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Objective: This retrospective study evaluated nutritional status and body composition changes in paediatric β-thalassemia (β-TM) 
patients before and after hematopoietic stem cell transplantation (HSCT), using bioelectrical impedance analysis (BIA), and explored 
their relationship with HSCT outcomes.
Methods: A cohort of 40 paediatric β-TM patients undergoing allogeneic HSCT was assessed for their nutritional status, anthropo
metric parameters, including body mass index (BMI), weight, and height, and body composition parameters pre-and post-HSCT, 
focusing on BIA measurements, including intracellular water (ICW), extracellular water (ECW), fat mass (FAT), fat-free mass (FFM), 
Skeletal Muscle Mass (SMM), soft Lean Mass (SLM), percent body fat (PBF), Body Cell Mass (BCM), Phase angle (PA) and muscle 
balance pre- and post-HSCT. Post-HSCT clinical outcomes, including acute graft-vs-host disease (aGVHD), engraftment time, oral 
mucositis (OM), sinusoidal obstruction syndrome (SOS), and diarrhoea in relation to nutrition status after HSCT were analysed.
Results: After HSCT, 28.21% experienced diminished nutritional status, with 71.43% of those who were wasting before HSCT 
showing diminished nutritional status, significantly higher than the normal group (18.75%, P = 0.012). Anthropometric changes 
included significant weight reduction (87.5%, 22.15 ± 7.46 vs 20.74 ± 6.57, P < 0.001) and BMI decrease (90%, 15.19 ± 1.70 vs 14.05 
± 1.48, P < 0.001). Body composition parameters, which are FFM, SMM, SLM, ICW, ECW, BCM, and PA (18.26 ± 5.71 vs 17.27 ± 
5.19, 8.68 ± 3.30 vs 7.93 ± 3.02, 17.11 ± 5.28 vs 16.06 ± 4.84, 8.19 ± 2.54 vs 7.62 ± 2.31, 5.15 ± 1.58 vs 4.94 ± 1.47, 11.74 ± 3.63 vs 
10.92 ± 3.32, 4.42 ± 0.50 vs 3.90 ± 0.57, respectively, P < 0.001) analysis revealed significant decreases. No significant differences in 
clinical outcomes were observed based on nutritional status.
Conclusion: Paediatric β-TM patients undergoing HSCT exhibit significant changes in nutrition status and body composition, 
emphasizing the need for focused attention on malnourished children who are more prone to diminished nutritional status. 
Comprehensive BIA aids in understanding the impact, urging consideration for extended follow-up and larger cohorts in future 
research.
Keywords: paediatric β-thalassemia, hematopoietic stem cell transplantation, HSCT, bioelectrical impedance analysis, BIA, 
nutritional status, malnourished children

Introduction
The term “thalassemia” refers to a group of inherited disorders characterized by defective production of haemoglobin (Hb).1 

Among these, β-thalassemia (β-TM) necessitates lifelong blood transfusions for survival. Allogeneic hematopoietic stem cell 
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transplantation (HSCT) stands as the sole definitive cure for addressing defective erythropoiesis in children with β-TM. It 
offers respite from the lifelong demands of treatment and mitigating long-term complications associated with the disease or its 
therapeutic intervention.2,3 The success of HSCT is intricately linked to the nutritional status of patients, with poor nutrition 
correlating with adverse outcomes such as relapse, non-relapse mortality, delayed engraftment, and an increased risk of acute 
graft-vs-host disease (aGVHD).4–7 While the majority of HSCT patients exhibit good nutritional status prior to the procedure, 
with ~10% to 15% experiencing malnutrition.8,9 Notably, β-TM patients often manifest growth retardation symptoms prior to 
HSCT, including shorter stature, being underweight, wasting away, and diminished bone mineral density.10 The initiation of 
treatment, however, precipitates rapid deterioration of nutritional status, exposing patients to the perils of malnutrition.7 

Recognizing malnutrition through validated screening tools before HSCT and implementing timely interventions are pivotal in 
optimizing HSCT outcomes. Conventional Indicators like albumin, transferrin, and pre-albumin, while commonly used to 
assess nutritional status, are susceptible to interference from non-nutritional factors, complicating their interpretation.11

Traditional anthropometric measurements such as weight and body mass index (BMI), often employed in malnutrition 
assessment, exhibit inconsistent impacts on transplantation outcomes,7,12–14 possibly due to their inability to detect 
changes in body composition accurately.15,16 In this context, bioelectrical impedance analysis (BIA) emerges as 
a portable, easy-to-use, non-invasive, low-cost, and reproducible tool for assessing body composition and fluid distribu
tion with fewer physical demands, offering advantages in health care and disease management.17–19 As well as coupled 
with children’s comfort and cooperation, BIA is significantly appropriate for children in daily clinical practice.18 BIA 
works mainly through the measurement of body resistance (R) and reactance (Xc) to alternate electrical current.20 

Resistance depends on the fluid and electrolyte content of the body. Cell membranes produce capacitance (reactance) by 
storing parts of the charge as a capacitor.21–23 BIA provides insights into total body water (TBW), intracellular water 
(ICW), extracellular water (ECW), fat mass (FAT), fat-free mass (FFM), Phase angle (PA), etc.24 Meanwhile, BIA- 
derived PA was calculated using the following equation: PhA = (Xc/R) × (180/π). It can reflect the integrity of the cellular 
membrane, total body cell mass, and hydration status of the body.25 Moreover, PA, as one of the BIA parameters, 
reflecting muscle mass, has shown promise in identifying malnutrition more sensitively than traditional criteria in this 
population.26 The European Working Group on Sarcopenia in Older People (EWGSOP) 2019 consensus on sarcopenia 
suggested that PA could be regarded as an index of overall muscle quality.27 PA has been established as an independent 
predictor for nutritional status, non-relapse mortality (NRM), 2-year overall survival (OS), and progression-free survival 
(PFS) in allogeneic HSCT recipients.28,29

Despite the wealth of research focusing on HSCT recipients, a significant gap exists in understanding the nutritional 
status of β-TM child patients before and after HSCT. Given the predisposition of most children with β-TM to 
malnutrition and growth retardation symptoms before HSCT, independent studies in this population are imperative. 
This retrospective study aims to employ BIA to investigate changes in various parameters of body composition before 
and 1 month after HSCT in pediatric patients, considering the presence or absence of aGVHD, engraftment time, and 
other relevant clinical outcomes.

Methods
This study was conducted in accordance with the guidelines of the Declaration of Helsinki and approved by the 
Institutional Ethics Committee of Shenzhen children’s hospital (SZCH), reference number: 202313302 which complies 
with international ethical standards. All patients provided informed consent before undergoing HSCT, permitting the use 
of their data for research, in accordance with the Declaration of Helsinki.

Study Population
The medical records from the Haematology and Oncology Department of SZCH system for the period between 2022 and 
2023 were retrospectively reviewed. Inclusion criteria encompassed 40 patients diagnosed with β-TM who underwent 
allo-HSCT within the specified timeframe and were aged between 3 and 18 years. The donor type included matched 
related donors, haploidentical donors, and matched unrelated donors.
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Data Collection
Clinical outcomes with the first 30 days post HCT, including oral mucositis (OM), aGVHD, engraftment, intestinal 
infection, sinusoidal obstruction syndrome (SOS), and engraftment time were systematically collected. Time to neutro
phil, haemoglobin, and platelet engraftment was separately determined as the time from stem cell infusion (day 0) to the 
first of three consecutive days with a neutrophil count of at least 0.5*109/L, 7 consecutive days with a haemoglobin count 
of at least 90g/L, 7 consecutive days with a platelet count of at least 20*109/L. Nutrition status which was assessed by the 
new growth standards and growth reference published by WHO in 200630 and 200731 and body composition by BIA at 
baseline (before the use of conditioning regimen), and 30 days post-transplantation was collected. This included 
measurements of FFM, Skeletal Muscle Mass (SMM), soft Lean Mass (SLM), FAT, percent body fat (PBF), ICW, 
ECW, Body Cell Mass (BCM), PA, and muscle balance.

The BIA analysis was performed by using a tetrapolar multi-frequency BIA InBodyS10 (Biospace, Seoul, Korea), 
with gradual electric current frequency of 1, 5, 50, 250, 500 and 1000 kHz for the measurement. Heights and weights 
were measured before the measurement of body composition. The children was required fasting for 4 hours, with the 
bladder empty, and lying in a supine position for 15 minutes. After 15 minutes, the electrodes were placed on specific 
parts of the thumbs and middle fingers of the right and left hands as well as on the ankles of the right and left lower 
limbs, and the analysis were performed.

Statistical Analysis
In the statistical analysis of the study, SPSS 26.0 software was employed. Descriptive statistics were utilized for 
presenting general characteristics, with categorical data expressed as �x� s, paired t-tests and Wilcoxon Signed Ranks 
Test (WRST) were performed to analyze the parameters’ alteration pre- and post-HSCT. Proportion’s 95% confidence 
intervals (CI) was estimated using Wilson score method. The WRST compared differences in engraftment time of 
neutrophils, haemoglobin, and platelets between groups. Categorical data, represented as the number of cases, rate or 
percentage (%), underwent chi-square or Fisher’s exact test to compare between-group differences of clinical outcome 
with baseline data. To Investigate the relationship between pre-HSCT wasting and clinical outcomes, as only one child 
categorizes as overweight pre-HSCT was excluded. All statistical analyses were two-sided and P < 0.05 was considered 
statistically significant. These rigorous analyses allowed for a comprehensive exploration of the data, enabling the 
identification of meaningful trends and relationships within the study variables.

Results
A cohort comprising 40 paediatric patients was selected for this study. Among these, 55% (n=22/40) of individuals are 
male while 45% of individuals (n=18/40) are female which is lower than male, as depicted in Table 1. The age 
distribution of the cohort ranged from 2 to 15 years, with a calculated average age of 3.03 years (Mean) and a median 
age of 8.4 years. It is noteworthy that all children underwent therapeutic interventions while confined to bed, abstaining 
from any form of physical activity during the treatment period. The transplantation procedures employed allogeneic 
peripheral blood stem cell transplantation (PBSCT), utilizing diverse donor types. Specifically, PBSCT from unrelated 
donors with matched human leukocyte antigen (HLA) constituted 20% of cases (n=8/40). The predominant approach 
involved PBSCT from haploidentical donors, accounting for 62.5% of cases (n=25/40), whereas PBSCT from matched 
related donors was administered in 17.5% of cases (n=7/40) (Table 1). All patients received a myeloablative conditioning 
regimen, comprising cyclophosphamide (CY), busulfan (BU), fludarabine (Flu), and thyroglobulin (TT). The difference 
is that for prophylaxis of graft-versus-host disease (GVHD), matched related recipients received cyclosporin A (CsA), 
methotrexate (MTX) and mycophenolate mofetil (MMF),32 while haploidentical and matched unrelated recipients 
received tacrolimus, cyclophosphamide (CY), and MMF simultaneously33 (Table 1).

Nutritional Status Pre- to Post-HSCT Transition
A total of 40 children were included to explore the nutritional status before and after HSCT. Prior to HSCT, the cohort of 40 
pediatric patients exhibited a nuanced spectrum of nutritional and growth parameters. The incidence of wasting pre-HSCT 
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was 17.5% (n=7/40), with subcategories indicating 15% (n=6/40) experiencing moderate wasting, and 2.5% (1/40) 
demonstrating severe wasting. Additionally, 2.5% (1/40) of patients were categorized as overweight before HSCT, and 
maintain the same after HSCT. Following HSCT, the nutritional landscape of the cohort underwent notable changes. 
A trend towards diminished nutritional status after HSCT in children was observed both in the normal group and the 
wasting group. The incidence of diminished nutritional status after HSCT in the normal group was 18.75%, while in the 
wasting group, it notably increased to 71.43%. Children who experienced wasting were significantly more likely to undergo 
a decline in nutritional status compared to those in normal nutrition status pre-HSCT (P = 0.011) (Table 2). Simultaneously, 
the study involved 40 children to investigate changes in stunting before and after HSCT. Stunting was observed, with an 
overall incidence of 37.5% (n=15/40). Further analysis revealed that 25% (n=10/40) were moderately stunted, and 12.5% 

Table 1 Demographic and Clinical Characteristics of 40 Pediatric 
Patients Undergoing Haematopoietic Stem Cell Transplantation (HSCT)

Patients Characteristics n Proportion (95% CI)

Median age (range) 8.4 (2 to 15 years)

Gender

Male 22 55.00% (0.40%, 0.70%)
Female 18 45.00% (0.31%, 0.60%)

Type of HSCT

Haploidentical donor 25 62.50% (0.47%, 0.76%)
Matched related donor 7 17.50% (0.09%, 0.32%)

Matched unrelated donor 8 20.00% (0.11%, 0.35%)
Condition regimen

CY + BU + Flu + TT 40 100.00% (0.91%, 1.00%)

GVHD prophylaxis
CsA + MTX+MMF 7 17.50% (0.09%, 0.32%)

Tacrolimus+CY+MMF 33 82.50% (0.68%, 0.91%)

W/H or BMI/A-Z score
Normal 32 80.00% (0.65%, 0.90%)

Moderately wasted 6 15.00% (0.07%, 0.29%)

Severe wasted 1 2.50% (0.01%, 0.13%)
Over weight 1 2.50% (0.01%, 0.13%)

H/A-Z score

Normal 25 62.50% (0.47%, 0.76%)
Moderately stunted 10 25.00% (0.14%, 0.40%)

Severely stunted 5 12.50% (0.05%, 0.26%)

Note: Proportion’s 95% confidence intervals (CI) was estimated using Wilson score method. 
Abbreviations: CY, cyclophosphamide; BU, busulfan; Flu, fludarabine; TT, thyroglobulin; 
CsA, cyclosporin A; MTX, methotrexate; MMF, mycophenolate mofetil.

Table 2 Nutritional Status Changes Pre- and Post-Haematopoietic Stem Cell 
Transplantation (HSCT)

W/H or BMI/A-Z Rank Change P-value***

Improved/Sustained (%)* Deteriorated (%)** Total (%)

Normal 26 (81.25%) 6 (18.75%) 32 (100%) 0.011
Wasting 2 (28.57%) 5 (71.43%) 7 (100%)

Overweight 1 (2.5%) 0 (97.5) 1 (100%)

Notes: *Compare with pre HSCT, W/H or BMI/A-Z rank improved or sustained, including severely wasted to 
moderately wasted or normal, and moderately wasted to normal. **Compare with pre HSCT, W/H or BMI/ 
A-Z rank deteriorated, including normal to moderately wasted or severely wasted, and moderately wasted to 
severely wasted. ***Fisher’s exact test was performed.
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(n=5/40) presented with severe stunting. Interestingly, no significant change was found in stunting before and after HSCT, 
and the stunting rank remained consistent with the pre-HSCT status.

Anthropometric Changes Pre- and Post-HSCT
In the post-HSCT period, a significant weight reduction was observed in 87.5% (n=35/40, 22.15 ± 7.46 vs 20.74 ± 6.57, 
respectively, P < 0.001) of the children. In 55% (n=22/40, 119.63 ± 16.97 vs 120.38 ± 17.05, respectively, P < 0.001) of 
cases, height increased. The BMI experienced a decrease in 90% (n=36/40, 15.19 ± 1.70 vs 14.05 ± 1.48, respectively, 
P < 0.001) of the cases (Table 3).

Body Composition Analysis Pre- and Post-HSCT
After HSCT, the analysis of body composition in 40 pediatric patients with β-TM revealed significant changes. The FFM 
decreased by 87.5% (n=35/40, 18.26 ± 5.71 vs 17.27 ± 5.19, respectively, P < 0.001). Similarly, SMM showed a decrease 
in 90% of cases (n=36/40, 8.68 ± 3.30 vs 7.93 ± 3.02, respectively, P < 0.001). Furthermore, SLM exhibited an 87.5% 
decrease (n=35/40, 17.11 ± 5.28 vs 16.06 ± 4.84, respectively, P < 0.001). The ICW exhibited a 90% decrease (n=36/40, 
8.19 ± 2.54 vs 7.62 ± 2.31, respectively, P < 0.001). While ECW decreased by 72.5% (n=29/40, 5.15 ± 1.58 vs 4.94 ± 
1.47, respectively, P < 0.001). BCM showed an 87.5% decrease (n=35/40, 11.74 ± 3.63 vs 10.92 ± 3.32, respectively, P < 
0.001). Additionally, the PA demonstrated an 80% decrease (n=32/40, 4.42 ± 0.50 vs 3.90 ± 0.57, respectively, P < 
0.001). However, FAT decreased in 47.5% of cases (n=19/40, 3.64 ± 2.27 vs 3.455 ± 2.23, respectively, P = 0.352). PBF 
decreased by 65% (n=26/40, 16.74 ± 6.84 vs 16.04 ± 7.56, respectively, P = 0.397) (Table 3).

Muscles Balance
After HSCT, 40 children experienced a significant decrease in muscle mass from baseline to 30 days (P < 0.001), with an 
87.5% reduction in right arm (RA) muscle (n=35/40, 0.66 ± 0.22 vs 0.53 ± 0.19, respectively, P < 0.001). Similarly, the 
left arm (LA) muscle exhibited a 90% decrease (n=36/40, 0.65 ± 0.22 vs 0.53 ± 0.19, respectively, P < 0.001). Trunk 
(TR) showed a 90% decrease in muscle mass (n=36/40, 7.39 ± 2.38 vs 6.63 ± 2.32, respectively, P < 0.001). The right leg 
(RL) muscle experienced a 92.5% decrease (n=37/40, 2.07 ± 0.90 vs 1.72 ± 0.90, respectively, P < 0.001). Left leg (LL) 
muscle displayed a 65% decrease (n=26/40, 2.31 ± 1.13 vs 2.09 ± 1.27, respectively, P < 0.001) (Table 4).

Table 3 Comparative Analysis of Body Composition Parameters Before and 
After Haematopoietic Stem Cell Transplantation (HSCT) in Pediatric Patients

Pre-HSCT (�x� s) Post-HSCT (�x� s) t P

Weight (kg) 22.152±7.459 20.735±6.569 6.313 <0.001
Height 119.625±16.972 120.382±17.054 −5.066 <0.001

BMI 15.189±1.699 14.05±1.477 8.846 <0.001

FFM (Kg) 18.26±5.712 17.273±5.194 4.871 <0.001
SMM (Kg) 8.68±3.304 7.938±3.019 6.397 <0.001

SLM (Kg) 17.105±5.285 16.063±4.836 5.55 <0.001

FAT (Kg) 3.64±2.267 3.455±2.234 0.942 0.352
PBF (%) 16.738±6.843 16.035±7.563 0.856 0.397

ICW (L) 8.19±2.543 7.618±2.309 6.401 <0.001

ECW (L) 5.153±1.582 4.935±1.47 3.599 0.001
BCM (Kg) 11.738±3.633 10.923±3.322 6.431 <0.001

PA (°) 4.415±0.504 3.905±0.565 5.388 <0.001

Note: Paired t-tests and Wilcoxon Signed Ranks Test (WRST) were performed. 
Abbreviations: BMI, body mass index; FFM, fat-free mass; SMM, Skeletal Muscle Mass; SLM, soft 
Lean Mass; FAT, fat mass; PBF, percent body fat; ICW, intracellular water; ECW, extracellular water; 
BCM, Body Cell Mass; PA, Phase angle.
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Nutritional Status of Pre-HSCT and Engraftment Time of Neutrophil, Haemoglobin, 
and Platelet
The time to engraftment of neutrophils, haemoglobin, and platelets in the normal and wasting groups were 18.09 vs 19.43 
(P = 0.260), 14.47 vs 13.14 (P = 0.955), and 16.78 vs 14.14 (P = 0.985), respectively (Table 5). Regarding stunting, the 
engraftment time of neutrophils, haemoglobin, and platelets in the normal group was 17.84, 13.56, and 16.68 days, 
respectively, and an increase in the engraftment time was observed in the stunting group compared to the normal group, 
with the engraftment time of neutrophils, haemoglobin, and platelets being 19.20, 15.40, and 17.93 days, respectively; 
however, this difference was not statistically significant (P > 0.05) (Table 6).

Pre-HSCT Wasting and Stunting and Clinical Outcomes
Table 7 demonstrates the relationship between pre-HSCT wasting and stunting and clinical outcomes, including aGVHD, 
oral mucositis (OM), sinusoidal obstruction syndrome (SOS), and diarrhoea within one month post-HSCT. Among the 40 
children, the incidence of aGVHD, OM, SOS, and diarrhoea was 5%, 52.5%, 25%, and 45%, respectively, which 
revealed no significant differences between pre- and post-HSCT groups (P > 0.05). Being wasted or Stunted before 
HSCT is not a risk factor for developing the above clinical outcomes in the month following HSCT. The co-infection 
identified in this study involves a diverse array of microbial pathogens, including Candida albicans, Escherichia coli, 
Enterococcus avium, Klebsiella pneumoniae, Proteus mirabilis, Rhizobium radiobacter, Clostridium difficile, Salmonella 
typhimurium, Lactobacillus casei, Lactobacillus paracasei, and Enterococcus faecium.

Table 4 Comparative Analysis of Muscle Measurements (RA, LR, TR, 
RL, LL) Pre- and Post-Hematopoietic Stem Cell Transplantation 
(HSCT) in Pediatric Patients

Pre-HSCT (�x� s) Post-HSCT (�x� s) t P

RA 0.664±0.22 0.535±0.194 6.546 <0.001

LR 0.646±0.22 0.526±0.193 5.476 <0.001
TR 7.393±2.382 6.635±2.321 7.705 <0.001

RL 2.072±0.902 1.722±0.898 7.756 <0.001

LL 2.692±2.577 2.093±1.265 1.540 0.132

Note: Paired t-tests and Wilcoxon Signed Ranks Test (WRST) were performed. 
Abbreviations: RA, right arm; LR, left arm; TR, trunk; RL, right leg; LL, left leg.

Table 5 Engraftment Time of Neutrophil, Haemoglobin, and Platelet in 
Normal (n = 32) and Wasting Group (n = 7) Pre HSCT

Normal (95% CI) Wasted (95% CI) Z* P

Granulocyte 18.09 (17.00, 19.19) 19.43 (17.17, 21.68) 1.126 0.260
Haemoglobin 14.47 (12.79, 16.15) 13.14 (7.38, 18.90) 0.055 0.956

Platelet 16.78 (12.66, 20.90) 14.14 (8.98, 19.30) 0.018 0.985

Note: *Wilcoxon rank-sum test (WRST) was used to analysis.

Table 6 Engraftment Time of Neutrophil, Haemoglobin, and Platelet in 
Normal (n = 25) and Stunting Group (n = 15) Pre HSCT

Normal (95% CI) Stunted (95% CI) Z* P

Granulocyte 17.84 (1.76, 18.92) 19.20 (16.40, 21.00) −0.973 0.331
Haemoglobin 13.56 (12.04, 15.08) 15.40 (11.89, 18.91) −1.026 0.305

Platelet 16.68 (11.35, 22.01) 17.93 (12.47, 23.40) −1.294 0.196

Note: *Wilcoxon rank-sum test (WRST) was used to analysis.
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Discussion
The present study focused on a cohort of 40 pediatric patients undergoing HSCT for β-TM. The demographic distribution 
revealed a male preponderance, aligning with previous studies.34 The age range of 2 to 15 years underscores the relevance of 
HSCT across different pediatric age groups, with an average age of 3.03 years. PBSCT from haploidentical donors emerged as 
the predominant approach, reflecting the development of haplo-HSCT, patients who previously had no donor have the 
opportunity to receive HSCT. This approach effectively addresses the challenge of finding matched donors.35

The nutritional status of the patients was assessed pre- and post-HSCT, revealing significant changes. Post-HSCT, 28.21% 
of children experienced a diminished nutritional status. It is essential to note that 71.43% of children who experienced wasting 
before HSCT experienced a diminished nutritional status after HSCT, which was much higher than the normal group, which 
was 18.75%. These results demonstrated that compared with the children who are in the normal nutrition status pre-HSCT, the 
children who experienced wasting are more prone to experience a decline in their nutritional status. These changes in 
nutritional status suggest a potential impact of the transplantation process on the patients’ nutritional well-being. Stunting 
remained consistent with pre-HSCT, the lack of change in the stunting aspect may be attributed to the limited one-month 
observation period, which may not be sufficient to detect alterations in growth and development.

Our observation has shown that there were significant anthropometric changes post-HSCT, including a notable weight 
reduction in 87.5% of children, and a height increase in 55% of cases, but the BMI decreased in 90% of cases. These 
alterations underscore the substantial physiological impact of HSCT on pediatric patients with β-TM. Studies have 
revealed that most children undergoing HSCT have normal BMI at admission,36 however, decreases in BMI, and weight 
loss during the post-transplant weeks have been detected.37 The American Society for Parenteral and Enteral Nutrition 
(A.S.P.E.N) and the European Society for Parenteral and Enteral Nutrition (E.S.P.E.N) have stated that children under
going HSCT are at nutritional risk and that all children undergoing HSCT should be evaluated for nutrition status.38,39 

Additionally, malnutrition pre- and post-HSCT has been found to be an independent risk factor for complications.40 For 
this reason, growth monitoring and evaluation of nutritional status are very important factors in detecting children at risk 
of malnutrition, and nutritional treatment should be prioritized in pediatric patients.

Table 7 The Relationship Between Nutritional Status of Pre-HSCT and Four Clinical Outcomes

Wasting group (W/H or BMI/A-Z score) Stunting group (H/A-Z score)

Agvhd Normal Total OR OR 95% CI P value Agvhd Normal Total OR OR 95% CI P value

Wasting/Stunted 0 (0%) 7 (18.9%) 7 0.82* 0.04, 18.79 1 1 (50%) 13 (34.2) 14 1.92 0.11, 33.30 1

Normal 2 (100%) 30 (81.1%) 32 1 (50%) 25 (65.8) 26

Total 2 37 39 2 38 40

OM Normal Total OR OR 95% CI P value OM Normal Total OR OR 95% CI P value

Wasting/Stunted 5 (71.4%) 2 (28.6%) 7 2.50 0.42, 14.83 0.42 10 (66.7%) 5 (33.3%) 15 2.55 0.68, 9.51 >0.05

Normal 16 (50%) 16 (50%) 32 11 (44%) 14 (56%) 25

Total 21 (53.9) 18 (46.1%) 39 21 (52.5) 19 (47.5%) 40

SOS Normal Total OR OR 95% CI P value SOS Normal Total OR OR 95% CI P value

Wasting/Stunted 1 (10%) 6 (20.7%) 7 0.43 0.04, 4.05 0.65 6 (60%) 9 (30%) 15 3.5 0.54, 22.49 >0.05

Normal 9 (90%) 23 (79.3%) 32 4 (40%) 21 (70%) 15

Total 10 29 39 10 30 40

Diarrhea Normal Total OR OR 95% CI P value Diarrhea Normal Total OR OR 95% CI P value

Wasting/Stunted 3 4 7 0.96 0.18, 5.03 1 6 9 15 0.85 0.23, 3.11 >0.05

Normal 14 18 32 11 14 25

Total 17 22 39 17 23 40

Notes: Chi-square or Fisher’s exact test were performed. *Haldane-Anscombe correction was applied to calculating the odds ratio and its 95% CI for the zero cell. Fisher’s 
exact test was used to calculate the P value for contingency tables with smaller sample sizes. 
Abbreviations: Agvhd, acute graft-vs-host disease; OM, oral mucositis; SOS, sinusoidal obstruction syndrome.
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In terms of nutritional status, the administration of immunosuppressants and anti-tumour drugs during hospitalization 
can induce toxic effects, manifesting as gastrointestinal symptoms like OM, nausea, and vomiting.41 These symptoms 
contribute to challenges in nutritional intake, causing reduced appetite and inadequate energy consumption. 
Consequently, insulin levels decrease while glucagon levels increase in the body.42 The diminished insulin effect leads 
to the breakdown of muscle protein, resulting in weight loss and a decrease in basal metabolic rate.43 This cascade of 
effects contributes to muscle loss in children and establishes a negative nitrogen balance in the body.44 However, regular 
measurements of mid-upper arm circumference and triceps skinfold thickness can only provide insights into changes in 
local fat mass. Relying solely on BMI, and weight and height for assessing malnutrition may not accurately reflect 
nutritional status due to potential chemotherapy-induced dehydration.45,46 Weight loss may not necessarily indicate 
a reduction in SLM, and a decrease in muscle mass does not necessarily reflect a decrease in FAT.47 Therefore, the 
integration of BIA technology to measure changes in body composition enables a more accurate evaluation of nutritional 
status in children before and after HSCT.

We found significant decreases in various body composition parameters; however, FAT and PBF showed no 
significant change after HSCT aligned with the previous research.15,48 These findings suggest a shift in body composition 
towards a less favourable state, potentially reflecting the catabolic effects of the transplantation process.49 Although BCM 
represents the number of cells containing water and protein in the body’s organs and is a sensitive indicator of nutritional 
status, no specific studies have focused on BCM, ICW, and ECW in patients with β-TM. Insufficient energy intake 
attributable to the immunosuppressants and anti-tumour drugs affects the sodium, potassium, and ATP function of the 
cell membrane. This effect disrupts the concentration gradient and cannot maintain the concentration difference between 
sodium and potassium ions inside and outside the cell at a constant level leading to sodium retention which causes 
hypotonic dehydration, hypokalemia, and decreased ICW, indirectly indicating cellular malnutrition.50 PA assessment, 
encompassing both cell quality and quantity along with muscle proportion.51 Our findings revealed a significant decrease 
in PA after HSCT which is consistent with previous studies.29,52 Meanwhile, a decline in muscle mass, including FFM, 
SMM, and SLM were been found. SMM experienced a substantial reduction in the Right Arm (RA), Left Arm (LA), 
Trunk (TR), Right Leg (RL), and Left Leg (LL) muscles. These observations indicate a systemic impact on muscle 
health, possibly influenced by factors such as reduced physical activity and insufficient intake during the treatment 
period.53 The imbalance in muscle mass distribution could contribute to functional limitations and underscores the 
importance of post-transplant rehabilitation programs to address muscle atrophy.54

Our study shows being wasted or Stunted before HSCT did not increase the risk of developing clinical outcomes, 
such as aGVHD, engraftment time, OM, SOS, and diarrhoea, in the month following HSCT. aGVHD is the most 
common complication for HSCT patients and is the major cause of mortality during the first year after HSCT.55 Some 
reports reported that nutrition might contribute to preventing aGVHD6,56 which did not be proved in our finding. No 
significant differences were observed in aGVHD, suggesting a more complex relationship between nutritional status and 
specific clinical outcomes. The inconsistent result could be attributed to aGVHD being particularly undesirable in 
patients with β-TM. The post-transplant CY (PTCY) as part of GVHD prophylaxis for haploidentical HSCT achieved 
favourable outcomes which caused the increasing number of haploidentical HSCT performed. Especially our center 
performs PTCY plus a small dose of ATG which further reduces the incidence of aGVHD. Therefore, the main reason for 
the negative results may be related to the low incidence of aGVHD resulting in a limited number of aGVHD patients that 
can be analyzed; however, the influence of other factors cannot be ruled out. If the association between nutritional status 
and aGVHD wants to be clarified, expanding the sample size could be considered.

In terms of engraftment time, although no significance be found in the present study, however, there is a trend 
suggesting a nuanced interplay between stunting and time to engraftment time. The engraftment time of neutrophils, 
haemoglobin and platelets in the normal group was 17.84, 13.56, and 16.68 days, respectively, and an increase in the 
engraftment time was observed in the stunting group compared to the normal group, with the engraftment time of 
neutrophils, haemoglobin, and platelets being 19.20, 15.40, and 17.93 days, respectively. One study showed that 
high-risk malnutrition patients experienced a longer time for platelet engraftment but not time for neutrophil 
engraftment.57 Additionally, researchers pointed out that albumin was associated with time to platelet engraftment, 
days of total parenteral nutrition (TPN) correlated with time to neutrophil engraftment58 and time to platelet 
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engraftment.58,59 However, study demonstrated that nutrition support was not associated with neutrophil engraft
ment time.59 As above, nutritional status could have potential association with neutrophil and platelet engraftment. 
Further investigation was warranted to understand the interplay which could contribute to refining patient care 
strategies.

The co-infection analysis identified a diverse array of microbial pathogens, emphasizing the complexity and 
challenges associated with combating multiple pathogens simultaneously. This multi-species infection underscores the 
need for a comprehensive understanding of the intricate dynamics of co-infections in the context of clinical management 
and therapeutic interventions.

The study populations of majority studies on the nutritional status of HSCT patients before and after HSCT have 
included both malignant and non-malignant patients. The present study only focused on the nutritional status transition of 
TM patients pre- and post-HSCT. We will expand our study increase the sample size and include another centre to 
overcome the validity of the results. We accept that reliance on historical medical records may limit the accuracy and 
comprehensiveness of certain variables. However, we consider the long-term follow-up and complications associated with 
HSCT. Longitudinal studies with extended follow-up periods which is essential for a more comprehensive understanding of 
patient outcomes. The present study relies on BIA as a more accurate method to measure anthropocentric parameters 
compared to other nutritional parameters, such as blood indices, which may be influenced by chemotherapy drugs or other 
factors. Our other group working on co-infection and finding specific microbial interactions and their correlation with 
clinical manifestations. The study provides valuable insights into the multifaceted effects of HSCT on pediatric patients with 
β-TM, encompassing changes in nutritional status, body composition, muscle balance, and complications.

Conclusion
In summary, our study on pediatric patients undergoing HSCT for β-thalassemia major reveals significant post-transplant 
changes in nutritional status, body composition, and muscle balance, emphasizing potential vulnerability to nutritional 
challenges. Focusing on malnourished children is essential due to they are more likely to undergo a decline in nutritional 
status compared to those in normal nutrition status pre-HSCT. Anthropometric changes, including weight reduction and 
BMI decrease, underscore the physiological impact on these young patients. Despite the nuanced information provided 
by BIA, our study found limited significant correlations between nutritional status assessed by BIA and clinical 
outcomes. However, intriguing trends observed in BIA parameters warrant further exploration to better elucidate their 
clinical implications and predictive value in this population. Comprehensive body composition analysis shows systemic 
shifts, notably in muscle health. While the relationship between nutritional status and clinical outcomes lacks significance 
in our study, intriguing trends suggest further investigation. Acknowledging limitations such as modest sample size and 
single-centre design, these findings offer valuable insights into the effects of HSCT, advocating for extended follow-up 
and larger cohorts in future research.
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