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Abstract: Drosophila has been a model system for meiosis since the discovery of nondisjunction.
Subsequent studies have determined that crossing over is required for chromosome segregation,
and identified proteins required for the pairing of chromosomes, initiating meiotic recombination,
producing crossover events, and building a spindle to segregate the chromosomes. With a variety
of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis.
This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link
homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila
oocytes are also a good model for mammalian meiosis because of biological similarities such as long
pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.
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1. Introduction

Crossing over is required for the segregation of homologous chromosomes at meiosis I.
This relationship has been demonstrated in Drosophila females in several ways, such as the
increase in nondisjunction when crossing over is reduced [1,2]. Meiosis begins at around
the time of oocyte specification, proceeds through the process of recombination, and ends
with two rounds of divisions. This review focuses on female meiosis, because like most
other organisms, it depends on the initiation and function of recombination. Meiosis in
Drosophila males, in contrast, is fascinating because it shows it is possible to achieve accurate
chromosome segregation with a completely different system of homolog interactions [3].
For more details and a comprehensive list of meiotic genes, the interested reader is referred
to an extensive review of meiosis in female Drosophila including a compendium of most of
the important genes [4].

Drosophila females are an excellent system to study meiosis because they combine
powerful genetics and cell biology. Errors in meiosis can be measured using standard
genetic crosses that detect sex chromosome aneuploidy, or FISH to detect the aneuploidy of
all chromosomes. Classical mutants or RNAi (using shRNA) are used to knock out or knock
down any gene during meiosis. Tissue-specific gene expression systems (UAS/GAL4)
allow for germline-specific knockouts and the expression of mutants, which is important
when the genes are essential. These tools also allow for short-term expression or knock
down experiments, which facilitates investigations into when proteins are required and
their dynamics. A large selection of antibodies or epitope-tagged transgenes are publicly
available for the cytological examination of all meiotic stages.

The organization of the Drosophila ovary facilitates cytological studies because it
allows for the isolation, observation and staging of oocytes. The ovary contains several
ovarioles, which are strings of developing oocytes arranged in temporal order, with stem
cells at one end, and mature oocytes at the other. Each ovariole is divided into two main
sections. The first, the germarium, contains the stem cells and early meiotic prophase; the
stages which are present in the fetal oocytes of mammals. The second, the vitellarium,
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contains oocytes arrested in late meiotic prophase and is mostly concerned with devel-
opment and growth of the oocyte. At the end of the vitellarium, meiosis resumes with
nuclear envelope breakdown and entry into prometaphase I. The mature oocyte arrests in
metaphase I until ovulation occurs.

2. The Mitotic Region (Region 1)

At one end of the ovariole is region 1, which includes the germline stem cells (Figure 1).
The presence of stem cells in the ovary is a significant difference compared to mammalian
female meiosis, where a stem cell population is absent in the adult. An asymmetric
division generates another stem cell and a cystoblast. This cystoblast then undergoes four
incomplete mitotic divisions to generate a 16-cell cyst. The incomplete divisions result in
all 16-cells of a cyst being connected by channels or “ring canals” [5].
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Figure 1. The early stages—meiotic prophase. (A) Germ cell development in the adult begins with 
stem cells located in the anterior tip of the germarium located in region 1. Four mitotic division in 
region 1 produce a 16-cell cyst, marked by the ORB protein in green. Surrounding the 16 cells cysts 
are somatic follicle cells. One of the two cells with four ring canals becomes specified as the oocyte 
and accumulates the most ORB protein, as well as many other RNAs and proteins, including those 
required for meiosis. The image also includes centromere staining (CID) in red, DNA in blue, and 
the scale bar is 10 um. (B–D) Germarium showing appearance of SC and double strand breaks. The 
cohesin C(2)M is in red, SC transverse filament protein C(3)G in green and double strand break 
marker γH2AV in white. SC assembly initiates in region 2A, double strand breaks are observed 
shortly after, and by region 3 the DNA is repaired and crossovers have formed. The SC dissolves 
around stage 4 or 5. 
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stem cells located in the anterior tip of the germarium located in region 1. Four mitotic division
in region 1 produce a 16-cell cyst, marked by the ORB protein in green. Surrounding the 16 cells
cysts are somatic follicle cells. One of the two cells with four ring canals becomes specified as the
oocyte and accumulates the most ORB protein, as well as many other RNAs and proteins, including
those required for meiosis. The image also includes centromere staining (CID) in red, DNA in blue,
and the scale bar is 10 um. (B–D) Germarium showing appearance of SC and double strand breaks.
The cohesin C(2)M is in red, SC transverse filament protein C(3)G in green and double strand break
marker γH2AV in white. SC assembly initiates in region 2A, double strand breaks are observed
shortly after, and by region 3 the DNA is repaired and crossovers have formed. The SC dissolves
around stage 4 or 5.

It is unclear if events in region 1 and the mitotic cyst divisions are important for
initiating meiosis. Meiotic cohesins function in these cells [6], homologous chromo-
some become paired [7] and synaptonemal complex (SC) proteins can be detected on
the chromosomes [8,9]. As in most other model organisms, the signals controlling entry
into female meiosis are poorly understood [10–12]. An important regulatory step is the
concentration of transcripts into the oocytes, which depends on RNA binding proteins
such as ORB [13] and Egalitarian [14] and interactions with BicD and the microtubules [15].
While two of the cells in the 16-cell cysts have four ring canals and simultaneously enter
meiosis [16,17], one of these cells accumulates many transcripts, including some required
for meiosis [18]. Concentrating these factors into the oocyte is required to maintain meiosis
and specify the oocyte [19].

3. Meiotic Prophase (Regions 2–3)

Two cells in each cyst (“pro-oocytes) undergo premeiotic DNA replication [20] and then
assemble the synaptonemal complex (SC), initiate double strand breaks (DSBs), and repair
some of these as crossovers. This all occurs before the end of the germarium (Figure 1). The
cytological aspects of meiotic progression were first described using electron microscopy
along with an analysis of the first mutants to affect recombination nodule structure [16,21].
The SC initiates first at the centromeres [22,23] and forms without DSBs and possibly before
them [24], which is a little unusual but not unique [25]. This conclusion was initially made
by examining SC in recombination-defective mutants, but was later confirmed using an
antibody to the phosphorylated variant of H2A (γH2AV) [26,27]. Conserved elements of
SC assembly have been described, including the transverse protein C(3)G, other associated
SC proteins [28–30] and two complexes of meiosis-specific cohesins [6,31,32]. Like other
organisms, DSBs depend on the SPO11/TOPVIA orthologue MEI-W68 [33] and its TOPVIB
partner MEI-P22 [34,35].

Drosophila has proved to be an excellent system to study the genetic controls on the
distribution of crossing over [36,37]. Genes required for crossing over were originally
classified as precondition or exchange genes, based on whether the mutants altered the
distribution of crossing over [38]. Based on these genetic phenomena, it was proposed that
precondition genes have a role in determining the location of crossover sites, while exchange
genes execute the process. This proposal has turned out to be essentially correct [39–41]. The
precondition genes include a complex of Minichromosome Maintenance (MCM) protein
paralogs, the “mei-MCM” complex [42]. The exchange genes encode proteins such as XPF
ortholog MEI-9 and MUS312 that are in the pathway that generates crossovers [43]. Similar
to studies in other organisms, however, the generation of crossovers can occur by multiple
pathways and involve antagonism with Blm helicase [41,42].

Studying chromosome rearrangements has revealed three structural features of meiotic
recombination. First, the centromere effect of suppressing crossing over around the cen-
tromeric regions was discovered in Drosophila [44,45]. Second, the interchromosomal effect
was the discovery that suppression of crossing over on one chromosome results in increased
crossing over on other chromosomes [46]. This increase derives from a redistribution of
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crossovers among existing DSBs [47]. It has been proposed that the increased crossing over
is the product of a checkpoint mechanism that detects rearrangement heterozygosity and
causes a prolonged phase during which crossover sites can be established [48,49]. Third, the
heterozygosity of chromosome rearrangement breakpoints suppresses crossing over at long
distances. These observations have been interpreted as evidence for specialized sites that
promote and regulate homologous chromosome interactions [50]. Pairing of homologous
chromosomes is not disrupted in translocation [51] or inversion [52] heterozygotes, leading
to the suggestion that meiotic crossing over depends on continuity of meiotic chromosome
structure within large chromosomal domains.

4. The Long Pause (Stages 2–12)

Similarly to mammals, there is a long pause in meiotic prophase, between pachytene
when recombination occurs and metaphase I when a meiotic spindle assembles. As the cyst
leaves the germarium, the oocyte is selected and the other pro-oocyte becomes a nurse cell
(Figure 1). The oocyte loses its SC, although some SC components remain associated with
the centromeres [53]. During this time, the oocyte grows and acquires cytoplasm from the
nurse cells. By stage 13, the entire cytoplasmic contents of the nurse cells are transported,
or “dumped” into the oocyte (Figure 2).
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Figure 2. The latest stage, meiotic metaphase. In stages 13–14, the nuclear envelope breaks down 
and the meiotic spindle assembles. Meiosis arrests in metaphase I and progresses into anaphase I 
and meiosis II only when the oocyte passes through the oviduct on the way to being fertilized. In 
all images, the spindle is in green, the chromosome passenger complex (CPC) in red, centromeres 
in white, DNA in blue, and the scale bar is 5 µm. (A) A metaphase I spindle in a stage 14 oocyte. 
The inset shows that the central spindle proteins are organized in a microtubule-associated ring that 
goes around the chromosomes and is perpendicular to the spindle. (B) The CPC is required for 
spindle assembly. An oocyte expressing an shRNA for RNAi against INCENP causes the loss of all 
spindle microtubules. (C) In the absence of chiasma and tension, precocious anaphase is observed. 
This is an oocyte homozygous for a mei-P22 mutation, which eliminates all meiotic recombination. 
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mass of chromosomes (or “karyosome”) (5 µm) and the spindle (10 µm long) is quite 
small. Therefore, it is important for the oocyte to promote microtubule assembly around 
the chromosomes while inhibiting it in the rest of the cytoplasm. Indeed, the cytoplasm is 
rich in microtubules [59,60] and it is logical that the chromosomes have a primary role in 
controlling and initiating spindle assembly.  

Two mechanisms promote spindle assembly around the oocyte chromosomes. First, 
microtubule-associated proteins in the cytoplasm are inhibited, at least in part by the 14-
3-3 protein [61]. Second, the localization of the Chromosome Passenger complex (CPC) to 
the chromatin promotes spindle assembly [62–64], with a contribution from the Ran path-
way [65]. Among the proteins activated by the CPC are multiple kinesin proteins that 
bundle microtubules. The Kinesin 6 Subito, which most likely interacts with the CPC, re-
cruits γ-tubulin to nucleate microtubule assembly [66]. In addition, the CPC is required 

Figure 2. The latest stage, meiotic metaphase. In stages 13–14, the nuclear envelope breaks down
and the meiotic spindle assembles. Meiosis arrests in metaphase I and progresses into anaphase I
and meiosis II only when the oocyte passes through the oviduct on the way to being fertilized. In all
images, the spindle is in green, the chromosome passenger complex (CPC) in red, centromeres in
white, DNA in blue, and the scale bar is 5 µm. (A) A metaphase I spindle in a stage 14 oocyte. The
inset shows that the central spindle proteins are organized in a microtubule-associated ring that goes
around the chromosomes and is perpendicular to the spindle. (B) The CPC is required for spindle
assembly. An oocyte expressing an shRNA for RNAi against INCENP causes the loss of all spindle
microtubules. (C) In the absence of chiasma and tension, precocious anaphase is observed. This is an
oocyte homozygous for a mei-P22 mutation, which eliminates all meiotic recombination.

5. Entry into the Meiotic Divisions (Stage 13–14)

Oocyte spindle assembly is acentrosomal in Drosophila, as in other animals, and was
one of the first systems where this was studied genetically and cytologically. An im-
portant concept is that microtubules originating cytologically or cortically are recruited
by the chromosomes [54]. Although centrioles lack [55] spindle pole components, in-
cluding γ-tubulin, MSPS/XMAP215 and TACC are present and important for spindle
organization [56–58].

In the absence of centrosomes, the chromosomes recruit microtubules (it is not known
if they nucleate their growth). Given the size of the oocyte (400 µm × 100 µm), the mass
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of chromosomes (or “karyosome”) (5 µm) and the spindle (10 µm long) is quite small.
Therefore, it is important for the oocyte to promote microtubule assembly around the
chromosomes while inhibiting it in the rest of the cytoplasm. Indeed, the cytoplasm is
rich in microtubules [59,60] and it is logical that the chromosomes have a primary role in
controlling and initiating spindle assembly.

Two mechanisms promote spindle assembly around the oocyte chromosomes. First,
microtubule-associated proteins in the cytoplasm are inhibited, at least in part by the
14-3-3 protein [61]. Second, the localization of the Chromosome Passenger complex (CPC)
to the chromatin promotes spindle assembly [62–64], with a contribution from the Ran
pathway [65]. Among the proteins activated by the CPC are multiple kinesin proteins
that bundle microtubules. The Kinesin 6 Subito, which most likely interacts with the CPC,
recruits γ-tubulin to nucleate microtubule assembly [66]. In addition, the CPC is required
for the assembly of the kinetochore, which directly interacts with microtubules at the
centromeres [67]. The kinetochore orchestrates meiosis-specific functions such as fusion of
sister centromeres [68] and bi-orientation of homologous chromosomes (see below). How
tension works in this process is not understood, and it is surprising that in the absence of
tension, metaphase I arrest is bypassed, resulting in precocious anaphase (Figure 2) [69,70].

Centrosomes not only nucleate and recruit microtubules, as they also help to organize
them into a bipolar spindle (Figure 2). Data from studies on the kinesin-6 Subito have
shown this is an active process, rather than an intrinsic property of microtubules. Subito
organizes a central spindle, which contains several proteins [71]. Subito recruits the CPC to
the central spindle, and in the absence of these proteins, bi-orientation is defective [72,73].
Interactions between the central spindle and the actin network also appear to be important
for bi-orientation [74]. An interesting possibility is that interactions between kinetochores
and central spindle-associated CPC are required for the process of error correction [63,75].
Indeed, the presence of a robust central spindle may help to compensate for the absence
of centrosomes.

Unlike mammals, the oocytes do not age as the mother does. This is because germ
line stem cells are present in the adult female and produce a constant supply of new
oocytes. Similarly to mammalian oocytes, however, there is a relatively long pause between
prophase and metaphase. During this time, centromere and cohesion proteins must be
maintained [76,77]. Meiotic cohesion is protected by PP2A [78] and the inhibition of
Polo kinase [68,79]. By manipulating culture conditions and forcing females to hold their
oocytes, it has been observed that aging mature oocytes causes an increase in chromosome
segregation errors [77,80] and defects in meiotic spindle organization [81]. It has been
proposed these defects are due to the levels of superoxide dismutase [82,83] or decreases in
translation [81].

While chiasmata direct the segregation of most chromosomes, Drosophila females
have a second system for chromosome segregation. Known as the achiasmate system, it
is required for the segregation of the naturally achiasmate 4th chromosomes, as well as
any other chromosomes that are achiasmate either by chance (so-called E0s) or because
of heterozygosity for a balancer chromosome [84,85]. Although some of the genetics of
achiasmate segregation is esoteric, this system clearly depends on microtubule-associated
proteins. For example, NOD is a conserved kinesin 10 and one of the first proteins required
for the achiasmate system to be identified [86]. Nonetheless, the role of the achiasmate
system in normal Drosophila females has not been determined. Is it only required for the
4th chromosome and rare achiasmate chromosomes, or is it more intricately involved in
the segregation of all chromosomes?

6. Exit from Meiosis and Fertilization (the Embryo)

The events that occur between metaphase I and fertilization are rapid. The oocyte
is activated by their passage down the oviduct, independent of fertilization, and rapidly
completes the two meiotic divisions [87–89]. Drosophila oocytes do not excise polar bodies.
Instead, all four meiotic products align perpendicularly to the oocyte cortex [90,91]. The
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inner-most meiotic product fuses with the male pro-nucleus, while the remaining three
female meiosis products fuse and form a single polar body that can persist for a long
time [92].

There are interesting consequences of producing polar bodies in meiosis. For example,
inversion heterozygotes may not have fertility defects because the crossover products,
which generate chromosome rearrangements, end up in the polar bodies. The fact that
only one meiotic product from female meiosis is fertilized has led to theories that there
is competition between chromosomes, based on centromere strength, for inclusion in the
zygote [93]. Unequal centromeres could interact with an asymmetric spindle to result
in the biased retention of certain chromosomes in the zygote [94,95]. Genetic studies in
Drosophila have generated evidence of asymmetric segregation that was influenced by
“centromere strength” [96–99]. More recently, there is cytological evidence of an asymmetric
spindle [100] and genetic data suggesting a centromere drive [101].

7. Summary

Drosophila has been a model system since the discovery of nondisjunction [102,103]
the first meiotic mutant [104] and the first screens for meiotic mutants [105,106]. Now, with
a variety of genetic and cytological tools as described above, Drosophila remains a model
organism of choice for the study of meiosis.
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