
RESEARCH ARTICLE

Real-time resolution of short-read assembly

graph using ONT long reads

Son Hoang NguyenID
1*, Minh Duc CaoID

1, Lachlan J. M. CoinID
1,2,3,4*

1 Institute for Molecular Bioscience, the University of Queensland, St Lucia, Brisbane, Australia,

2 Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia,

3 Department of Clinical Pathology, The University of Melbourne, Parkville, Australia, 4 Department of

Infectious Disease, Imperial College London, London, UK

* s.hoangnguyen@imb.uq.edu.au (SHN); l.coin@imb.uq.edu.au (LC)

Abstract

A streaming assembly pipeline utilising real-time Oxford Nanopore Technology (ONT)

sequencing data is important for saving sequencing resources and reducing time-to-result.

A previous approach implemented in npScarf provided an efficient streaming algorithm for

hybrid assembly but was relatively prone to mis-assemblies compared to other graph-based

methods. Here we present npGraph, a streaming hybrid assembly tool using the assembly

graph instead of the separated pre-assembly contigs. It is able to produce more complete

genome assembly by resolving the path finding problem on the assembly graph using long

reads as the traversing guide. Application to synthetic and real data from bacterial isolate

genomes show improved accuracy while still maintaining a low computational cost.

npGraph also provides a graphical user interface (GUI) which provides a real-time visuali-

sation of the progress of assembly. The tool and source code is available at https://github.

com/hsnguyen/assembly.

Author summary

Hybrid genome assembly algorithms combine high accuracy short reads with error-prone

long reads with the goal of generating highly contiguous assemblies with low error rates.

Short read sequence data is relatively inexpensive in comparison to long-read sequence

data, and, moreover short-read sequence data has already been collected for many bacte-

rial species, thus motivating development of methods wh ich are frugal with respect to

acquisition of long-read sequence data. One of the attractive features of the Oxford Nano-

pore Technology’s sequencers is that they generate sequence data in real-time, and in

principle sequencing can be stopped once enough data is acquired. However, there is only

one previous attempt for greedy genome scaffolding of contigs in real-time, which was

prone to assembly errors. In this paper we describe a new tool—npGraph—which

resolves the assembly graph in real-time as sequence is generated; coupled with assembly

visualisation showing assembly graph resolution in real-time. We show that npGraph
generates completed bacterial assemblies which are as accurate as state-of-the-art batch

hybrid assembly pipelines, and also provides substantial computational speed-up.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nguyen SH, Cao MD, Coin LJM (2021)

Real-time resolution of short-read assembly graph

using ONT long reads. PLoS Comput Biol 17(1):

e1008586. https://doi.org/10.1371/journal.

pcbi.1008586

Editor: Kin Fai Au, Ohio State University, UNITED

STATES

Received: March 8, 2020

Accepted: November 30, 2020

Published: January 20, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008586

Copyright: © 2021 Nguyen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The primary

benchmark simulation data can be obtained from

this link: https://cloudstor.aarnet.edu.au/plus/index.

php/s/dzRCaxLjpGpfKYW The real bacterial

https://orcid.org/0000-0003-3802-908X
https://orcid.org/0000-0003-4079-2383
https://orcid.org/0000-0002-4300-455X
https://github.com/hsnguyen/assembly
https://github.com/hsnguyen/assembly
https://doi.org/10.1371/journal.pcbi.1008586
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008586&domain=pdf&date_stamp=2021-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008586&domain=pdf&date_stamp=2021-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008586&domain=pdf&date_stamp=2021-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008586&domain=pdf&date_stamp=2021-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008586&domain=pdf&date_stamp=2021-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008586&domain=pdf&date_stamp=2021-02-01
https://doi.org/10.1371/journal.pcbi.1008586
https://doi.org/10.1371/journal.pcbi.1008586
https://doi.org/10.1371/journal.pcbi.1008586
http://creativecommons.org/licenses/by/4.0/
https://cloudstor.aarnet.edu.au/plus/index.php/s/dzRCaxLjpGpfKYW
https://cloudstor.aarnet.edu.au/plus/index.php/s/dzRCaxLjpGpfKYW

This is a PLOS Computational Biology Methods paper.

Introduction

Sequencing technology has reached a level of maturity which allows the decoding of virtually

any piece of genetic material which can be obtained. However, the time from sample to result

remains a barrier to adoption of sequencing technology into time critical applications such

as infectious disease diagnostics or clinical decision making. While there exists real-time

sequencing technology such as Oxford Nanopore Technologies (ONT), algorithms for stream-

ing analyses of such real-time data are still in their infancy. Effective streaming methodology

will help bridge the gap between potential and practical use.

One particular strength of ONT technology is the production of ultra long reads. This is

complementary to the dominant short read sequencing technology Illumina which is cheaper

and has higher per base read quality but is unable to resolve the complex regions of the genome

due to its read length limitation. Hybrid assembly with ONT reads provides the opportunity to

use long reads to fully resolve existing microbial genome assemblies. However, in order

achieve this in an effective manner it is necessary to avoid both under-sequencing (and thus

not completely resolving the assembly) or over-sequencing (and thus incurring unnecessary

costs and time-to -results). In addition, the release of Read Until API provides the opportunity

to selectively enrich parts of the genome, as has been implemented in customised targeted

sequencing applications [1]. The combination of ReadUntil with streaming hybrid assembly

opens the possibility for further efficiency gains by targeting sequencing to unresolved regions

of the genome.

Previously, we developed npScarf [2] an algorithm to scaffold a draft assembly from Illu-

mina sequencing simultaneously with ONT sequencing. However, npScarf ignores the rich

connectivity information in the short read assembly graph, and as a result is relatively prone to

mis-assembly compared to alternative methods.

Here, we present npGraph, a novel algorithm to resolve the assembly graph in real-time

using long read sequencing. npGraph uses the stream of long reads to untangle knots in the

assembly graph, which is maintained in memory. Because of this, npGraph has better estima-

tion of multiplicity of repeat contigs, resulting in fewer misassemblies. In addition, we develop

a visualisation tool for practitioners to monitor the progress of the assembly process.

Materials and methods

Application overview

npGraph makes use of an assembly graph generated from assembling short reads using a de

Bruijin graph method such as SPAdes [3], Velvet [4] and AbySS [5]. The assembly graph

consists of a list of contigs, and possible connections among these contigs. In building the

assembly graph, the de Bruijin graph assembler attempts to extend each contig as far as possi-

ble, until there is more than one possible way of extending due to the repetitive sequences

beyond the information contained in short reads. Hence each contig has multiple possible con-

nections with others, creating knots in the assembly graph. npGraph uses the connectivity

information from long reads to untangle these knots in real-time. With sufficient data, when

all the knots are removed, the assembly graph is simplified to a path which represents the com-

plete assembly.

npGraph aligns long reads to the contigs in the assembly graph. When a long read is

aligned to multiple contigs, npGraph constructs candidate paths that are supported by the

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 2 / 18

sequencing data was from NCBI under project

accession number PRJNA353060.

Funding: This study was supported by a Discovery

Project with grant number DP170102626 awarded

by the Australian Research council to MC and LC.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: LC and MC have

received travel funding to attend Oxford Nanopore

Technologies conferences. LC has received

research funding from ONT to support

development of Chiron basecaller.

https://doi.org/10.1371/journal.pcbi.1008586

read. This strategy allows npGraph to progressively update the likelihood of the paths going

through a knot. When sufficient data are obtained, the best path is confidently identified and

hence the knot is untangled. In general, the bridging algorithm used to determine the best

path is a combination of progressive merging, accumulated scoring and decision making mod-

ules. It operates on each pair of unique contigs, or anchors, by using a bridge data structure

maintaining 2 anchors and a list of steps in-between as shown in Fig 1A. A set of candidate

paths are listed and the best one can be selected amongst them given enough evidence. The de

Bruijin graph is subsequently simplified when the bridge is replaced by a single edge represent-

ing the best path (Fig 1B).

We also provide a Graphical User Interface (GUI) for npGraph. The GUI includes the

dashboard for controlling the settings of the program and a window for visualization of the

assembly graph in real-time (Fig 2). In this interface, the assembly graph loading stage is sepa-

rated from the actual assembly process so that users can check for the graph quality first before

carry out any further tasks. A proper combination of command line and GUI can provide an

useful streaming pipeline that copes well with MinION output data. This is designed to sup-

port the real-time monitoring of the results from real-time sequencing [2, 6, 7] that allow the

analysis to take place abreast to a nanopore sequencing run.

Algorithm details

The work flow of npGraph mainly consists of 3 stages: (1) assembly graph pre-processing;

(2) graph resolving and simplifying; (3) post-processing and reporting results. The first step is

to load the assembly graph of Illumina contigs and analyze its components’ property, including

binning and multiplicity estimation. The second step works on the processed graph and the

long read data that can be provided in real-time by ONT sequencer. Based on the paths

induced from long reads, the assembly graph will be resolved on-the-fly. Finally, the graph is

subjected to the last attempt of resolving and cleaning, as well as output the final results. The

whole process can be managed by using either command-line interface or GUI. Among three

phases, only the first one must be performed prior to the MinION sequencing process in a

streaming setup. The algorithm works on the assembly graph of Illumina contigs, so the terms

contigs and nodes if not mentioned specifically, would be used interchangeable throughout this

context.

Fig 1. Graph resolving algorithm. (a) the bridges suggested by long reads are merged progressively with dynamic programming to find the best path connecting 2

anchors. (b) A knot (repetitive contig) is unwound following the best path (highlighted in purple) leading to the graph simplification.

https://doi.org/10.1371/journal.pcbi.1008586.g001

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 3 / 18

https://doi.org/10.1371/journal.pcbi.1008586.g001
https://doi.org/10.1371/journal.pcbi.1008586

Contigs binning. Contigs should belong to single or multiple groups, or bins, that would

represent different assembly units, e.g. chromosome, plasmids, of different species if applying

to a metagenomics dataset. A binning step is needed to assign membership of each contig to

its corresponding group. This information can aid the bridging stage later, as member contigs

of a bridge are expected to appear in the same group. However, the criteria can be relaxed

between closed groups given strong connecting evidence from long read alignments.

The first step in our binning procedure is to cluster the big anchors (longer than 10Kbp and

in/out degree less than 2) based on their kmer coverage. To achieve this, we applied DBSCAN

clustering algorithm [8], which utilises a customised metric function to map contigs into a

one-dimensional space. In order to define a customised metric which is simple and fast to cal-

culate, we assumed that a single long contig itself consists of a Poisson distribution of k-mers
count with the mean approximated by the contig’s coverage. The metric is then determined by

a distance function of two Poisson distributions based on Kullback-Leibler divergence (or rela-

tive entropy) between the Poisson distribution representing each contig [9].

Formally, assuming there are 2 Poisson distributions P1 and P2 with probability mass func-

tions (PMF)

P1ðX ¼ x; l1Þ ¼
e� l1l

x
1

x!

and

P2ðX ¼ x; l2Þ ¼
e� l2l

x
2

x!

Fig 2. npGraph user interface including Console (0) and GUI components (1-6). The GUI consists of the Dashboard (1-5) and the Graph View (6). From the

Dashboard there are 5 components as follow: 1 the assembly graph input field; 2 the long reads input field; 3 the aligner settings field; 4 control buttons (start/stop)

to monitor the real-time scaffolding process; 5 the statistics plots for the assembly result.

https://doi.org/10.1371/journal.pcbi.1008586.g002

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 4 / 18

https://doi.org/10.1371/journal.pcbi.1008586.g002
https://doi.org/10.1371/journal.pcbi.1008586

The Kullback-Leibler divergence from P2 to P1 is defined as:

DKLðP1jjP2Þ ¼
X

x

P1ðxÞ log
P1ðxÞ
P2ðxÞ

¼ EP1
½log

P1ðxÞ
P2ðxÞ

�

or in other words, it is the expectation of the logarithmic difference between the probabilities

P1 and P2, where the expectation is taken using P1. The log ratio of the PMFs is:

log
P1ðxÞ
P2ðxÞ

¼ logðel2 � l1ð
l1

l2

Þ
x
Þ ¼ x log

l1

l2

þ l2 � l1

Thus the divergence between P1 and P2 is:

DKLðP1jjP2Þ ¼ EP1
½log

P1ðxÞ
P2ðxÞ

� ¼ l1log
l1

l2

þ l2 � l1

Thus, the metric we used is a distance function defined as:

DðP1; P2Þ ¼
DKLðP1jjP2Þ þ DKLðP2jjP1Þ

2
¼

1

2
ðl1 � l2Þðlogl1 � logl2Þ

Independent from the contigs clustering in the pre-processing step, additional evidence of

nodes’ uniqueness can be acquired using the long reads during the assembly process. Given

enough data, the multiplicity of an ambiguous node can be determined based on the set of all

bridges rooted from itself. On the other hand, external binning tools such as MetaBAT [10],

maxbin [11] can be employed in npGraph as well.

Multiplicity estimation. Now bins of the main unique contigs had been identified, how-

ever, they only make up a certain proportion of the contigs set. From here, we need to assign

bin membership and multiplicity for all other nodes of the graph, especially the repetitive

ones. To do so, we relied on the graph’s topology and the estimated read coverage of initial

contigs from SPAdes. Given all contigs’ coverage values as nodes’ weight, we need to estimate

those of edges and in return, using them to re-estimate the coverage for repetitive nodes if nec-

essary. After this process, we will have a graph with optimized weighted components that

would suggest their multiplicities more exactly. Basically the computation is described as in

following steps:

0. Initialize every node weight as its corresponding contig coverage, all edges’ weight as

zeros.

1. Calculate distributed weights for edges by quadratic unconstrained optimization of the

least-square function:

1

2

X

i

liðð
X

eþi � ciÞ
2
þ ð
X

e�i � ciÞ
2

where li and ci is the length and weight of a node i in the graph;
P

eþi and
P

e�i indicates sum of weights for incoming and outgoing edges from node i
respectively. They are expected to be as close to ci as possible thus the length-weighted

least-square should be minimized.

The above function can be rewritten as:

f ðxÞ ¼
1

2
xTQxþ bTxþ r

and then being minimized by using gradient method.

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 5 / 18

https://doi.org/10.1371/journal.pcbi.1008586

2. Re-estimate weights of repetitive nodes based on their neighboring edges’ measures and

repeat previous optimization step. The weights are calculated iteratively until no further

significant updates are made or a threshold of loop count is reached.

At this point, we can induce the copy numbers of nodes in the final assembly. For each

node, this could be done by investigating its adjacent edges’ multiplicity to estimate how many

times it should be visited and from which bin(s). Multiplicities of insignificant nodes (of

sequences with length less than 1, 000 bp) are less confident due to greater randomness in

sequencing coverage. For that reason, in npGraph, we did not rely on them for graph trans-

formation but as supporting information for path finding.

Building bridges in real-time. Bridge is the data structure designed to identify the possi-

ble connections between two anchored nodes (of unique contigs) in the assembly graph. A

bridge must start from a unique contig, or anchor node, and end at another if completed.

Located in-between are nodes known as steps and distances between them are called spans of

the bridge. Stepping nodes are normally repetitive contigs and indicative for a path finding

operation later on. In a complicated assembly graph, the more details the bridge, a.k.a. more

steps in-between, the faster and more accurate the linking path it would resolve. A bridge’s

function is complete when it successfully return the ultimate linking path between 2 anchors.

The real-time bridging method considers the dynamic aspect of multiplicity measures for

each node, meaning that a n-times repetitive node might become a unique node at certain

time point when its (n − 1) occurrences have been already identified in other distinct unique

paths. Furthermore, the streaming fashion of this method allows the bridge constructions

(updating steps and spans) to be carried out progressively so that assembly decisions can be

made immediately after having sufficient supporting data. A bridge in npGraph has several

completion levels. When created, it must be rooted from an anchor node which represents a

unique contig (level 1). A bridge is known as fully complete (level 4) if and only if there is a

unique path connecting its two anchor nodes from two ends.

At early stages (level 1 or 2), a bridge is constructed progressively by alignments from long

reads that spanning its corresponding anchor(s). In an example from Fig 1A, bridges from a

certain anchor (highlighted in red) are created by extracting appropriate alignments from

incoming long reads to the contigs. Each of the steps therefore is assigned a weighing score

based on its alignment quality. Due to the error rate of long reads, there should be deviations

in terms of steps found and spans measured between these bridges, even though they represent

the same connection. A continuous merging phase, as shown in the figure, takes advantage of

a pairwise Needleman-Wunsch dynamic programming to generate a consensus list based on

weight and position of each of every stepping nodes. The spans are calibrated accordingly by

averaging out the distances. On the other hand, the score of the merged steps are accumulated

over time as well. Whenever a consensus bridge is anchored by 2 unique contigs at both ends

and hosting a list of steps with sufficient coverage, it is ready for a path finding in the next step.

Path finding algorithm. Given a proposed bridge with 2 anchors B ¼ fv0
! . . . ; vn

!g iden-

tified from previous step, a searching algorithm is implemented to find the final bridging solu-

tion, i.e. an ungapped path among all possiblities. To do so, each of the candidates is given a

score of alignment-based likelihood which are updated immediately as long as there is an

appropriate long read being generated by the sequencer. As more nanopore data arrives, the

score divergence increases and only the highest one would be selected for the next round.

Overall, the algorithm employs a binary search strategy as shown in Algorithm 1. Starting

with the original bridge fv0
! . . . ; vn

!g, we recursively break the target bridge in half at one of its

step vk
! in-between then find the sub-paths of fv0

! . . . ; vk
!g and fvk

! . . . ; vn
!g. Algorithm 1 will

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 6 / 18

https://doi.org/10.1371/journal.pcbi.1008586

call Algorithm 2 when the base condition is met, meaning the target bridge is unbreakable (no

more in-between step available).

Algorithm 1: Recursive binary bridging to connect 2 anchor nodes.
Data: Assembly graph G{V, E}
Input: Brigde B : fv0

!; . . . vk
!; . . . ; vn

!g with v0
! and vn

! are two anchors,
fvk
!g; k ¼ 1 . . . ðn � 1Þ are steps in-between
Output: Set of candidate paths connecting v0

! to vn
! that maximize the

likelihood of the step list.
1 Function BinaryBridging(B):

=� search for the contig with maximum score from the step list ðtwo ends excludedÞ �=
2 m≔argmaxkðvk

!:scoreðÞÞ
=� if there is no step in-between; run Algorithm 2 and return the result �=

3 if M.size() � 2 then
4 return DFS(B.start(), B.end().B.distance())

=� break the original bridge B into 2 bridges by vm: BL and BR �=

5 BL≔fB:startðÞ; . . . ; vm
�!g

6 BR≔f vm
�!; . . . ;B:endðÞg

=� recursively invoke the procedure and join the results together �=
7 return BinaryBridging(BL) ⋈ BinaryBridging(BR)

In Algorithm 2, we implement a modified stack-based Depth-First Search (DFS) using

Dijkstra’s shortest path finding algorithm [12] to reduce the search space. In which, function

shortestTreeðvertex���!
; distanceÞ : ðV;ZÞ ! Vn

from line 3 builds a shortest tree rooted from v!, following its direction until a distance of

approximately d (with a tolerance for the nanopore error rate) is reached, similar to the Dijk-

stra algorithm. This tree is used on line 4 and in function includedIn() on line 19 to filter out

any node or edge with ending nodes that do not belong to the tree.

Algorithm 2: Pseudo-code for finding paths connecting 2 nodes given their estimated

distance.
Data: Assembly graph G{V, E}
Input: Pair of bidirected nodes v1

!; v2
! and estimated distance d

between them
Output: Set of candidate paths connecting v1

! to v2
! with reasonable

distances compared to d
1 Function DFS(v1

!; v2
!, d):

2 P≔new List()
3 M≔shortestTreeðv2

!; dÞ == build shortest tree from v2
! with range d

4 if M:containðv1
!Þ then

5 S≔new Stack() == stack of sets of edges to traverse
6 edgesSet≔getEdgesðv1

!Þ == get all bidirected edges going from v1
!

7 S.push(edgesSet)
8 p≔new Pathðv1

!Þ == init a path that has v1
! as root

9 while true do
10 edgesSet≔S.peek()
11 if edgesSet.isEmpty() then
12 if p.size() � 1 then
13 break == stop the loop when there is no more edge to discover
14 S.pop()
15 d+=p.peekNode.length() + p.popEdge().length()
16 else
17 curEdge ≔ edgesSet.remove()
18 v!≔curEdge:getOppositeðp:peekNodeðÞÞ
19 S:pushðgetEdgesð v!Þ:includedInðMÞÞ

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 7 / 18

https://doi.org/10.1371/journal.pcbi.1008586

20 p.add(curEdge)
21 if reach v2

! with reasonable d then
22 P.add(p)
23 d� ¼ v!:lengthðÞ þ curEdge:lengthðÞ
24 return P

Basically, the algorithm keeps track of a stack that contains sets of candidate edges to dis-

cover. During the traversal, a variable d is updated as an estimation for the distance to the tar-

get. A hit is reported if the target node is reached with a reasonable distance i.e. close to zero,

within a given tolerance (line 21). Another threshold for the maximum traversing depth is set

and heuristic cut-off can be used to preven exceptional combinatorial explosion when travers-

ing extremely complex graph components.

It worths noting that from the pseudo code in Algorithm 2, despite of identical name, pro-

cedure length() used for nodes are different than for edges. The former would return the contig

length while the latter measure the overlap or distance between a pair of contigs thus can be

negative or positive respectively. From De Bruijin graph for instance, all edges have same the

length value of −k. In npGraph’s algorithm, an edge’s length can vary as we allow additional

connection types on top of the original SPAdes assembly graph input.

In many cases, due to dead-ends, there not always exist a path in the assembly graph con-

necting two anchors as suggested by the alignments. In this case, if enough long reads coverage

(20X) are met, a consensus module is invoked and the resulting sequence is contained in a

pseudo edge.

Graph simplification in real-time. npGraph resolves the graph by reducing its com-

plexity perpetually using the long reads that can be streamed in real-time. Whenever a bridge

is finished (with a unique linking path), the assembly graph is transformed or reduced by

replacing its unique path with a composite edge and removing any unique edges (edges com-

ing from unique nodes) along the path. The assembly graph would have at least one edge less

than the original after the reduction. The nodes located on the reduced path, other than 2

ends, also have their multiplicities subtracted by one and the bridge is marked as finally

resolved without any further modifications.

Fig 3 presents an example of the results before and after graph resolving process in the GUI.

The result graph, after cleaning, would only report the significant connected components that

represents the final contigs. Smaller fragments, even unfinished but with high remaining cov-

erage, are also presented as potential candidates for further downstream analysis. Further

annotation utility can be implemented in the future better monitoring the features of interests

as in npScarf.

Result extraction and output. npGraph reports assembly result in real-time by decom-

posing the assembly graph into a set of longest straight paths (LSP), each of the LSP will spell a

contig in the assembly report. The final assembly output contains files in both FASTA and

GFAv1 format (https://github.com/GFA-spec/GFA-spec). While the former only retains the

actual genome sequences from the final decomposed graph, the latter output file can store

almost every properties of the ultimate graph such as nodes, links and potential paths between

them.

A path p = {v0, e1, v1, . . ., vk−1, ek, vk} of size k is considered as straight if and only if each of

every edges along the path ei, 8i = 1, . . ., k is the only option to traverse from either vi−1 or vi,

giving the transition rule. To decompose the graph, the tool simply mask out all incoming/

outgoing edges rooted from any node with in/out degree greater than 1 as demonstrated in

Fig 4. These edges are defined as branching edges which stop straight paths from further

extending.

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 8 / 18

https://github.com/GFA-spec/GFA-spec
https://doi.org/10.1371/journal.pcbi.1008586

Fig 3. Assembly graph of Shigella dysenteriae Sd197 synthetic data being resolved by npGraph and displayed on the GUI Graph View. The SPAdes
assembly graph contains 2186 nodes and 3061 edges, after the assembly shows 2 circular paths representing the chromosome and one plasmid.

https://doi.org/10.1371/journal.pcbi.1008586.g003

Fig 4. Example of graph decomposition into longest straight paths. Branching edges are masked out (faded) leaving only straight paths (bold) to report. There

would be 3 contigs extracted by traversing along the straight paths here.

https://doi.org/10.1371/journal.pcbi.1008586.g004

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 9 / 18

https://doi.org/10.1371/journal.pcbi.1008586.g003
https://doi.org/10.1371/journal.pcbi.1008586.g004
https://doi.org/10.1371/journal.pcbi.1008586

The decomposed graph is only used to report the contigs that can be extracted from an

assembly graph at certain time point. For that reason, the branching edges are only masked

but not removed from the original graph as they would be used for further bridging.

Other than that, if GUI mode is enabled, basic assembly statistics such as N50, N75, maxi-

mal contigs length, number of contigs can be visually reported to the users in real-time beside

the Dashboard. The progressive simplification of the assembly graph can also be observed at

the same time in the Graph view.

Results

Evaluation using synthetic data

To evaluate the performance of the method, npGraph was tested along with SPAdes,

SPAdes hybrid from version 3.13.1, [13], npScarf (japsa 1.7-02), LRScaf version 1.1.9

[14] and Unicycler version 0.4.6 using Unicycler‘s synthetic data set [15]. The data set

is a simulation of Illumina and MinION raw data, generated in silico based on available micro-

bial references. We ran hybrid assembly methods using the entire nanopore data and the recip-

rocal results were evaluated by QUAST 5.0.2 [16].

Table 1 shows comparative results running different methods on 5 synthetic data sets, sim-

ulated from complete genomes of Mycobacterium tuberculosis H37Rv, Klebsiella pneumoniae
30660/NJST258_1, Saccharomyces cerevisiae S288c, Shigella sonnei 53G and Shigella dysenter-
iae Sd197. The nanopore read depth for each data set is approximately 65-fold coverage even

though much less data were needed to generate these final results by the aforementioned

hybrid methods.

To align the long reads to the assembly graph components, both BWA-MEM [17] or mini-
map2 [18] were used in conjunction with npGraph. These two methods were chosen due to

their proven efficiency and compatibility with streaming data. While BWA-MEM is a well-

known classic aligner that can be adapted to work with third generation sequencing data,

minimap2 has been specially designed for this data type. We observed a slightly higher error

rate (comprising the sum of mismatches and indels per 100kb) using BWA-MEM in comparison

to minimap2 for all simulations in Table 1. This is due to the fact that bridging paths induced

using BWA-MEM were slightly less accurate due to more noise from the smaller steps in-between

(Fig 1A). However, under almost circumstances, using either aligner resulted in final assem-

blies with comparable qualities. In terms of running time and resources required, minimap2
always proved to be a better option, requiring markedly less CPU time than BWA-MEM. Utilis-

ing minimap2, npGraph is now the fastest hybrid assembler available.

Amongst all assemblers, Unicycler applies an algorithm based on semi-global (or glocal)

alignments [19] with the consensus long reads generated with the SeqAn library. With all of

the data sets tested, Unicycler required the most computational resources, but it also

returned fewer mis-assemblies than the other approaches with a comparable rate of error

(indels and mismatches) to npGraph. hybridSPAdes reported decent results with high

fidelity at base level. As the trade-off, there were fewer connections satisfying its quality thresh-

old, resulting in the fragmented assemblies with lower N50 compared to the other hybrid

assemblers. This behaviour was clearly reflected in the last, also the most challenging task of

assembly S. dysenteriae.

Of the two streaming algorithms, npScarf utilizes a fast but greedy scaffolding approach

that can lead to mis-assemblies and errors. For bacterial genomes with modest complexity

these are minimal (e.g. K. pneumoniae), but for those with severe repetitive elements, extra cal-

ibrations are needed to prevent the mis-assembly due to ambiguous alignments. On the other

hand, npGraph significantly reduced the errors compared to npScarf, sometimes even

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 10 / 18

https://doi.org/10.1371/journal.pcbi.1008586

proved to be the best option e.g. for M. tuberculosis and K. pneumoniae. For the yeast S. cerevi-
siae data set, the npGraph assembly best covered the reference genome but the number of

mis-assemblies was up to 5. The unfavourable figures, namely mis-assemblies and error, were

still high in case of S. dysenteriae, due to the complicated and extremely fragmented graph

components containing a large number of small-scaled contigs that were difficult to map with

nanopore data. The progressive path finding module tried to induce the most likely solution

from a stream of coarse-grained alignments, without fully succeeding.

LRScaf has been designed as a computationally efficient hybrid assembly tool which is

scalable to large genomes. We ran LRScaf using default parameters on the extended bench-

marking set presented in S1 Table. We observed that LRScaf assemblies had fewer

Table 1. Comparison of assemblies produced in batch-mode using npGraph and other hybrid assembly methods on synthetic data.

Method Assembly size (Mbp) #Contigs N50 (Kbp) Mis-assemblies Error (per 100 Kbp) Run times (CPU hrs)

M. tuberculosis H37Rv 4,411,532 bp

SPAdes 4.376 66 150.7 0 0.23 1.42

SPAdes hybrid 4.411 1 4410.5 0 0.86 1.61

Unicycler 4.412 1 4411.5 0 2.56 5.52

npScarf 4.432 4 4402.2 7 6.61 1.42 + 0.7

npGraph (bwa) 4.411 1 4411.4 0 2.63 1.42 + 0.64

npGraph (minimap2) 4.412 1 4411.5 0 0.68 1.42 + 0.02

K. pneumoniae 30660 5,540,936 bp

SPAdes 5.469 64 270.2 0 0.07 1.36

SPAdes hybrid 5.543 8 4229.1 2 5.04 1.63

Unicycler 5.538 9 5263.2 0 1.85 4.34

npScarf 5.566 7 5259.1 4 35.6 1.36 + 0.95

npGraph (bwa) 5.535 5 5263.2 1 4.16 1.36 + 0.92

npGraph (minimap2) 5.541 6 5263.2 0 0.85 1.36 + 0.04

S. cerevisiae S288c 12,157,105 bp

SPAdes 11.675 194 260.5 0 1.57 3.61

SPAdes hybrid 11.910 45 770.5 5 34.52 4.15

Unicycler 11.837 29 909.1 0 22.83 16.34

npScarf 11.990 22 796.8 53 85.5 3.61 + 4.35

npGraph (bwa) 12.000 151 913.1 3 38.68 3.61 + 4.12

npGraph (minimap2) 12.008 148 913.1 5 25.32 3.61 + 0.13

S. sonnei 53G 5,220,473 bp

SPAdes 4.796 392 27.7 0 0.44 1.1

SPAdes hybrid 5.218 8 2195.5 2 41.98 1.36

Unicycler 5.221 5 4988.5 0 7.91 9.64

npScarf 6.426 20 1293.8 84 366.04 1.1 + 0.52

npGraph (bwa) 5.293 97 4988.5 3 14.87 1.1 + 0.57

npGraph (minimap2) 5.293 97 4988.5 3 8.31 1.1 + 0.08

S. dysenteriae Sd197 4,560,911 bp

SPAdes 4.096 534 14.4 1 0.68 1.19

SPAdes hybrid 4.486 23 821.2 96 10.99 1.89

Unicycler 4.561 3 4369.2 0 12.96 8.46

npScarf - - - - - 1.19 + -

npGraph (bwa) 4.553 3 4369.1 6 91.03 1.19 + 0.76

npGraph (minimap2) 4.548 3 4364.1 8 83.68 1.19 + 0.14

https://doi.org/10.1371/journal.pcbi.1008586.t001

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 11 / 18

https://doi.org/10.1371/journal.pcbi.1008586.t001
https://doi.org/10.1371/journal.pcbi.1008586

misassemblies than npScarf, and also exhibited a low mismatch and indel rate, but pro-

duced more fragmented assemblies than either npGraph or Unicycler.

Hybrid assembly for real data sets

A number of sequencing data sets from in vitro bacterial samples [20] were used to further

explore differences in performance between npGraph and Unicycler. The data included

both Illumina paired-end reads and MinION sequencing based-call data for each sample. Due

to the unavailability of reference genomes, there were fewer statistics reported by QUAST for

the comparison of the results. Instead, we investigated the number of circular sequences and

PlasmidFinder 1.3 [21] mappings to obtain an evaluation on the accuracy and complete-

ness of the assemblies (Table 2) on three data sets of bacterial species Citrobacter freundii,
Enterobacter cloacae and Klebsiella oxytoca.

There was high similarity between final contigs generated by two assemblers on all of these

datasets. For the Citrobacter freundii dataset, they share the same number of circular

sequences, including the chromosomal and other six replicons contigs in the, with only 48

nucleotides difference in the length of the main chromosome. Five out of six identical repli-

cons could be confirmed as plasmids based on the occurence of origin of replication sequences

from the PlasmidFinder database. In detail, two megaplasmids (longer than 100Kbp) were

classified as IncFIB while the other two mid-size replicons, 85.6Kbp and 43.6Kbp, were incL

and repA respectively, leaving the shortest one with 2Kbp of length as ColRNAI plasmid. The

remaining circular sequence without any hits to the database was 3.2Kbp long suggesting that

it could be phage or a cryptic plasmid. Both assemblers had 14.5Kbp of unfinished sequences

split amongst 3 linear contigs from Unicycler and 2 for npGraph.

The assembly task for Enterobacter cloacae was more challenging and the chromosomal

DNA remained fragmented in two contigs for both methods (of length 3.324Mbp and

Table 2. Assembly of real data sets using Unicycler and npGraph with the optimized SPAdes output. Assembly of real data sets using Unicycler and npGraph
with the optimized SPAdes output. Circular contigs are highlighted in bold, fragmented assemblies are presented as X|Y where X is the total length and Y is the number

of supposed contigs making up X.

Unicycler npGraph Replicons (based on PlasmidFinder 1.3)

Citrobacter freundii CAV1741 5,029,534 5,029,486 Chromosome

109688 109688 IncFIB(pHCM2)_1_pHCM2_AL513384

100,873 100,873 IncFIB(pB171)_1_pB171_AB024946

85,575 85,575 IncL/M(pMU407)_1_pMU407_U27345

43,621 43,621 repA_1_pKPC-2_CP013325

3,223 3,223 -

1,916 1,916 ColRNAI_1__DQ298019

14,464|3 14,456|2 -

Enterobacter cloacae CAV1411 4,806,666|2 4,858,438|2 Chromosome

90,451 90,693|2 IncR_1__DQ449578

33,610 33,610 repA_1_pKPC-2_CP013325

13,129|2 14,542|4 -

Klebsiella oxytoca CAV1015 6,153,947|5 6,155,762 Chromosome

113,105 113,105 IncFII(SARC14)_1_SARC14_JQ418540; IncFII(S)_1__CP000858

111,395 111,395 -

108,418 109,209|13 IncFIB(K)_1_Kpn3_JN233704

76,183 76,186 IncL/M(pMU407)_1_pMU407_U27345

11,638 11,892|2 -

https://doi.org/10.1371/journal.pcbi.1008586.t002

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 12 / 18

https://doi.org/10.1371/journal.pcbi.1008586.t002
https://doi.org/10.1371/journal.pcbi.1008586

1.534Mbp for npGraph compared to 2.829Mbp and 1.978Mbp for Unicycler). Both

methods detected two plasmids (IncR and repA), and Unicycler returned comlpete circu-

lar sequences for both plasmids, while npGraph returned circular sequence for one plasmid,

while the other was fragmented into two contigs. Similar to the assembly of Citrobacter freun-
dii, there was around 14Kbp of data which was unable to be finished by the assemblers (split

into 2 and 4 contigs for Unicycler and npGraph respectively).

Finally, the assembly for Klebsiella oxytoca saw fragmented chromosome using Unicy-
cler (with 5 contigs) which was a fully complete single contig for npGraph with 6.156Mbp

of size. The two assemblers shared 3 common circular sequences of which two were confirmed

plasmids. The first identical sequence represented a megaplasmid (’ 113Kbp) with two copies

of IncFII origin of replication DNA being identified. The other 76Kbp plasmid circularised by

both was IncL/M with of length. The third circular contig of length 111Kbp returned no hits to

the plasmid database, suggesting the importance of de novo replicon assembly in combination

with further interrogation. Unicycler detected another megaplasmid of size 108.4Kbp

which was fractured by npGraph. A fragmented contig was also observed in npGraph for

the final contig of length 11.6Kbp where it failed to combine two smaller sequences into one.

In addition to what is presented in Table 2, dot plots for the pair-wise alignments between

the assembly contigs were generated and can be found in S1 Fig. This identified a structural

difference between npGraph and Unicycler assembly for the E. cloacae CAV1411 genome

assembly. This was caused by the inconsistency of a fragment’s direction on the final output

contigs. Comparison to a reference genome from the same bacteria strain (GenBank ID:

CP011581.1 [22]), demonstrated that contigs generated by npGraph produced consistent

alignment, but not those generated by Unicycler (S2 Fig). However, we cannot at this stage

rule out genuine structural variation between the two samples.

Assembly performance on streaming data

In order to investigate the rate at which the two streaming hybrid assembly algorithms com-

pleted bacterial assemblies, we plot the N50 as a function of long-read coverage on the 4 data-

sets described in the previous section (Fig 5). This revealed that npGraph and npScarf
both converge to the same ultimate completeness but at different rates. npScarf converged

more quickly than npGraph, due to the fact that it is able to build bridges with only 1 span-

ning long-read, whereas npGraph requires 3 reads. Unlike npScarf where the connections

could be undone and rectified later if needed, a bridge in npGraph will remain unchanged

once created. The plot for E. coli data clarifies this behaviour when a fluctuation can be

observed in npScarf assembly at’ 3-folds data coverage. On the other hand, the N50 length

of npGraph is always a monotonic increasing function. The sharp jumping patterns suggested

that the linking information from long-read data had been stored and exploited at certain time

point decided by the algorithm. In addition, at the end of the streaming when the sequencing

is finished, npGraph will try for the last time to connect bridges with less than 3 supporting

reads which are otherwise not part of conflicting bridges. S1 Data provides the results in detail

and were used to generate Fig 5.

Discussion

Streaming assembly methods have been proven to be useful in saving time and resources com-

pared to conventional batch algorithms with examples including e.g. Faucet [23] and

npScarf [2]. The first method allows the assembly graph to be constructed incrementally as

long as reads are retrieved and processed. This practice is helpful dealing with huge short-read

data set because it can significantly reduce the local storage for the reads, as well as save time

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 13 / 18

https://doi.org/10.1371/journal.pcbi.1008586

for a De Bruijn graph (DBG) construction while waiting for the data being retrieved.

npScarf, on the other hand, is a hybrid assembler working on a pre-assembly set of short-

read assembly contigs. It functions by scaffolding the contigs using real-time nanopore

sequencing. The completion of genome assembly in parallel with the sequencing run provides

explicit benefits in term of resource control and turn-around time for analysis [2].

Hybrid approaches are still common practice in genome assembly and data analyses while

Illumina sequencing retains cost and accuracy benefits over long-read sequencing. On the

other hand, the third-generation sequencing methods such as Pacbio or Oxford Nanopore

Technology are well-known for the ability to produce much longer reads that can further

Fig 5. N50 statistics of real-time assembly by npScarf and npGraph for 4 bacterial samples.

https://doi.org/10.1371/journal.pcbi.1008586.g005

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 14 / 18

https://doi.org/10.1371/journal.pcbi.1008586.g005
https://doi.org/10.1371/journal.pcbi.1008586

complete the Illumina assembly. As a consequence, it is rational to combine two sources of

data together in a hybrid method that can offer accurate and complete genomes at the same

time. npScarf, following that philosophy, had been developed and deployed on real micro-

bial genomes.

However, due to the greedy bridging approach of the contig-based streaming algorithm,

npScarf‘s results can suffer from mis-assemblies [15, 24]. A default setting was optimized

for microbial genomes input but cannot fit for all data from various experiments in practice.

Also, the gap filling step has to rely on the lower accuracy nanopore reads thus the accuracy of

the final assembly is also affected. To tackle the quality issue while maintaining the streaming

feature of the approach, a bridging method by assembly graph traversing has been proposed in

this manuscript. Our approach uses as its starting point a compact DBG assembly graph, fol-

lowed by graph-traveseral, repeat resolution and identification of the longest possible un-

branched paths that would represents contigs for the final assembly.

Hybrid assembler using nanopore data to resolve the graph has been implemented in

hybridSPAdes [13] as well as Unicycler [15]. The available tools employ batch-mode

algorithms on the whole long-read data set to generate the final genome assembly. The

SPAdes hybrid assembly module, from its first step, exhaustively looks for the most likely

paths (with minimum edit distance) on the graph for each of the long read given but only ones

supported by at least two reads are retained. In the next step, these paths will be subjected to a

decision-rule algorithm, namely exSPAnder [25], for repeat resolution by step-by-step

expansion, before output the final assembly. On the other hand, Unicycler’s hybrid assem-

bler will initially generate a consensus long read for each of the bridge from the batch data.

The higher quality consensus reads are used to align with the assembly graph to find the best

paths bridging pairs of anchored contigs. While this method employs the completeness of the

data set from the very beginning for a consensus step, the former only iterates over the batch

of possible paths and relies on a scoring system for the final decision of graph traversal. Hence,

in theory it can be adapted to a real-time pipeline.

The challenge in adapting graph-based approaches into streaming algorithm comes mainly

from building a progressive implementation for path-finding and graph reducing module. To

achieve this, we apply a modified DFS (depth-first search) mechanism and a dynamic voting

algorithm into an on-the-fly graph resolver.

By testing with synthetic and real data, we have shown that npGraph can generate assem-

blies of comparative quality compared to other powerful batch-mode hybrid assemblers, such

as hybridSPAdes or Unicycler, while also providing the ability to build and visualise

the assembly in real-time.

Conclusion

Due to the limits of current sequencing technology, application of hybrid methods should

remain a common practice in whole genome assembly for the near future. On the other hand,

the ONT platforms are evolving quickly with significant improvement in terms of data accu-

racy and yield and cost. Beside, the real-time property of this technology has not been suffi-

ciently exploited to match its potential benefits. npScarf had been introduced initially to

address these issues, however, the accuracy of the assembly output was affected by its greedy

alignment-based scaffolding approach. Here we present npGraph, a streaming hybrid assem-

bly method working on the DBG assembly graph that is able to finish short-read assembly in

real-time while minimizing the errors and mis-assemblies drastically.

Compared to npScarf, npGraph algorithm employs more rigorous approach based on

graph traversal. This might reduce the assembly errors because the bridging method is more

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 15 / 18

https://doi.org/10.1371/journal.pcbi.1008586

accurate so that the reporting results are more reliable. The performance of npGraph is com-

parable to Unicycler while consuming much less computational resources so that it can

work on streaming mode. Also, the integrated GUI allows users to visualize its animated out-

put in a more efficient way.

On the other hand, similar to Unicycler, npGraph relies on the initial assembly graph

to generate the final assembly. The algorithm operates on the assumption of a high quality

assembly from a well-supplied source of short-read data for a decent assembly graph to begin

with. It then consumes a just-enough amount of data from a streaming input of nanopore

reads to resolve the graph. Finally, extra pre-processing and comprehensive binning on the ini-

tial graph could further improve the performance of the streaming assembler.

Supporting information

S1 Fig. Dotplot generated by MUMmer for assembly results of Unicycler versus

npGraph. Structural agreements between two methods were found in (a) C.freundii and

(b) K.oxytoca assembly contigs. On the other hand, for (c) E.cloacae sample, there was a dis-

agreement detected between 2 largest contigs given by two assembly algorithms.

(TIF)

S2 Fig. Alignments of an Enterobacter cloacae reference genome to assembly sequences

generated by (a) npGraph and (b) Unicycler. The former suggests a structural variant,

the latter is virtually an 1-to-1 mapping.

(TIF)

S1 Table. Benchmarking different methods using LRScaf, npScarf, npGraph,

hybridSPAdes and Unicycler hybrid assembler with the synthetic data set.

(XLSX)

S1 Data. Spreadsheet contains data used to generate Fig 5.

(XLSX)

Acknowledgments

This research was supported by the use of the NeCTAR Research Cloud, by QCIF and by the

University of Queensland’s Research Computing Centre (RCC).

Author Contributions

Conceptualization: Son Hoang Nguyen, Minh Duc Cao, Lachlan J. M. Coin.

Data curation: Son Hoang Nguyen.

Formal analysis: Son Hoang Nguyen, Lachlan J. M. Coin.

Funding acquisition: Minh Duc Cao.

Investigation: Son Hoang Nguyen, Minh Duc Cao, Lachlan J. M. Coin.

Methodology: Son Hoang Nguyen, Minh Duc Cao.

Project administration: Lachlan J. M. Coin.

Software: Son Hoang Nguyen.

Supervision: Minh Duc Cao, Lachlan J. M. Coin.

Validation: Son Hoang Nguyen.

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 16 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008586.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008586.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008586.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008586.s004
https://doi.org/10.1371/journal.pcbi.1008586

Visualization: Son Hoang Nguyen.

Writing – original draft: Son Hoang Nguyen.

Writing – review & editing: Minh Duc Cao, Lachlan J. M. Coin.

References
1. Payne A, Holmes N, Clarke T, Munro R, Debebe B, Loose M. Nanopore adaptive sequencing for mixed

samples, whole exome capture and targeted panels. bioRxiv 2020.02.03.926956; https://doi.org/10.

1101/2020.02.03.926956

2. Cao MD, Nguyen SH, Ganesamoorthy D, Elliott AG, Cooper MA, Coin LJ. Scaffolding and completing

genome assemblies in real-time with nanopore sequencing. Nature Communications. 2017; 8:14515.

https://doi.org/10.1038/ncomms14515 PMID: 28218240

3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome

Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology.

2012; 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599

4. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.

Genome research. 2008; 18(5):821–9. https://doi.org/10.1101/gr.074492.107 PMID: 18349386

5. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: A parallel assembler for

short read sequence data. Genome Research. 2009; 19(6):1117–1123. https://doi.org/10.1101/gr.

089532.108 PMID: 19251739

6. Cao MD, Ganesamoorthy D, Cooper MA, Coin LJM. Realtime analysis and visualization of MinION

sequencing data with npReader. Bioinformatics. 2016; 32(5):764–766. https://doi.org/10.1093/

bioinformatics/btv658 PMID: 26556383

7. Nguyen SH, Duarte TP, Coin LJ, Cao MD. Real-time demultiplexing Nanopore barcoded sequencing

data with npBarcode. Bioinformatics. 2017; 33(24):3988–3990. https://doi.org/10.1093/bioinformatics/

btx537 PMID: 28961965

8. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial

databases with noise. AAAI Press; 1996. p. 226–231.

9. Kullback S, Leibler RA. On information and sufficiency. The annals of mathematical statistics. 1951;

22(1):79–86. https://doi.org/10.1214/aoms/1177729694

10. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single

genomes from complex microbial communities. PeerJ. 2015; 3:e1165. https://doi.org/10.7717/peerj.

1165 PMID: 26336640

11. Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to

recover individual genomes from metagenomes using an expectation-maximization algorithm. Micro-

biome. 2014; 2(1):26. https://doi.org/10.1186/2049-2618-2-26 PMID: 25136443

12. Dijkstra EW. A note on two problems in connexion with graphs. Numerische mathematik. 1959;

1(1):269–271. https://doi.org/10.1007/BF01386390

13. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly

of short and long reads. Bioinformatics. 2016; 32(7):1009–1015. https://doi.org/10.1093/bioinformatics/

btv688 PMID: 26589280

14. Qin M, Wu S, Li A, Zhao F, Feng H, Ding L, Ruan J. LRScaf: improving draft genomes using long noisy

reads. BMC Genomics. 2019; 20(1):955 https://doi.org/10.1186/s12864-019-6337-2 PMID: 31818249

15. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short

and long sequencing reads. PLOS Computational Biology. 2017; 13(6):e1005595. https://doi.org/10.

1371/journal.pcbi.1005595 PMID: 28594827

16. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation

with QUAST-LG. Bioinformatics. 2018; 34(13):i142–i150. https://doi.org/10.1093/bioinformatics/bty266

PMID: 29949969

17. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;

p. 3.

18. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformat-

ics. 2016; 32(14):2103–2110. https://doi.org/10.1093/bioinformatics/btw152 PMID: 27153593

19. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, et al. Glocal alignment: finding rear-

rangements during alignment. Bioinformatics. 2003; 19(suppl_1):i54–i62. https://doi.org/10.1093/

bioinformatics/btg1005 PMID: 12855437

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 17 / 18

https://doi.org/10.1101/2020.02.03.926956
https://doi.org/10.1101/2020.02.03.926956
https://doi.org/10.1038/ncomms14515
http://www.ncbi.nlm.nih.gov/pubmed/28218240
https://doi.org/10.1089/cmb.2012.0021
http://www.ncbi.nlm.nih.gov/pubmed/22506599
https://doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pubmed/18349386
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1101/gr.089532.108
http://www.ncbi.nlm.nih.gov/pubmed/19251739
https://doi.org/10.1093/bioinformatics/btv658
https://doi.org/10.1093/bioinformatics/btv658
http://www.ncbi.nlm.nih.gov/pubmed/26556383
https://doi.org/10.1093/bioinformatics/btx537
https://doi.org/10.1093/bioinformatics/btx537
http://www.ncbi.nlm.nih.gov/pubmed/28961965
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.7717/peerj.1165
https://doi.org/10.7717/peerj.1165
http://www.ncbi.nlm.nih.gov/pubmed/26336640
https://doi.org/10.1186/2049-2618-2-26
http://www.ncbi.nlm.nih.gov/pubmed/25136443
https://doi.org/10.1007/BF01386390
https://doi.org/10.1093/bioinformatics/btv688
https://doi.org/10.1093/bioinformatics/btv688
http://www.ncbi.nlm.nih.gov/pubmed/26589280
https://doi.org/10.1186/s12864-019-6337-2
http://www.ncbi.nlm.nih.gov/pubmed/31818249
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.1371/journal.pcbi.1005595
http://www.ncbi.nlm.nih.gov/pubmed/28594827
https://doi.org/10.1093/bioinformatics/bty266
http://www.ncbi.nlm.nih.gov/pubmed/29949969
https://doi.org/10.1093/bioinformatics/btw152
http://www.ncbi.nlm.nih.gov/pubmed/27153593
https://doi.org/10.1093/bioinformatics/btg1005
https://doi.org/10.1093/bioinformatics/btg1005
http://www.ncbi.nlm.nih.gov/pubmed/12855437
https://doi.org/10.1371/journal.pcbi.1008586

20. George S, Pankhurst L, Hubbard A, Votintseva A, Stoesser N, Sheppard AE, et al. Resolving plasmid

structures in Enterobacteriaceae using the MinION nanopore sequencer: assessment of MinION and

MinION/Illumina hybrid data assembly approaches. Microbial genomics. 2017; 3(8). https://doi.org/10.

1099/mgen.0.000118 PMID: 29026658

21. Carattoli A, Zankari E, Garcı̀a-Fernandez A, Larsen MV, Lund O, Villa L, et al. PlasmidFinder and

pMLST: in silico detection and typing of plasmids. Antimicrobial agents and chemotherapy. 2014;

p. AAC–02412.

22. Potter RF, D’souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae.

Drug Resistance Updates. 2016; 29:30–46. https://doi.org/10.1016/j.drup.2016.09.002 PMID:

27912842

23. Rozov R, Goldshlager G, Halperin E, Shamir R. Faucet: streaming de novo assembly graph construc-

tion. Bioinformatics. 2017; 34(1):147–154. https://doi.org/10.1093/bioinformatics/btx471

24. Giordano F, Aigrain L, Quail MA, Coupland P, Bonfield JK, Davies RM, et al. De novo yeast genome

assemblies from MinION, PacBio and MiSeq platforms. Scientific reports. 2017; 7(1):3935. https://doi.

org/10.1038/s41598-017-03996-z PMID: 28638050

25. Prjibelski AD, Vasilinetc I, Bankevich A, Gurevich A, Krivosheeva T, Nurk S, et al. ExSPAnder: a univer-

sal repeat resolver for DNA fragment assembly. Bioinformatics. 2014; 30(12):i293–i301. https://doi.org/

10.1093/bioinformatics/btu266 PMID: 24931996

PLOS COMPUTATIONAL BIOLOGY Real-time resolution of short-read assembly graph using ONT long reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008586 January 20, 2021 18 / 18

https://doi.org/10.1099/mgen.0.000118
https://doi.org/10.1099/mgen.0.000118
http://www.ncbi.nlm.nih.gov/pubmed/29026658
https://doi.org/10.1016/j.drup.2016.09.002
http://www.ncbi.nlm.nih.gov/pubmed/27912842
https://doi.org/10.1093/bioinformatics/btx471
https://doi.org/10.1038/s41598-017-03996-z
https://doi.org/10.1038/s41598-017-03996-z
http://www.ncbi.nlm.nih.gov/pubmed/28638050
https://doi.org/10.1093/bioinformatics/btu266
https://doi.org/10.1093/bioinformatics/btu266
http://www.ncbi.nlm.nih.gov/pubmed/24931996
https://doi.org/10.1371/journal.pcbi.1008586

