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CD8" T-Cell Responses to Trypanosoma cruzi
Are Highly Focused on Strain-Variant
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CD8" T cells are crucial for control of a number of medically important protozoan parasites, including Trypanosoma
cruzi, the agent of human Chagas disease. Yet, in contrast to the wealth of information from viral and bacterial
infections, little is known about the antigen specificity or the general development of effector and memory T-cell
responses in hosts infected with protozoans. In this study we report on a wide-scale screen for the dominant parasite
peptides recognized by CD8" T cells in T. cruzi-infected mice and humans. This analysis demonstrates that in both
hosts the CD8" T-cell response is highly focused on epitopes encoded by members of the large trans-sialidase family of
genes. Responses to a restricted set of immunodominant peptides were especially pronounced in T. cruzi-infected
mice, with more than 30% of the CD8" T-cell response at the peak of infection specific for two major groups of trans-
sialidase peptides. Experimental models also demonstrated that the dominance patterns vary depending on the
infective strain of T. cruzi, suggesting that immune evasion may be occurring at a population rather than single-
parasite level.
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Introduction

CD8" T-cell responses participate in immune control of a
wide range of intracellular pathogens, including viral,
bacterial, and protozoal pathogens [1]. Antigen (Ag)-specific
CDS8" T-cell responses in viral and bacterial infections are
focused on a small number of epitopes [2-4], and examination
of these Ag-specific T cells ex vivo has enhanced our
understanding of pathogen-specific immune responses and
has provided information needed for more rational vaccine
design [5-8]. The study of immune responses to protozoan
parasites provides a notable contrast, with a dearth of
information on the epitope specificity of parasite-specific
CDS8" T cells and thus little understanding of the targets of
controlling and protective immune responses. Diseases
caused by intracellular protozoan parasites contribute sig-
nificantly to morbidity and mortality worldwide, both as
vector-borne and opportunistic infections. Plasmodium spp,
Toxoplasma gondii, Leishmania major, and Trypanosoma cruzi all
induce strong CD8" T-cell responses that are crucial for
control of these infections [9,10-14]. In addition, the vaccine-
induced generation of CDS8" T-cell responses results in
protective immunity in experimental infection models
[12,15-17]. However, the inability to detect Ag-specific CD8"
T cells directly ex vivo has hindered progress in under-
standing the development and maintenance of parasite-
specific CDS8" T-cell responses against parasitic pathogens.

A number of potential factors might account for the lack of
identified immunodominant CD8" T-cell epitopes in para-
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sitic infections. Immunodomination is dictated by several
factors, including the abundance of source protein, peptide
generation in the proteasome, peptide affinity for major
histocompatibility complex (MHC) in the case of T-cell
responses, and composition of the T-cell receptor repertoire
[18,19]. It is possible that the large size of the genomes and the
complexity of the proteomes of these parasites preclude the
focusing of CDS8" T-cell responses to a few immunodominant
epitopes. The T. cruzi genome, for example, encodes more
than 12,000 genes, providing thousands of potential epitopes
that presumably compete for presentation by class I MHC on
the surface of T.cruzi-infected host cells.

Previous studies have identified a few 7. cruzi peptides,
including some encoded by the trans-sialidase (ts) family of
genes, as targets for cytolytic T cells in mice and in humans
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Synopsis

The authors of this paper conducted a broad screen to identify the
major proteins in Trypanosoma cruzi, the causative agent of Chagas
disease, that allow for detection and control of this intracellular
pathogen by CD8" T cells. This study is the first to show that a
complex pathogen such as T. cruzi elicits a T-cell response focused
on a few peptides, despite having a genome of >12,000 genes
capable of encoding hundreds of thousands of potential target
epitopes. The immunodominant CD8" T-cell targets in both murine
and human T. cruzi infection are almost exclusively peptides within
multiple trans-sialidase proteins that are encoded by the large and
diverse trans-sialidase gene family. trans-sialidase genes show great
potential for variation, and the frequency of individual trans-
sialidase epitopes appears to vary significantly in different parasite
strains, giving rise to distinct patterns of T-cell responses to different
T. cruzi isolates. The authors hypothesize that the massive expansion
of this gene family under immunological pressure and the resulting
variable expression of specific T-cell epitopes provides a mechanism
of immune escape for T. cruzi.

infected with 7. cruzi [20-25]. However, responses to these
previously studied epitopes appear to be of low frequency
and there are no published reports of the direct ex vivo
detection of T cells specific for any of these epitopes. It is
possible that previously described epitopes are in fact only
minor targets of CD8" T-cell responses in 7. cruzi-infected
hosts, and that bona fide dominant epitopes have yet to be
identified. However, the lack of described immunodominant
epitopes, not only from 7. c¢ruzi but from any protozoan
parasite, raises the question of whether the repertoire of
potential targets is so vast in complex eukaryotic pathogens
that no individual or set of epitopes would dominate the
CD8" T-cell response. The studies described here investigate
these two possibilities by expanding the list of potential
epitopes and reveal that the CD8" T-cell response to T. cruzi
in both mice and humans is highly focused on a small set of
epitopes primarily encoded by genes of the large and strain-
variant ts gene family.

Results

ts Epitopes Dominate the CD8" T-Cell Response in T.
cruzi-Infected Mice

We first expanded the list of potential ts epitopes by
scanning a set of raw sequencing reads that were made
available prior to the release of the 7. cruzi genome for
peptides predicted to bind to murine H-2K" using known
epitopes as templates (see Materials and Methods). This
analysis yielded a total of 404 peptides with sequence
similarity to the three previously described H-2K"-binding
epitopes (VDYNFTIV (pep77.2), VNHRFTLV (PAS8), and
VNHDFTVV (PA14) [21]) from among the 43,000 selected
raw sequence reads with homology to known ts genes. An
alignment of published ts genes with the reads containing
these peptides revealed 324 predicted peptides that were
potentially present in the same relative position in the source
ts genes as the three template epitopes (Figure S1). Of these
324 peptides, 156 are present in the 1,430 ts genes in the
annotated T. cruzi genome (77 of these are present only in the
695 ts pseudogenes). The predicted H-2K" binding potential
was determined computationally for each of these peptides,
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and the combination of frequency of representation in the
genome and predicted MHC binding efficiency (Table S1) was
then used to prioritize peptides for further screening.
Approximately 100 of the predicted H-QKI’—binding ts
peptides were tested individually or in pools for their ability
to induce IFNy production from splenocytes of chronically
infected mice. Fourteen ts peptides induced IFNy elaboration
by spleen cells (SCs) directly ex vivo (Figure 1A); however, five
of these (TSKB24, TSKB27, TSKB66, TSKB68, and TSKB84)
were recognized by T cells from fewer than 50% of mice
tested (Table S1) and were not considered further. Of the
remaining nine epitopes, seven were also found to be targets
for cytolytic T cells as determined by in vivo elimination of
peptide-loaded SCs (Figure 1B, and Table S1). These results
confirmed that peptide-responsive CD8" T cells with a full
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Figure 1. Functional Responses of Murine CD8" T Cells Directed against
T. cruzi-Derived ts Peptides

(A) SCs from naive (gray bars) or chronically infected (Brazil strain; black
bars) B6 mice were stimulated overnight with ts peptides on anti-IFNy-
coated ELISPOT plates as described in Materials and Methods. Error bars
represent SD. Data represent the number of SFUs per 10° SCs plated.
(B) SCs from naive B6 mice were loaded with T. cruzi peptides and
labeled with CFSE as described in Materials and Methods. Cells were
recovered from naive and infected mice 16 h after transfer and examined
for CFSE fluorescence. The numbers above the peaks represent the
percentage of specific killing for targets loaded with the respective
peptide, and was calculated as described in Materials and Methods. Data
are representative of eight experiments.

DOI: 10.1371/journal.ppat.0020077.g001
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range of functional activity are maintained in mice during
the chronic phase of 7. cruzi infection.

In addition to members of the ts family, several other
proteins have been shown to be targets of CDS8" T cells
following 7. cruzi infection using classical restimulation/
killing assays [23,26]. To expand the coverage of potential
CD8" T-cell targets beyond the ts family, we also analyzed
predicted H-2K"-binding peptides encoded by other genes
and gene families. Among these are peptides found within
cruzipains (CRZPs), mucin-associated surface proteins
(MASPs), B-galactofuranosyl transferase (GFTs), and gp63
proteins (Table S2). A number of criteria were used to select
these peptides for evaluation as potential targets of CDS' T
cells, including factors that make a protein available for
processing through the MHC I pathway, such as the predicted
presence of a signal sequence and/or glycosylphosphatidyl
inositol anchor addition site on the protein [27], detection of
the protein in amastigotes or trypomastigotes of 1. cruzi as
determined by whole proteome analysis [28], and the
presence of the peptides in multiple members of a gene
family (Table S2). Of the 93 peptides tested by IFNy enzyme-
linked immunospot (ELISPOT) analysis, four (CRZP5, CRZP9,
GFT16, and GFT17) were found to elicit T-cell responses
from mice with chronic Brazil strain infections (Figure 2A).
These non-ts epitopes induced IFNy from only 40%-60% of
mice tested and did so only in overnight, but not short-term
(5-h) cultures. Frequencies of IFNy-producing cells were
consistently 4- to 20-fold lower against non-ts epitopes
compared to ts epitopes in both acutely and chronically
infected mice (unpublished data). Target cells loaded with
non-ts epitopes were also poorly recognized in in vivo
cytotoxic T lymphocyte assays in acutely or chronically
infected mice (unpublished data and Figure 2B). These results
indicate that these non-ts peptides generate low frequency T-
cell responses following Brazil strain 7. cruzi infection, further
supporting the conclusion that the epitope specificity of
CD8" T-cell responses in experimental T. cruzi infection is
strongly dominated by ts gene family-encoded peptides.

To further explore the magnitude and kinetics of ts-
specific CD8" T-cell responses during experimental infection,
MHC I tetramers bearing two of these epitopes, TSKB18 and
TSKB20, were tested for direct ex vivo binding to cpst T
cells from Brazil strain 7. cruzi-infected mice. The TSKB20-
specific CD8" T-cell response shows significant expansion,
reaching a peak of nearly 30% of all CDS8" T cells at 21 days
after infection, followed by contraction and stabilization at
2%-5% of CD8" T cells in chronically infected mice (Figure
3A and 3B). The kinetics of the TSKBI18-specific T-cell
response follows a similar pattern, but the overall level is
consistently 1.5- to 4-fold lower than for TSKB20-specific T
cells throughout the course of infection (Figure 3B). The
massive TSKB20-specific T-cell response demonstrates that
the CD8" T-cell response to T. cruzi can be focused to a very
few epitopes even within the context of tens of thousands of
potential targets and among the hundreds of other similar ts
epitopes that are present in this complex parasite.

Because of the sequence similarity between the dominant ts
epitopes shown to be the targets of CD8" T-cell responses in
murine 7. cruzi infection, we next determined whether these
peptides were recognized by unique or overlapping popula-
tions of CD8" T cells. TSKB20/K” and TSKB18/K" tetramers
clearly bind discrete populations of Ag-specific CDS8' T cells
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Figure 2. Functional Responses of Murine CD8" T Cells Directed against
Non-ts Epitopes

(A) SCs from naive (gray bars) or chronically infected (Brazil strain; black
bars) B6 mice were stimulated for 5 h with TSKB20, cruzipain, or GFT
peptides plus GolgiPlug as described in Materials and Methods. Data
represent the number of CD8" T cells producing IFNy; error bars
represent SD.

(B) SCs from naive B6 mice were loaded with T. cruzi peptides and
labeled with CFSE as described in Materials and Methods. The numbers
above the peaks represent the percentage of specific killing of the target
cells loaded with the indicated peptide and was calculated as described
in Materials and Methods. Data are representative of three experiments.
DOI: 10.1371/journal.ppat.0020077.g002

(Figure 3C, top right), whereas TSKB20/K®” and TSKB21/K"
tetramers bind to the same population of T cells (Figure 3C,
bottom right). Costaining with TSKB21/K” reduces the
intensity of TSKB20/K" fluorescence, whereas costaining with
TSKB18/K" does not (Figure 3C, left panel), indicating
competition between TSKB21/K" and TSKB20/K" for binding
to the same T-cell receptor. TSKB260, which differs from
TSKB20 only at the P8 K" anchor residue, also cross-reacts
with the TSKB20-specific T-cell population (unpublished
data). (For simplicity, the population of T cells responding to
TSKB20, TSKB21, and TSKB260 is referred to as the
“TSKB20-specific T-cell response.”) Likewise, TSKB1S,
TSKB74, TSKB80, and TSKB89 are all recognized by the
same T-cell population as determined by tetramer analysis
and peptide-induced IFNy production from TSKB18-specific
T cells (unpublished data). Therefore, peptides contained
within ts proteins generate both distinct and overlapping/
cross-reactive immunodominant CD8" T-cell populations.

CD8" T-Cell Responses in T. cruzi-Infected Human
Subjects Are Also Directed against a Few ts Epitopes

To determine whether peptides from ts proteins are also
major targets of CD8" T cells in humans chronically infected
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Figure 3. Magnitude, Kinetics, and Cross-Reactivity of CD8" T-Cell

Responses to Dominant ts Epitopes

(A) SCs from naive or chronically infected (Brazil) B6 mice were stained
with TSKB20/KP-PE tetramers, then anti-CD8 APCs and a Cy5PE exclusion
channel consisting of anti-CD4, anti-CD11b, and anti-B220. Cells shown
are gated on Cy5PE™*%lymphocyte’ populations. Numbers represent the
percentage of CD8" T cells staining with the TSKB20/K® tetramer.

(B) Kinetics of TSKB20 (closed triangles)- and TSKB18 (open triangles)-
specific responses during Brazil strain infection of B6 mice. Data are
representative of three experiments (n =5 mice per group).

(C) SCs from infected mice were stained with anti-CD8-FITC, TSKB20/K>-
PE, anti-CD4/11b/B220 cocktail, and either TSKB18/K°-APC (top) or
TSKB21/K°-APC (bottom). Left panel shows CD8 versus TSKB20/K®;
middle panel shows CD8 versus TSKB18/K® or TSKB21/K®; right panel
shows TSKB18/K" or TSKB21/K® tetramer staining versus TSKB20/KP
staining, gated on CD8" lymphocytes.

DOI: 10.1371/journal.ppat.0020077.9g003
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with 7. ¢ruzi, a similar approach to that described above for
the selection of predicted H-2K"-binding peptides was used
to identify 71 peptides with sequence homology to previously
characterized HLA-A2-binding ts epitopes [25]. The initial
screen for HLA-A2 binding and T-cell recognition used SCs
from HLA-A2.1 transgenic mice with chronic 7. cruzi
infections as responders in ex vivo, IFNy ELISPOT assays.
Thirty-two of the 71 peptides reproducibly induced IFNYy
production (Figure S2), and were further tested using
peripheral blood mononuclear cells (PBMCs) from 17 HLA-
A2.1" chronic chagasic subjects. IFNy-secreting cells were
observed in ten (59%) of 17 subjects, with 24 of the 28
peptides assayed being recognized by at least one subject
(range, two to seven subjects/peptide; Table S3). Four of the
seven nonresponding subjects also failed to recognize T. cruzi
Ags derived from an amastigote lysate preparation, confirm-
ing the poor CD8" T-cell responses in some of these subjects
as previously reported [26]. Although immunodominance of
particular peptides was not as obvious as that observed in
mice, T cells from each of the responding subjects recognized
either or both Ts38 and Ts44 peptides. MHC class I tetramers
containing peptides Ts38 and Ts44 also detected a low
frequency of parasite-specific CD8" T cells (% CDS8"
tetramer’ = 0.15-0.40) in five of eight chronic chagasic
patients who had positive IFNy ELISPOT responses for either
one or both peptides (Figure 4). These peptides are the only
reported epitopes recognized directly ex vivo by PBMCs from
T. cruzi-infected humans, demonstrating that ts peptides are
the predominant targets of CD8" T cells in both mice and
humans.

Parasite Strain Diversity Significantly Influences the
Magnitude of Ag-Specific Responses and Patterns of
Immunodominance

Although ts epitopes appear to be dominant in both mouse
and human 7. cruzi infection, the difference in magnitude of
the anti-ts CD8" T-cell response in B6 mice and humans is
striking. Two of the differences in experimental infection of
mice and natural infection in humans are the diversity of
infective parasite strains and polymorphic MHC molecules in

Uninfected Chagasic Subject

tetramer

CD8

Figure 4. Detection of CD8" T Lymphocytes Recognizing HLA-A2.1-
Restricted ts Epitopes in Patients with Chronic Chagas Disease

PBMCs were stained using MHC tetramers specific for the TSA2-38 or
TSA2-44 epitopes. The percentage of CD8" T cells staining positive for
TSA2-38 is shown for a representative chronic chagasic patient and an
uninfected control. Cells shown are lymphocytes gated on
CD4"*9B220"°9CD11b"*? lymphocytes. Five out of eight IFNy ELISPOT"
subjects stained positive with tetramers.

DOI: 10.1371/journal.ppat.0020077.g004
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naturally infected hosts. Increasing MHC 1 diversity in
experimental models minimally affects the magnitude and
hierarchy of the dominant TSKB20-specific T-cell response as
determined by Brazil strain infection of F1 crosses of B6 mice
with CBA (B6CBAF1/], H-2"®) and Balb/c (CB6F1/], H-2""%)
mice (Figure S3).

To address the question of whether the infecting strain of
parasite influences the magnitude of CD8" T-cell responses to
the dominant T-cell epitopes TSKB20 and TSKBIS, we
infected mice with Brazil, Y, or CL strains of 7. cruzi and
followed the peptide-specific T-cell responses over time.
Surprisingly, mice infected with different strains of 7. cruzi
generated CD8" T-cell responses differing in magnitude,
kinetics, and patterns of dominance (Figure 5). Brazil strain-
infected mice generated higher frequencies of both TSKB20-
and TSKB18-specific CD8" T cells than CL strain- or Y
strain-infected mice (Figure 5). TSKB20-specific T-cell
responses peaked earliest following CL infection (Figure 5,
top), although these frequencies were slightly lower than
those observed following Brazil strain infection. In stark
contrast, TSKB20-specific T-cell responses in mice infected
with Y strain parasites were 4- to 6-fold lower than those
generated following CL or Brazil strain infection (Figure 5,
top). In mice infected with any of the given strains of 7. cruzi,
the TSKB20-specific T-cell response peaks in the acute phase,
then contracts and remains at relatively constant levels
throughout the course of chronic infection (Figure 5, top),
as is typical of dominant CDS8" T-cell responses in most viral
and bacterial infections [1]. T-cell responses to TSKB18
following CL or Y strain infection displayed somewhat
delayed and considerably sustained (>30 d) expansion
compared to TSKB20-specific T-cell responses. Three pat-
terns of dominance subsequently emerge in chronically
infected mice: TSKB20 > TSKB18 (Brazil), TSKB20 =~
TSKB18 (CL), and TSKB20 < TSKBI18 (Y). These data

25 TSKB20/KP

—&— Brazil

°7 TSKB18/KP

% CD8* T cells tetramer*

(=T S L -

1 T T T T T T T T 1
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Figure 5. Parasite Strain-Dependent Dominance Patterns in T. cruzi-
Infected Mice

B6 mice were infected with 1,000 Brazil, 1,000 Y, or 10,000 CL strain T.
cruzi and stained with TSKB20/K? (top) or TSKB18/K® (bottom) tetramers
as described in Materials and Methods. Data shown are a combination of
two separate experiments with three or four mice per group per
experiment.

DOI: 10.1371/journal.ppat.0020077.g005
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document that immunodominance in CD8" T-cell responses
to T. cruzi varies considerably depending on the infecting
strain of parasites, perhaps reflecting differences in expressed
ts genes in different strains.

Evidence for significant variation in ts epitope expression
among 7. cruzi strains can be found in data from the
sequencing of the T. cruzi genome. The CL Brener clone
(from the CL strain) was the primary source for the 7. cruzi
genome sequencing [29]. However ~2.5X coverage of the
Esmeraldo strain, an apparent relative of one of the parental
strains of the CL Brener hybrid, was also completed and
allows us to compare the representation of predicted K"-
binding epitopes in these 2 strains; a sample of the results of
this comparison is shown in Table 1. In the most extreme
case, TSKB364 is greater than 25 times more prevalent in the
Esmeraldo sequence reads than those from the CL Brener
strain, while one of the immunodominant epitopes, TSKB18,
is present in approximately twice the number of relative
sequence reads in CL Brener than in Esmeraldo. In addition,
a number of the predicted epitopes are present in the reads
of only one strain but not the other. Therefore, the
immunodominant targets of the CDS" T-cell response in 7.
cruzi are also potentially highly variable among parasite
strains.

Discussion

Herein we demonstrate that CD8" T-cell responses in 7.
cruzi infection are tightly focused on a small subset of
peptides encoded by the ts gene family. Two of these
peptides, TSKB20 and TSKB21, are recognized by an over-
lapping set of CDS8" T cells that at the peak of the response
accounts for greater than 30% of the total circulating CD8"
T-cell pool in B6 mice infected with the Brazil strain of T.
cruzi. Typical reported frequencies of pathogen epitope-
specific CD8" T cells detected directly ex vivo in the spleen or
blood of mice infected with various viral or bacterial agents
are approximately 2%-209% of all CD8+ T cells [30-33]. Thus,
the TSKB20-specific CD8" T-cell response in 7. cruzi infection
described herein is among the strongest documented
responses against a single epitope in any infectious disease.
Lymphocytic choriomeningitis virus represents a notable
exception: more than 50% of CDS8" T cells in infected BALB/c
mice recognize the NP5 196 epitope [34]. The kinetics of ts
epitope-specific responses is quite distinct from other well-
studied infection models. The time to peak response (19-24
d) following Brazil strain infection mirrors the rise and peak
of parasite load in this model, suggesting that the stimulating
epitopes are limiting early in the infection. Not unexpectedly,
the ts-specific response in the B6/Brazil model contracts as
the infection is controlled and continues a slow decline in the
postacute infection period, again reflecting the chronic
nature of this infection. In contrast, in most viral infections
exhibiting strong immunodominant CD8 responses, peak
viremia and CD8" T-cell responses occur within 1 wk after
infection [35].

The massive response to TSKB20 was unexpected given the
overall complexity of the 7. cruzi genome, whose more than
12,000 genes includes more than 700 ts family members and
nearly 700 ts pseudogenes. In addition, the ts family is only
one of several families encoding thousands of surface-
membrane and secreted glycoproteins that would be possible

August 2006 | Volume 2 | Issue 8 | e77



Immunodominance in T. cruzi Infection

Table 1. Differential Distribution of ts Genes among Closely Related T. cruzi Strains

Peptide Sequence Relative Frequency = Number Occurrences Frequency of Epitope Number Occurrences Frequency of Epitope
Designation CL Brener/Esmeraldo in TSC CL Brener Raw in CL Brener Reads in TSC Esmeraldo in Esmeraldo Reads
Raw Sequence Reads Sequence Reads (per 10,000 reads) Raw Sequence Reads (per 10,000 reads)

TSKB-88 ANHKFTLV 146 107 0.95 1 0.06

TSKB-11 ANCNFTLV 9.3 68 0.60 1 0.06

TSKB-12 ANDKFTLV 4.0 59 0.52 2 0.13

TSKB-18 ANYDFTLV 1.9 28 0.25 2 0.13

TSKB-57 LNRNFTLV  CL Brener only 86 0.76 0 0.00

TSKB-96 LHKRFTLV  CL Brener only 71 0.63 0 0.00

TSKB-97 LSQNFTLV  CL Brener only 62 0.55 0 0.00

TSKB-60 LSHSFTLV CL Brener only 51 0.45 0 0.00

TSKB-267 ANNKFTLS  CL Brener only 51 0.45 0 0.00

TSKB-364 ANYNFTLG ~ —25.7 2 0.02 7 045

TSKB-338 ANYNFTLS 86 6 0.05 7 0.45

TSKB-117 VHKTFTLV ~ —8.7 37 0.33 44 2.85

esTSKB-116 AKLHFTLV ~ —6.5 9 0.08 8 0.52

TSKB-49 ANREFTLA  —47 58 0.51 37 2.40

TSKB-89 VNYDFTIV. ~ —4.1 117 1.03 66 428

esTSKB-284 ANYKFILV Esmeraldo only 0 0.00 6 0.39

esTSKB-36 LSONFTVV  Esmeraldo only 0 0.00 5 0.32

esTSKB-76 ANNEFALL  Esmeraldo only 0 0.00 4 0.26

esTSKB-94 LGHNFTLV ~ Esmeraldo only 0 0.00 3 0.19

esTSKB-107 TNYNFTLV ~ Esmeraldo only 0 0.00 3 0.19

A set of 392 putative H-2KP-binding epitopes from approximately 30,000 Esmeraldo-strain raw sequence reads were identified as described. An alignment using ClustalW [57] of ts-
homologous Esmeraldo-strain open reading frames with the reads containing these peptides revealed 98 that were potentially present in the same relative position in the Esmeraldo-
strain ts genes homologous to pep77.2. The relative number of reads containing each of the selected CL Brener and Esmeraldo peptides was determined in both databases of sequence
reads. The relative frequencies of each peptide were then compared to determine a set of peptides that were more highly represented (or not present at all) in either database.

DOI: 10.1371/journal.ppat.0020077.t001

targets of CD8' T-cell responses in this infection
[28,29,36,37]. Despite this complexity, the remarkable dom-
inance of the response by T cells specific for a few ts peptides
is established early and largely remains for the length of the
infection, confirming that immunodominance is an inherent
property of CDS8" T-cell responses, irrespective of the epitope
complexity of pathogens. Likewise, 7. cruzi-infected Balb/c
mice also generate significant ts-specific CD8" T-cell re-
sponses against the H-2K¢ epitope IYNVGQVSI (Turrentine
et.al, unpublished data; and [38]). Identification of these
potent immunodominant CDS8" T-cell responses also firmly
establishes that immunity to 7. cruzi is not dominated by
immunosuppression nor by nonspecific polyclonal responses,
as has been previously proposed [39,40].

A number of factors, including peptide affinity for MHC I,
peptide liberation by cellular proteases, abundance of the
source gene product, the CD8" T-cell repertoire, and the
kinetics of expression of the determinant [18,19], have been
proposed to contribute to immunodominance, but epitope
abundance appears to be a key determinant [41]. In
retrospect, the dominance of the TSKB20/21 response in 7.
cruzi infection is predictable, as these epitopes are encoded by
a combined 229 genes in the CL Brener strain genome, 90 of
which also have evidence of expression in the Brazil strain
proteome, by far the highest among the H-QKI’—binding ts
peptides examined (Table S1). A combination of MHC I
tetramer staining (Figure 3) and assays of T-cell receptor
downregulation indicate that the peptides comprising the
TSKB20 group are full agonists for T cells recognizing any of
the peptides in the group, but fail to significantly interact with
T cells specific for peptides in the TSKB18 group (Figure 6 and
unpublished data). Immunodominance by the TSKB18 group
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of peptides is less easily predicted based on gene frequency,
although collectively this set of epitopes is encoded in a total
of 18 genes, seven of which were detected by proteome
analysis. However, the true expression levels of these epitopes
in infected cells is difficult, if not impossible, to determine.
Gene frequency is also clearly not a perfect predictor of
epitope abundance and possible recognition by 7. cruzi-
specific CD8" T cells; other higher frequency, potential K"-
binding ts-encoded peptides (e.g., TSKB4) fail to generate a
detectable CD8" T-cell response, and Kb-binding peptides
encoded in hundreds of MASP genes were also not recognized
by CD8" T cells from infected mice (Table S2).

ts proteins are major surface and released proteins in
extracellular trypomastigotes and in intracellular amastigotes
of T. c¢ruzi and are also primary targets of humoral immune
responses. The enzymatically active ts proteins are respon-
sible for a number of crucial activities in trypomastigotes;
paramount among these is the transfer of sialic acid from
host proteins to 7. cruzi glycoproteins, a process that helps
provide resistance to complement-mediated lysis and assists
in host cell invasion by these extracellular forms [42-45].
However, the vast majority of ts genes encode proteins that
lack enzymatic activity [46], and the function of this set of ts
proteins is not known, nor is the biological role of ts
molecules expressed by intracellular amastigotes of 7. cruzi
clear. Comparative analysis of kinetoplastid genomes suggests
that there has been a dramatic expansion of the ts genes in 7.
cruzi but not in closely related kinetoplastids such as 7. brucei
and L. major [47]. It is plausible that host immune responses
have been the major selective force for the expansion of the ts
family in T. cruzi, given that the ts proteins are the dominant
targets of both humoral and cellular immune responses in 7.
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Figure 6. Relative Frequencies of Epitope Occurrences in the Genome
and CD8" T-Cell Responses

(A) Venn diagram representing relative frequencies and overlap of T cells
responding to T. cruzi epitopes. The blue shaded circles (left) show the
high-abundance overlapping peptides TSKB21 and TSKB20, along with
the low-abundance overlapping peptide TSKB260. These peptides are
among the most highly represented H-2K°-binding peptides in the
proteome and elicit the strongest CD8" T-cell response following
infection with Brazil strain T. cruzi, as shown in (B). The smaller purple
shaded circles (right) show the lower-abundance epitopes TSKB18,
TSKB74, TSKB80, and TSKB89, which are recognized by T-cell populations
that overlap minimally with TSKB20/21/260-specific T cells.

(B) Relative frequencies of CD8" T cells recognizing the TSKB20 (blue)
and TSKB18 (purple) families of peptides in the acute (left) and chronic
(right) phase of T. cruzi infection in mice infected with three different
strains. While there are strain-dependent differences in the magnitude of
the TSKB20-specific T-cell responses, these responses all follow a similar
pattern of expansion and contraction during acute infection, which may
be explained simply by strain-dependent differences in the rates of
parasite replication and/or expression levels of TSKB20. However, T-cell
responses to TSKB18 vary remarkably in both their magnitude and
kinetics following infection with the various strains. Sustained expansion
of TSKB18-specific T cells following infection with CL or Y strains results
in different hierarchies of Ag-specific CD8" T cells in chronic infection
with the three different strains (right).

DOI: 10.1371/journal.ppat.0020077.9g006

cruzi-infected hosts, and the absence of other explanations
for the presence of hundreds of enzymatically inactive ts
family proteins. The location of many of the ts genes in
subtelomeric regions of chromosomes, where recombination
and the formation of new alleles is facilitated, is noteworthy,
as this is also the locale for large families of genes involved in
immune evasion in other protozoans [48].

If immune pressure has provided the evolutionary force for
the explosive diversification of the ts genes, then what is the
selective advantage for parasites to express many of these ts
family members, particularly since certain epitopes appear to
be potent immune targets [15,22,38]? Simultaneous expres-
sion of hundreds of ts genes could prevent the focusing of the
immune response by the sheer volume of distinct peptides
presented to the immune system. However, this is clearly not
the case with respect to the H-QKI)—binding epitopes
identified in this study. The large number of closely related
epitopes encoded by ts genes may also cross-antagonize each
other via altered peptide ligand effects [49]. We have
demonstrated the ability of several ts peptides to antagonize
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T cells specific for one ts epitope (Cabinian et al.,
unpublished data), and we show herein that ts epitopes can
serve as full or partial agonists for T cells responsive to other
ts epitopes, indicating a degree of promiscuity in T cells
recognizing ts peptides.

A third potential advantage that a large and potentially
highly variable repertoire of ts genes may provide for T ¢ruzi is
a reservoir of proteins that may be expressed at different
points in the infection or disease, or in different strains or
isolates. Previous studies [28,50] demonstrate that, collectively,
T. cruzi isolates simultaneously express many ts proteins, but it
is not known if the expressed ts repertoire varies between
individual parasites in a host, or within the parasite
population in an individual host over the course of infection.
However, genome comparisons provide support for a sub-
stantial variation in the ts repertoire in distinct 7. cruzi
isolates; exact copies of ts genes documented in GenBank from
various 7. cruzi strains are not present in the CL Brener strain
genome and the presence and frequency of individual ts
peptides varies considerably between the CL Brener and
Esmeraldo strains (Table 1). We propose that it is this variation
that accounts for the distinct patterns of epitope specificity
and evolution of the ts-specific CD8" T-cell response in mice
infected with different parasite strains (Figure 5). Strain
variance in ts genes may also account for lower and more
diffuse patterns of ts-specific responses in human subjects,
although exhaustion of the T-cell response over decades of the
infection in these subjects is also a likely factor [51].

Therefore, although the full flexibility for creation and
expression of different ts family proteins in individual
parasites, between parasite strains, and over the course of
infection is not known, the potential for this variation clearly
exists and may be exploited by 7. cruzi to help evade immune
responses. These possibilities should be considered in
deciding whether ts molecules are good vaccine candidates
because they are immunodominant, or poor candidates
because they are also highly variable among strains and
perhaps over time. Likewise, it is also important to remember
that despite the strong dominant T-cell responses to ts
epitopes in CH7BL/6 mice, these mice fail to clear the
infection but remain persistently infected and go on to
develop symptoms of chronic disease [52].

This report provides the first description in any parasitic
infection of epitopes that allow for the direct ex vivo
identification of parasite-specific T cells over the course of
the infection. Like numerous other protozoan and metazoan
parasites, T. cruzi provides unique challenges to research due
to strain diversity, the large genomes, the often chronic
nature of the infection and, particularly in the case of T. cruzi,
the overwhelming number and diversity of families of related
genes that are immunological targets. The ability to detect
and track Ag-specific T cells will be crucial for following the
initiation and maintenance of T. cruzi-specific CD8" T-cell
responses in infected hosts and should help provide insights
into the mechanisms of parasite persistence and disease
pathology in this important human disease.

Materials and Methods

Mice and parasites. C57BL/6 (B6) mice were bred in our animal
facility in microisolator cages under specific pathogen-free con-
ditions. B6CBAF1/] and CB6F1/] mice were obtained from Jackson
Laboratories (Bar Harbor, Maine, United States). HLA-A2 transgenic
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mice were bred from pairs obtained from Dr. L. Sherman through
Harlan Sprague-Dawley, Inc. (Indianapolis, Indiana, United States).
Tissue culture trypomastigotes of the Brazil strain of 7. cruzi were
obtained from passage through Vero cells. Mice were infected
intraperitoneally with 1,000 Brazil strain tissue culture trypomasti-
gotes and were killed by COy inhalation. In some experiments mice
were infected intraperitoneally with 1,000 Y or 10,000 CL parasites
obtained through passage in Vero cells or mice. All animal protocols
were approved by the University of Georgia Institutional Animal
Care and Use Committee.

Selection of study population. HLA-A21" T. cruzi-infected adult
volunteers were recruited at the Chagas disease Section of the
Cardiology Department, Hospital Interzonal General de Agudos “Eva
Perén,” Buenos Aires, Argentina [26]. 7. cruzi infection was
determined by indirect immunofluorescence assay, hemagglutina-
tion, and enzyme-linked immunosorbent assay techniques performed
in the Clinical Laboratory of Parasitology in the Hospital Interzonal
General de Agudos “Eva Peron.” This study was approved by the
Institutional Review Boards of the University of Georgia, and the
Hospital Interzonal General de Agudos “Eva Peron.”

Peptides. H-2K"- and HLA-A2.1-binding peptides from ts genes
were predicted using sequence homology searching of available data
(GenBank, http://lwww.ncbi.nlm.nih.gov/iGenbank), and raw 7. cruzi
genome sequencing reads (courtesy of the 7. cruzi Genome Sequenc-
ing Consortium [TSC]) for variants of the known H-2K"-binding
peptides pep77.2, PAS, and PAl14 [21], and selected HLA-A2.1-
binding peptides [25]. Initially, 404 and 845 potential variants of the
H-2K"- and HLA-A2.1-binding peptides, respectively, were identi-
fied. A similar analysis of 7. cruzi Esmeraldo strain raw sequence
reads yielded an additional 98 homologous, potential H-QKb—binding
ts epitopes. Non-ts peptides were determined using H-2K"-motif
predictions of selected genes in the TSC annotated genome as
described previously [53]. Peptides were synthesized by the University
of Georgia Molecular Genetics Instrumentation Facility (Athens,
Georgia, United States), Pepscan Systems (Lelystad, the Netherlands),
or SigmaGenosys (Saint Louis, Missouri, United States).

Lymphocyte culture. Single-cell suspensions of splenocytes from
uninfected or T. cruzi-infected mice were generated using previously
published methods [54]. For patient studies, approximately 50 ml
blood from patients and control subjects was drawn by venipuncture
into heparinized tubes (Vacutainer; Becton-Dickinson, San Jose,
California, United States). PBMCs were isolated by density gradient
centrifugation as previously described [26].

HLA-A2.1 typing. HLA-A2.1 typing was performed as previously
described [25] by incubating 1 X 10° PBMCs with HLA-A2.1-specific
mAb BB7.2 [55] (10 pg/ml; American Type Culture Collection,
Bethesda, Maryland, United States) for 30 min at 4 °C, followed by
FITC-labeled F(ab')s goat anti-mouse IgG (1/50 dilution; Immunotech,
Marseille, France). Positive fluorescence indicating expression of
HLA-A2.1 was assessed by analysis of cells using fluorescence
microscopy (Nikon, Tokyo, Japan).

ELISPOT. ELISPOT assays to measure secretion of IFNy from
peptide-stimulated mouse splenocytes or human PBMCs were
performed as per manufacturer’s instructions (BD Pharmingen, San
Diego California, United States), and spots were counted using an
Immunospot analyzer (CTL, Cleveland, Ohio, United States).

Intracellular cytokine staining. SCs from naive or infected mice
were stimulated at 37 °C with 5% COs for 5 h with 5 uM peptide in
the presence of GolgiPlug (BD Pharmingen) to block cytokine export.
Cells were permeabilized and stained with anti-CD8 FITC and anti-
IFNy APCs as previously described [54]. At least 150,000 cells were
acquired on a BD FacsCalibur flow cytometer (BD Pharmingen) then
analyzed with FlowJo (Tree Star, Ashland, Oregon, United States)
using a biexponential transform.

In vivo cytotoxicity assay. In vivo cytotolytic activity was assessed as
previously described [54,56]. Spleen cells from naive mice were either
incubated with individual 7. ¢ruzi peptides or with no peptide for 1 h
at 37 °C. Cells were washed twice with PBS, then incubated with CFSE
(Molecular Probes, Eugene OR) (2 uM = CFSE™, 0.4 uM = CFSE™, 0.1
UM = CFSE') as described in the legends to Figures 1B and 2B. After
quenching with FCS, cells were combined and transferred intra-
venously to naive and chronically infected mice. After 16 h, spleens
were harvested and CFSE-labeled cells were detected using a Cyan
flow cytometer (Cytomation, Fort Collins, Colorado, United States).
Percentage of specific killing was determined using the formula: 1—
[(% CFSE" naive | % CFSE™™ naive) | (% CFSE" chronic | %
CFSE™™ chronic)] X 100%.

MHC I tetramer staining. MHC I tetramers were synthesized at the
Tetramer Core Facility (Emory University, Atlanta, Georgia, United
States). Tetramers used in these studies were: TSKB18 (ANYDFTLV/
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K"), TSKB20 (ANYKFTLV/K), TSKB21 (ANYNFTLV/K®), TSA2-38
(FANHKFTLV/A2), and TSA2-44 (FANYKFTLV/A2). In kinetics
experiments, mouse peripheral blood was obtained by retro-orbital
venipuncture and collected in Na citrate solution. In other experi-
ments, human PBMCs or mouse splenocytes were analyzed. Single-
cell suspensions of splenocytes or PBMCs were washed in PAB,
stained for 15 min at 37 °C with tetramers, then stained 30 min at 4 °C
with labeled anti-CD8 antibodies as well as anti-CD4, anti-CD11b, and
anti-B220 for use as an exclusion channel. For mouse kinetics
experiments, whole blood was costained with TSKB20/K" PE and
TSKB18/K" allophycocyanin tetramers, stained for surface markers,
then lysed in a hypotonic ammonium chloride solution. At least
500,000 cells were acquired on a BD FacsCalibur flow cytometer (BD
Pharmingen) then analyzed with FlowJo (Tree Star) using a
biexponential transform.

Statistical analysis. Statistical significance in murine experiments
was calculated using a two-tailed student ¢ test.

Supporting Information

Figure S1. All 735 Annotated ts Genes in the TSC T. cruzi Genome
Were Aligned Using ClustalW

The portion of the alignment containing the peptides of interest
from a subset of the aligned sequences are shown, with the original
template peptides highlighted in green and the template-homologous
peptides in yellow. In addition, the designation assigned to the
peptide and the locus tag (taken from http:/[TcruziDB.org) of a gene
containing it are shown on the left side. Note: some peptides are
contained in many different genes, and only a subset of those genes
are included in the figure (e.g., TSKB21 is contained in 198 annotated
ts genes, but only three are shown).

Found at DOT: 10.1371/journal.ppat.0020077.sg001 (2.0 MB TIF).
Figure S2. IFNy Responses of HLA-A2 Transgenic Mice to ts Peptides

HLA-A2 transgenic mice were infected with 1,000 Brazil strain
tissue culture trypomastigotes. After 150 d, SCs were stimulated
with various ts peptides in an ELISPOT assay. Data are displayed as
spot-forming units (SFUs) per 150,000 spleen cells; error bars
represent SD.

Found at DOT: 10.1371/journal.ppat.0020077.sg002 (168 KB PDF).

Figure S3. Increasing MHC I Diversity Does Not Alter TSKB20-
Specific T-Cell Frequencies in 7. cruzi-Infected Mice

B6, B6xCBA (B6CBAF1/]), or B6xBalb/c (CB6F1/]) mice were infected
with 1,000 Brazil strain trypomastigotes, then serially bled and
examined for TSKB20-specific T cells by MHC I tetramer staining.
Each point is the average of five mice per group and represents two
separate experiments. Asterisks denote the two timepoints (D18 and
D21 after infection) at which B6CBAF1/] mice had significantly lower
(p = 0.007 and 0.01, respectively) frequencies of TSKB20-specific
CD8' T cells than parental B6 mice.

Found at DOI: 10.1371/journal.ppat.0020077.sg003 (55 KB PDF).

Table S1. Summary of Genomic, Proteomic, and Immunologic Data
for ts Peptides Predicted to Bind H-2K"

Found at DOL 10.1371/journal.ppat.0020077.st001 (160 KB XLS).

Table S2. Summary of Genomic, Proteomic, and Immunologic Data
for Non-ts Peptides Predicted to Bind H-2K"

Found at DOI: 10.1371/journal.ppat.0020077.st002 (52 KB XLS).

Table S3. Summary of Genomic, Proteomic, and Immunologic Data
for ts Peptides Predicted to Bind HLA-A2

Found at DOL 10.1371/journal.ppat.0020077.st003 (33 KB XLS).
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