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Abstract

Living cell is highly responsive to specific chemicals in its environment, such as hormones and molecules in food or aromas. The reason
is ascribed to the existence of widespread and diverse signal transduction pathways, between which crosstalks usually exist, thus
constitute a complex signaling network. Evidently, knowledge of topology characteristic of this network could contribute a lot to the
understanding of diverse cellular behaviors and life phenomena thus come into being.

In this presentation, signal transduction data is extracted from KEGG to construct a cellular signaling network of Homo sapiens,
which has 931 nodes and 6798 links in total. Computing the degree distribution, we find it is not a random network, but a scale-free
network following a power-law of P(K)~K~7, with y approximately equal to 2.2. Among three graph partition algorithms, the Guimera’s
simulated annealing method is chosen to study the details of topology structure and other properties of this cellular signaling network, as
it shows the best performance. To reveal the underlying biological implications, further investigation is conducted on ad hoc community
and sketch map of individual community is drawn accordingly. The involved experiment data can be found in the supplementary

material.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

To most biologists of the last century, organism is a
complex assembled ‘“‘machine”, following fundamental
rules of physics and chemistry. These researchers believe
that no matter how complex this machine could be, the
mystery of which shall be ultimately unveiled by investigat-
ing its every separate part. Evidently this is a philosophy of
reduction. Accordingly, last century’s life science is a
typical experiment discipline adopting the strategy of
“divide and conquer”. However, along with the accom-
plishment of Human Genome Project and the advent of
Post-Genome era, scientists gradually recognize that life is
not an automata but a complex system following rules
much different from reductionism (Kitano, 2002).

The characteristic of complex system is nonlinearity,
which also means “the whole is not equal to the sum of its
parts”. The molecular foundation of this nonlinearity is the
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generic and intricate interactions among all sorts of bio-
macromolecules, genes and proteins. Moreover, these bio-
macromolecules never behave or perform their biological
functions alone, but have many direct or indirect relations
between each other, which could be in physical or chemical
manner. It is these relations that bring about various
biological networks, such as metabolic network, gene
regulation network, and signal transduction network, etc.
Ultimately, all activities of life fall back on these networks
in their structure and function (Maslov and Sneppen,
2002).

In recent years, signal transduction information has
dramatically increased since the wide use of large-scale,
high-throughput experiment techniques, such as biochips
(or microarrays), bio mass spectrometry (Fenn et al., 1989),
yeast two-hybrid system(Vidal and Legrain, 1999), and
protein affinity chromatography(Lee, 2004), etc. Now it is
possible to investigate cellular signaling network at
systematic level. Moreover, knowledge of topology char-
acteristic of cellular signaling network contributes a lot to
the study of cellular dynamics, hence the reconstruction of
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large scale cellular signaling network would promote our
cognition to diverse cellular behaviors and life phenomena
thus come into being.

In this paper, the use of signal transduction data to
generate a cellular signaling network of Homo sapiens is
reported. Static geometric analysis proves that this network
is not a random network and significant community
structure should exist. After a comparison of three graph-
partition algorithms, the topologies of the network are
studied and biological implications discussed.

2. Materials and methods
2.1. The data set

Kyoto Encyclopedia of Genes and Genomes (KEGGQG) is
a knowledge repository for systematic analysis of gene
functions in terms of the networks of genes and molecules
(Kanehisa and Goto, 2000). The information in which we
are most interested is stored in the PATHWAY database,
which contains graphical representations of cellular pro-
cesses such as metabolic, membrane transportation, signal
transduction, cell cycle, etc. The foundation and main-
tenance of KEGG is sponsored by Japan government,
which is free for academic and noncommercial uses.

All the signal transduction data of this study come from
the PATHWAY database of KEGG (up to December
2005). Through simple object access protocol (SOAP), we
employ the web service provided by KEGG to extract the
signal transduction data of H. sapiens. By transforming
them into neighbor matrixes and then combining these
neighbor matrixes through matrix operation, we construct
an undirected graph of the cellular signaling network of
H. sapiens, which contains 931 nodes and 6798 links
altogether.

2.2. Graph Traverse Algorithm

Using graph theory to study biology systems can make
the problems concerned more intuitive, facilitating illustra-
tion and stimulating imagination so as to help reveal the
essence of the problem concerned. Graphic approach has
been successfully used to study enzyme-catalyzed system
(Chou and Forsen, 1980; Chou and Liu, 1981; Chou, 1981,
1983, 1989; Lin and Neet, 1990; Kuzmic and Heath, 1992;
Zhou and Deng, 1984), HIV reverse transcriptase inhibi-
tion mechanisms (Chou et al., 1994; Althaus et al,
1993a, b, ¢), protein folding kinetics (Chou, 1990, 1993),
and analysis of base frequencies in the anti-sense strands of
human protein coding sequences (Zhang and Chou, 1996).
Recently, the images of cellular automata were also used to
represent biological sequences (Xiao et al., 2005a), predict
protein subcellular location (Xiao et al., 2006a), investigate
HBYV virus gene missense mutation (Xiao et al., 2005b) and
HBYV viral infections (Xiao et al., 2006b), as well as analyze
the fingerprint of SARS coronavirus (Wang et al., 2005).

In the study of a graph, the traverse algorithm is often
the first approach to learn its global features, such as the
distribution of degree, shortest paths and betweenness, etc.
To traverse a graph, two algorithms are frequently used.
One is depth-first search algorithm (DFS); the other is
breadth-first search algorithm (BFS). In DFS, the deeper is
the vertex located, the sooner will it be expanded. Yet in
BFS, on the contrary, the deeper vertices could not be
reached until all the upper vertices had been traversed and
handled.

For complex graphs such as in this study, BFS, using
queue (first in first out) as its data infrastructure, is more
preferable than DFS thereby, which uses stack (last in first
out) instead (Aho and Hopcroft, 1983). The main principle
of BFS is as following:

(1) Initialize all vertices as unassigned.

(2) Assign a random vertex r a distance zero to indicate
that it is zero steps away from itself. Construct a first-
in, first-out queue Q initially containing only node r.

(3) For the vertex u at the head of the Q, follow each
attached edge to the vertex v at the other end. If v has
not been assigned, assign it a distance d[u]+ 1.

(4) Remove u from the head of the queue. Repeat from
step 3 until there are no unassigned nodes remaining.

2.3. Graph Partition Algorithm

Community structure is a common property of many
networks, the division of network nodes into groups within
which the network connections are dense, but between
which they are sparser. The ability to find and analyze such
groups can provide invaluable help in understanding and
visualizing the structure of networks (Hochbaum, 1996;
Subramanian, 2002; Shamira, 2004; Pan, 2005).

2.3.1. Agglomerative method

The traditional method for detecting community structure
in networks is hierarchical clustering. One first calculates a
distance D;; for every pair i,j of vertices in the network, then
takes all the n vertices in the network, with no edges between
them, and adds edges between pairs one by one in order of
their distance, starting with the pair with the shortest
distance and progressing to the longest. As edges are added,
the resulting graph shows a nested set of connected subsets
of wvertices, which are taken to be the communities.
Algorithms of this kind are called agglomerative.

Agglomerative methods have their problems, however.
One concern is that they are rigid in that once a merge has
been done it cannot be undone. Although there are smaller
computational costs with this, it can also cause problems if
an erroneous merge is done. Another is their tendency to
find only the cores of communities and leave out the
periphery. In Fig. 1, there are a number of peripheral nodes
whose community membership is obvious to the eye, in
most cases they have only a single link to a specific
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Fig. 1. Agglomerative clustering methods are typically good at discover-
ing the strongly linked cores of communities (bold vertices and edges) but
tend to leave out peripheral vertices, even when most of them clearly
belong to one community or another.

community, but agglomerative methods often fail to place
such nodes correctly.

2.3.2. Divisive algorithm

To sidestep the shortcomings of agglomerative methods,
Girvan and Newman (GN) propose an alternative
approach to the detection of communities, which could
be called divisive algorithm. According to this algorithm,
one starts with the whole graph and iteratively cuts the
edges, thus dividing the network progressively into smaller
and smaller disconnected sub-networks identified as the
communities. The crucial point in the divisive algorithm is
the selection of the edges to be cut, which has to be those
connecting communities and not those within them (New-
man, 2001, 2004a, b).

In practice, the selection of the edges to be cut is based
on the value of the so-called edge betweenness (Girvan and
Newman, 2002; Newman and Girvan, 2004), a general-
ization of the centrality betweenness introduced by Free-
man (1977). For a given graph, the centrality betweenness
of edge L is

Cory = Y0 1)
i#j Y
where 6, is the total number of shortest paths that go from
vertex i to vertex j, and 6 (L) is the number of shortest
paths between i and j that go through edge L.
Considering the shortest paths between all pairs of nodes
in a network, the betweenness of an edge is the number of
these paths running through it. It is clear that, when a
graph is made of tightly bound clusters, loosely inter-
connected, those inter-cluster connections would then have
a large betweenness value, through which all shortest paths
between nodes in different clusters have to go. By removing
iteratively the edges with highest edge-betweenness, the
clusters of the graphs are disconnected.

2.3.3. Simulated annealing method

So far, the discussed algorithms define communities
operationally as what they find, which is always down to
the level of single nodes, independently from the type of
graph analyzed. One cannot discriminate between net-

works that are actually endowed with a community
structure and those that are not. As a consequence, in
practical applications, one needs additional, nontopologi-
cal information on the nature of the network to understand
whether the identification of a community is reliable. To
this problem, a novel geometric measure is introduced
(Guimera, 2004, 2005a, b, c, d).

For a given partition of the nodes of a network into
communities, the modularity M of this partition is

n li di 2
M= ; L (2L>
where n is the number of communities, L is the total
number of links in the network, /; is the number of links
between nodes in community i, and d; is the sum of the
degrees of the nodes in community i. More precisely, the
modularity M estimates the fraction of inward links in a
community minus the expectation value of random
connections, hence indicates the rationality of the commu-
nity structure. Therefore, M will equal to zero if nodes are
placed at random into communities or if all nodes are in
the same cluster.

To find the partition with largest modularity, simulated
annealing (Kirkpatrick et al., 1983) is used to obtain the
best determination of the community structure of a
network by direct maximization of M. As is known,
simulated annealing is a stochastic optimization technique
that can find ‘low cost’ configurations without getting
trapped in ‘high cost’ local minima. Here, the cost is

) 2)

C=—-M. At each temperature, a number of random
updates are performed and accepted with probability

1 if Cp<Cy,
= exp(— <) if Cp>Cy, 3)

where C, is the cost after the update and C, is the cost
before the update; T is computational temperature. When
temperature is high, the system can explore configurations
of high cost while at low temperature the system only
explores low cost regions. Starting at high temperature and
slowly decreasing it, the system resides in deep minima,
overcoming small cost barriers.

Considering simulated annealing can carry out an
exhaustive search and minimize the problem of finding
sub-optimal partitions (Chou and Carlacci, 1991), it is not
strange that this method exhibits a better performance than
that of the standard GN algorithm (Fig. 2). It is
noteworthy that, in this method, one does not need to
specify a priori the number of communities; rather, the
number of communities is an outcome of the algorithm.

3. Results and discussion
3.1. Global feature

To learn the global feature of this signaling network, a
static geometric analysis is indispensable. Among all the
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Fig. 2. To test the performance of these methods, random networks with
known community structure are built. Each test network comprises 128
nodes divided into 4 communities of 32 nodes, with the average degree of a
vertex equal to 16.The x-axis is the fraction of vertices that are classified
by the algorithm into their correct communities and the y-axis is the
fraction of inter-community edges. Supposing a vertex has 8 inter-
community edges, the fraction of inter-community edges of this vertex is
0.5, which also means 50 percent of a vertex’s total links is inter-
community. HC is the abbreviation of standard hierarchical clustering,
GN stands for Girvan—-Newman algorithm and SA is for Guimera’s
simulated annealing method. As it shows, the performance of standard
hierarchical clustering (squares) is far inferior to that of GN algorithm
(diamonds). Meanwhile, the Guimera’s Simulated Annealing method
(circles) shows the best performance among the three.

static geometric quantities and measures, the degree
distribution is the most representative. As Fig. 3 shows, it
can hardly be explained within the framework of random
graph theory why nodes with degree larger than 35 should
exist. In those 100 experiments, the node with its degree
equal to 34 appeared only once. Meanwhile, According to
the random graph model defined by Erdos and Renyi
(Bollobas, 1985), the peak value should coincide with the
average degree

- 1 2m
d:ZZdeg(u)=7, (4)

velV

where n = | V| and m = |L|. By computation, it should be
14. However, it actually moves left to about 4, thus
exhibiting a far more different degree distribution from
that of random network. Contrastively, in Fig. 4 it can be
observed that the degree distribution of the signaling
network following a power-law in the form of P(K)~K7,
with y approximately equal to 2.2, which suggests that this
network is a scale-free network. However, there still exist
two discrepancies between the Barabasi—Albert (BA) model
and what is observed in this study, which calls for more
attention.

First, it can be noticed that nodes with only one link are
actually fewer than nodes with 2, 3 or 4 links and the most
common nodes are those having 4 neighbors. This is much
different from the computer-generated scale-free networks,
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Fig. 3. The circles represent the degree distribution of the signaling
network discussed in this study, which has 931 nodes and 6798 edges. The
stars represent that of a random network of same size. To avoid random
fluctuation, each point is an average over 100 realizations. For example, if
there are 4600 nodes with degree equal to 10 in the 100 experiments
altogether, the expectation number of nodes with degree equal to 10 is 46.
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Fig. 4. The circles represent the degree distribution of the signaling
network discussed in this study. The stars show a trend-line whose y equals
to 2.2. To improve the quality of the plot, the coordinate is switched from
linear scale to logarithmic scale, although not essential to reveal the
power-law in the degree distribution.

in which the most common nodes are terminals. The reason
of this difference may lie in that the surface area of living
cells is finite and the type of terminals or membrane
proteins is also limited. The reception, procession and
emission of signals are frequently performed in the form of
coding (Buck, 2000; Buck and Axel, 1991), not in simple
linear form such like receptor A only receives signal a, then
transmits to the next node B, till reaches the information
processing center, where decisions are made. The practical
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situation is usually that a group of similar or identical
receptors could receive and emit different signals, accord-
ing to the different location, number and excitation time of
activated receptors. This modulating procedure conduces
to promote the efficiency, resilience and robustness of
cellular signaling network, compared with simple linear
transmission mechanisms.

Second, according to the BA model, the exponent 7y
should be around 3.0. Our different exponent suggests that
the signaling network discussed in this study should not
have been formed through linear growth and linear
preferential attachment as those in classical BA model
(Albert et al., 1999; Albert and Barabasi, 2002; Barabasi
and Albert, 1999; Strogatz, 2001). Besides the difference in
evolution mechanism, another possible reason for this
small exponent could be the general existence of decen-
tralized decision-making in organisms, which dramatically
decreases the quantity of hub proteins that have enormous
neighbors. To explain this, we construct another 100 scale-
free networks comprising 931 nodes and 6798 edges,
following the same evolution mechanism defined in
classical BA model. In these networks, the hub node with
most neighbors has 106 links to other nodes. If we
construct enough more scale-free networks of this kind, a
star network would theoretically emerge, in which all
terminal nodes link to the central hub to have its degree
equal to 930. At that time, computing the degree
distribution of all these computer-generated networks, we
would find the exponent y to be exactly 3. However, in
organisms, this situation will never occur.

Acting as information process center, those ‘hub’ nodes
having much more links than normal often are cores of
complexes that may behave as a whole (Smith and Scott,
2002). However, the capacity or information processing
capability of these hubs has an upper-limit, which pre-
vents them to hold too many direct links. Meanwhile, this
is also the major reason for the general existence of
decentralized decision-making in organisms, which could
significantly shorten the distance of information transmis-
sion and endow it with timely disposal, hence promoting
efficiency.

3.2. Condition test

Since this network is proven not to be a random
network, it is of significance to investigate the possible
existent community structure, which is performed by the
Guimera method as it shows the best performance in
detecting community structure among the three algorithms.
In the condition test of this method, we build a number of
random networks with known community structure to
explore the scope of its applicability and validity. Each
computer-generated network may include two, three or
four communities and each community comprises 32 nodes
with 16 neighbors on average, which means the average
degree of each node is 16. As is shown in Fig. 5, we have
defined different boundary for different types of networks.
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Fig. 5. The squares represent the analysis result of 2-community
networks, using the Guimera’s simulated annealing method; the solid
squares represent that of 3-community networks and the circles for 4-
community networks. Note that these curves have different end-points,
which corresponds to their different boundary condition described in the
text. For 2-community, 3-community and 4-community networks, the end
point corresponds to 7, 10 and 11 inter-community links, respectively. To
avoid random fluctuation, each point is an average over 100 different
computer-generated networks.

For those comprising 2 communities, the boundary is 8
inter-community links per vertex, which means each vertex
has as many inter-community links as its intra-community
links and no significant community structure should exist
in this network then. For those 3-community networks, the
boundary is extended to 10 inter-community links per
vertex, with 5 links to the other two foreign communities
each (on average). We say a specific vertex belongs to a
community because it has more intra-community links in
this community than in any other one. Therefore, in a
3-community network, a vertex could never belong to a
community with its intra-community links less than 6 then.

For those 4-community networks, the boundary is
further extended to 12 inter-community links per vertex,
with 4 links to the other three foreign communities each,
the reason of which is the same as above.

It can be expected that along with the increase of inter-
community links, the border of community fades and
identification accuracy drops (Fig. 5). Moreover, if the
proportion of inter-community links to total links is related
to the corresponding community identification accuracy, it
can be observed that, for 2-community, 3-community and
4-community networks, the last point with 100% identifi-
cation accuracy has a proportion of 0.303, 0.366 and 0.437,
respectively. It seems that along with the increase of
community number, the curves become steeper. From the
current result, it might be anticipated that the more
communities the incoming network has in nature, the
more reliable should the result be, as far as this method is
concerned.

Likewise, we compute that proportion of our signaling
network, which is about 0.083. Since this method illustrates
better performance along with the increase of the number
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of natural community, it can be expected that any network
having more than 2 communities should be properly
handled under such little proportion.

accordingly. Result shows that it has 14 communities in
total (Fig. 6A). Comprising too much nodes, Fig. 6A is not
clear enough for direct observation. By shrinking all nodes
in the same community into one node, Fig. 6A is
transformed to Fig. 6B. With the size of nodes propor-
tionate to the number of its constituent proteins and the
thickness of edges proportionate to the number of inter-
community links, it has only 14 nodes and 32 edges, which
clearly reveals the relationships between those commu-
nities. To learn the detail of the inward-relationships of
those communities, we conduct further investigation on the
constitution of individual community.

3.3. Community structure

Before using the Guimera method to detect community
structure, BFS is applied to investigate the connectivity of
this signaling network. It is found that, among the 931
proteins extracted from KEGG, 10 proteins form three
connected components and the other 921 form a giant
component, which is the subject of the Guimera method

CIR

\

e
D

Fig. 6. (A) The Guimera’s simulated annealing method divides the giant component of the signaling network into 14 partitions, which has 921 nodes and
6791 links altogether and is shown in different color. Network visualization was done using the Pajek program (Batagelj and Mrvar, 1998). (B) For easy
observation, every community is shrunk to one node, with its size proportionate to the number of its constituent proteins and edge thickness proportionate
to the number of inter-community links. For convenient reference, these communities are numbered from 1 to 14. (C) Details of the No.l community.
Note that there are 2 proteins that do not belong to community 1.One is CtBp, which belongs to community 4 because it has more neighbors in community
4 than in community 1; the other is Dvl, which belongs to community 2 and is labeled in the same color as community 2 then.
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The chosen community comprises 40 nodes and 139
edges. Among these edges, 118 are between members of
this community, and the other 21 lead to other commu-
nities. For detailed discussion, all the 40 proteins are listed
in the following: 10683 28514 54567 182 3714 3955 4242
4851 4853 4854 4855 6868 55851 23385 8650 9253 113878
1840 151636 196403 23220 5663 5664 51107 83464 55534
84441 9794 2648 22938 343295 11317 3516 9612 3065 3066
3280 388585 171558 9541.

According to KEGG, every ID number corresponds to
only one protein. However, homologs commonly exist
among these proteins. For instance, 11317 and 3516 are
homologs of protein CSL; 4851, 4853, 4854 and 4855 are
homologs of protein Notch, etc. By shrinking homologs, we
draw a sketch map of this community (Fig. 6C). Not
surprisingly, it can be easily recognized as an intact
signaling pathway named Notch, which is found in most
animal cells and plays important roles in the fate decision
of various types of tissue and cells, including epidermis,
nerve, blood, muscle, etc.

Besides capable of finding reliable community, it also
helps to recognize crosstalks between signaling pathways.
Classified to community 2, Dv/ belongs to Wnt signaling
pathway, having direct interaction with 8 proteins in that
community, including Fzd, Stbm, Idax, Axam, Nkd, etc.
From Fig. 6C, it can be easily observed that there is a
crosstalk between Wnt and Notch signaling pathway. In
practice, lots of crosstalks such alike can be found in
Fig. 6A, from which many potential regulation techniques
should derive.

Nevertheless, in the process of shrinking, two exceptions
occur. While 5663 represents protein PS-I and 5664
represents protein PSEN, PS-1 and PSEN are homologs.
To avoid unnecessary confusion, 5663 and 5664 are shrunk
to one node named PSEN/PS-1. The other exception
happens to the protein Hats, which has three homologs
named 1387, 2033 and 2648, respectively. Although all the
three homologs have relations to protein CSL, they follow
different patterns. While 2648 having only one neighbor
(CSL), the other two have much more neighbors besides
CSL, mainly belong to community 3, which make them
apportioned to community 3 accordingly. As a result, the
three homologs are shrunk to two Hats with one into
community 1 and the other into community 3.

However, it should be reminded that, although having
provided a good visualization, the shrinking process
actually undermines our study and impedes the follow-on
simulations, besides the above-mentioned ambiguous Hats.
To apprehend this, one should think about homologs in
serial and parallel processing of signal transduction.
Suppose there is a relation like A—B—C, A has three
homologs and B has two. In fact, it is a network and could
no longer be described with linear models for its topology
structure and dynamic property. Moreover, it also might
explain the inefficacy of traditional simplified linear
representations in modeling real biological networks, to
some extent.

4. Conclusions

In 2000, theoretical physicist Stephen Hawking said that the
next century would be a century of complexity, who pointed
out the major challenge with which theoretical scientists should
confront in the 2Ist century would be handling complex
system. That is to say, it is needed to develop and establish a
set of theoretical system much different from the past simple
system, which becomes more urgent along with the intercross
between theoretical science and life science.

Scientists have employed reduction theory for 400 years,
which claims research should be conducted through disas-
semble. One should first remove the research object from its
environment, then separate it into parts and explain the whole
with isolated parts. Notwithstanding this traditional techni-
que has achieved successive triumphs on colony, individual,
organ, cell and molecule level, lots of secrets lie in the
emergence, which is the characteristic of the whole. These
conspicuous new features derive from the interaction of many
simple units that constitute a complex system, which cannot
be predicted in advance. For instance, single molecule has no
temperature or pressure. Only until lots of molecules
assemble, temperature and pressure make sense. Reduction
theory cannot interpret these phenomena because the
emergence disappears once the wholeness is break. Recently,
researchers begin to give more attention to the wholeness of
their research objects, especially system dynamics and
complex situation thus comes into being (Bhalla and Iyengar,
1999; Jeong et al., 2000; Gavin, 2002; Ravasz, 2002; Wuchty
and Stadler, 2003; Rives and Galitski, 2003; Chou and Cai,
2006; Chou et al., 2000).

As the framework of complex networks provides a
remarkable tool to describe complex systems of interacting
entities, this study explores possible application of it in
bioinformatics domain. Firstly, constructs a cellular signaling
network of H. sapiens from KEGG and conducts regular static
geometric analysis on this network; then, compares three
community detection algorithms and studies the topology of
the signaling network accordingly; finally, discusses the
biological implication of community structure and its potential
influence in basic research and drug discovery.
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