.

Making FusionAI input data

FusionAI runs based on the DNA sequence composed of two genes involved in a fusion gene with G 5 kb

flanking sequence from each breakpoint. The pre-processing python script of the FusionAI package pro-

vides for the user to make the input sequence data of FusionAI from the fusion breakpoint information. Fu-

sionAI package makes the input sequence data using the nibFrag based on the human genome sequence

of the hg19 version, which can be downloaded from the UCSC Genome Browser. The tab-delimited data

format with fusion gene pairs, chromosome, breakpoint, strand, and input sequence is read by the FusionAI

model and FusionAI gives the prediction score. In the FusionAI package, the user can make the input data

using Run_FusionAI.py based on the interested breakpoint information.
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Human genomic features information

We integrated loci information of different types of human genomic features across five big categories

including virus integration sites, repeats, structural variants, chromatin states, and gene expression regu-

lation. First, we downloaded the virus integration site information from the Viral Integration Site DataBase

(VISDB) (Tang et al., 2020) and we lifted it over to the hg19 version using the liftover tool from the UCSC

Genome Browser since FusionAI’s training was done based on the sequence of the hg19 version (Navarro

Gonzalez et al., 2021). Except for this virus information, all genomic coordinates are based on hg19 version.

We integrated 13 types of repeats (Alu repeats, A-Phased repeats, Directed repeats, DNA transposons,

"G-Quadruplex, forming repeats", Inverted repeats, L1 repeats, L2 repeats, "Low_complexity, A/T rich re-

gions", Microsatellites, MIR repeats, Mirror repeats, and Z-DNA motifs) from RepeatMasker (Bao et al.,

2015) and MicroSatellite DataBase (MSDB) (Avvaru et al., 2020). For the diverse types of structural variants

including the copy number variants, we downloaded the arranged breakpoint information of the structural

variants from dbVar (Lappalainen et al., 2013). The chromatin states category include the loci of 15 different

types of chromatin states such as 1_TssA, 2_TssAFlnk, 3_TxFlnk, 4_Tx, 5_TxWk, 6_EnhG, 7_Enh,

8_ZNF_Rpts, 9_Het, 10_TssBiv, 11_BivFlnk, 12_EnhBiv, 13_ReprPC, 14_ReprPCWk, and 15_Quies, from

the previous study on the chromatin state calls using a 15-state model for 12 cell lines, were obtained

from the Roadmap Epigenomics Mapping Consortium (Ernst and Kellis, 2017; Roadmap Epigenomics

et al., 2015). The gene expression regulatory category includes five types of features as CPGisland, Methyl-

ation, Promoters, ReplicationTiming, and TAD boundaries. The information of the first three feature cate-

gories was downloaded from the FANTOM5 collection (Lizio et al., 2019). We downloaded the replication

timing-specific peak regions from the ENCODE portal site by selecting the assay type of the replication

timing (Davis et al., 2018). We used 2,477 loci of common TAD boundaries from a previous study that

made high-resolution chromosome conformation (Hi-C) datasets from five human cell lines based on the

(Akdemir et al., 2020). The detailed statistics for individual feature categories with their significance results

by Chi-square test are in Table S5.

Gene ontology enrichment analysis

To identify the enriched biological processes in the overlapped genes between the top 1% FI scored re-

gions and individual human genomic features of 44 categories, we used ToppFun of the ToppGene Suite

(Chen et al., 2009). We limited the results by the Benjamini and Hochberg false discovery rate < 0.05 and the

number of genes in the gene group < 500. We showed the top enriched GO biological process of each

feature category in Figure 4B.
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