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ABSTRACT

Motivation: Piwi-interacting RNA (piRNA) is the most recently dis-

covered and the least investigated class of Argonaute/Piwi protein-

interacting small non-coding RNAs. The piRNAs are mostly known to

be involved in protecting the genome from invasive transposable

elements. But recent discoveries suggest their involvement in the

pathophysiology of diseases, such as cancer. Their identification is

therefore an important task, and computational methods are

needed. However, the lack of conserved piRNA sequences and struc-

tural elements makes this identification challenging and difficult.

Results: In the present study, we propose a new modular and exten-

sible machine learning method based on multiple kernels and a sup-

port vector machine (SVM) classifier for piRNA identification. Very few

piRNA features are known to date. The use of a multiple kernels ap-

proach allows editing, adding or removing piRNA features that can be

heterogeneous in a modular manner according to their relevance in a

given species. Our algorithm is based on a combination of the previ-

ously identified features [sequence features (k-mer motifs and a uri-

dine at the first position) and piRNAs cluster feature] and a new

telomere/centromere vicinity feature. These features are heteroge-

neous, and the kernels allow to unify their representation. The pro-

posed algorithm, named piRPred, gives promising results on

Drosophila and Human data and outscores previously published

piRNA identification algorithms.

Availability and implementation: piRPred is freely available to non-

commercial users on our Web server EvryRNA http://EvryRNA.ibisc.

univ-evry.fr

Contact: tahi@ibisc.univ-evry.fr

1 INTRODUCTION

Using computational approaches is a practical manner to iden-

tify potential non-coding RNAs (ncRNAs), which can be experi-

mentally studied further. Many methods have been developed

for the in silico prediction of several types of ncRNAs such as

microRNAs (miRNAs).

The Piwi protein-interacting RNA (piRNA) is the most

recently discovered and the least characterized class of

Argonaute (Ago)/Piwi protein-interacting small ncRNA.

Unlike the broad expression of miRNA in most cells and

tissue types, piRNA expression is highly enriched in the germline.

Like miRNA, piRNA molecules are associated with proteins of

the Ago/Piwi family to execute sequence-specific gene silencing.

Additionally, piRNA molecules may fine-tune gene expression

by mediating epigenetic modifications of heterochromatin. The

germline-enriched expression pattern and the finding that

mutating the piRNA biogenesis pathway resulted in sterility
demonstrated the critical impact of the Piwi–piRNA pathway

exert on germline development and function (Carmell et al.,
2007; Deng and Lin, 2002; Kuramochi-Miyagawa et al., 2004).

In addition to their activity in the germline, accumulating recent
data have suggested piRNA expression and biological activity in

somatic cells as well, and recent discoveries suggest the involve-
ment of piRNAs in diseases such as cancer (Mei et al., 2013).

Therefore, an updated vision suggests a wider definition of
piRNA expression and biological function in both germline

and somatic cells (Peng and Lin, 2013; Ross et al., 2014).
The piRNAs are the largest and most heterogeneous class of

the small ncRNA family, exceeding 2 million distinct piRNA
species in the mouse (Lau et al., 2006). Initial identification

and characterization of mammalian piRNAs were achieved by
experimental approaches that combined the isolation of Piwi

protein-interacting sequences and/or deep sequencing of
germline-enriched short RNA sequences (Aravin et al., 2006;

Girard et al., 2006; Watanabe et al., 2006). Although this meth-
odology appeared productive, it could not exhaustively cover the

entire repertoire of piRNA molecules in a specific organism. In
particular, tissue-specific and low copy number-expressed

piRNA could not be fully detected using this methodology.
Unlike miRNAs, piRNAs lack clear secondary structure

motifs, and primary sequence conservation, except for enrich-
ment for the presence of a uridine nucleotide at the 50 first pos-

ition of the transcript (Le Thomas et al., 2014). One hallmark
characteristic of piRNA sequences, that are of 24–35 nt of length,

is that most of them are encoded in genome clusters ranging from
1 to 4100kb long. There are both monodirectional clusters

encoding piRNAs on one strand, and bidirectional clusters
whose halves encode piRNAs on opposite strands and whose

transcription starts in the opposite direction from a centrally
located promoter (Brennecke et al., 2007; Lau et al., 2006).

Brennecke et al. have also reported that in Drosophila, piRNAs
have the tendency to be expressed near telomere and centromere

regions on the chromosome (Brennecke et al., 2007; Le Thomas
et al., 2014).

The lack of conserved characteristics makes the identification
of piRNAs by computational methods a difficult challenge. Only

a few methods have been developed to predict piRNAs. These
methods can be classified into two classes. The first one uses a

linear classification algorithm to predict individual piRNAs
(Zhang et al., 2011), and the second one is based on clustering

approaches to predict piRNA clusters from RNAseq sequences
(Jung et al., 2014; Rosenkranz and Zischler, 2012). Zhang et al.

group proposed a method based on the use of k-mer strings for
the identification of motifs in piRNA sequences. All the 1–5 nt

strings are considered, including 4 1-mer strings (A, C, G and T),*To whom correspondence should be addressed.
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16 2-mer strings, 64 3-mer strings, 256 4-mer strings and 1024
5-mer strings. A total of 1364 strings are obtained and used for
classifying piRNA and non-piRNA sequences. Two algorithms

have been proposed for predicting piRNA clusters from
RNAseq data: proTRAC (Rosenkranz and Zischler, 2012) and
piClust (Jung et al., 2014). The proTRAC algorithm is based on

a statistical probabilistic analysis. It analyzes mapped sequence
reads and identifies clusters based on significant deviations from
a uniform piRNA distribution, using different types of informa-

tion, including the density of mapped reads, strand asymmetry,
frequency of putative piRNA loci with U at the first position of
the sequence, or A at Position 10. On the other hand, the piClust

algorithm uses a density-based clustering approach without
assuming any parametric distribution and considers the actual
interdistance between mapped reads for the determination of

clustering, with results that were claimed to outperform the
proTRAC algorithm.
Taken together, previous piRNA prediction algorithms were

based on the following features: (i) transcript length of 24–35nt,

(ii) nucleotide bias at Position 1 of G expression, (iii) localization
in clusters and (iv) differential frequencies of certain k-mer se-
quences. To the best of our knowledge, however, none of the

previous publications have attempted to combine all of these
features together. Exploiting all these features could improve
the results obtained by the existing algorithms.

In this article, we propose a computational approach to com-
bine heterogeneous types of piRNA features. We developed a
machine learning method based on the fusion of multiple kernels

and support vector machines (SVMs) (Vapnik, 1995), a well-
known machine learning method that has been widely used in
diverse areas of bioinformatics. SVM is a kernel-based learner,

which can find non-liner boundaries between data classes by
using kernels. Using kernel methods makes it possible to repre-
sent the original data by using a matrix representation, called a

kernel matrix. Symmetric positive definite kernel matrices encode
the similarity between sequences in their respective input space.
This implies that the heterogeneous features can all be replaced

by appropriately kernel matrices. This allows the elimination of
the data heterogeneity. Constructing the same representation for
all datasets and integrating these representations is the main in-

tuition behind kernel fusion methods. In recent years, several
machine learning methods have been proposed to exploit differ-
ent information sources using kernels (G €onen and Alpayd,

2011). Research in multiple kernel learning (MKL) has focused
on both developing new formulations as well as optimizing them.
Different formulations are required to address the needs of

different applications. Most of the methods using these formu-
lations propose to learn the combined kernels by tuning auto-
matically the kernel weights (G €onen and Alpayd, 2011). Early

work focused on learning the kernel as a linear combination of
given base kernels (Lanckriet et al., 2004). Non-linear kernel
combinations (Cortes et al., 2009), such as products of kernels

and mixtures of polynomials, have also been shown to be appro-
priate in certain domains. Many of these formulations can be eas-
ily cast in the generalized MKL (GMKL) framework proposed

in (Varma and Babu, 2009).
In the piRNA prediction problem, the use of multiple kernels

makes it possible to propose a modular and extensible method.

Thus, new kernels representing newly discovered piRNA

characteristics can easily be added. Because the research on

piRNAs is at its beginning, it is important to have methods

that can integrate new knowledge about this RNA. The multiple

kernel method also has the advantage of allowing exploration of

characteristics, even when these are not yet validated, which is

helpful in this context. Thus, it could be possible to ignore an

implemented kernel if it turns out not to be useful and/or cor-

responds to a false knowledge. Our method is therefore adaptive,

the user being able to consider the appropriate kernels according

to the data type and studied species.
To summarize, we have developed an extensible and adaptive

classification method for piRNA prediction, which is distinct

from the existing methods in several aspects: (i) several kernels

that represent heterogeneous feature sets are built and used, (ii) a

new type of feature is explored, (iii) the characteristic of piRNAs

to occur in clusters on the chromosome is coded in a kernel to

use it in a supervised way and (iv) a non-linear classifier ap-

proach is used, which is more suitable for real-world data.
Here we describe our multiple kernel-based SVM algorithm,

called piRPred, and we report the results that we have obtained,

that are promising.

2 METHODS

We have developed a new classification tool to identify piRNAs. Our

algorithm takes as input a set of sequences, and returns for each sequence

1 if it is a piRNA, and 0 if not.

A very important step in machine learning classifiers is the feature

characterization. In the present version of our algorithm, we use four

principal piRNA features, one of which has not yet been exploited in

any computational method. To deal with the heterogeneity of the fea-

tures, we use different kernels to represent them. Each class of features

corresponds to one kernel. To perform the classification, we use two

approaches. In the first one, we simply average the kernels and then

use the SVM. In the second one, we use a multiple kernel formulation

of the SVM that can learn automatically the weights of each kernel.

2.1 piRNA features and kernel description

One principal reason for difficulty in predicting piRNAs is their lack of

conservation in structure and sequence. PiRNAs are very diverse: hun-

dreds of thousands of unique piRNA sequences do not show any struc-

ture or sequence motif similarities, except for a bias for a uridine residue

at the first base (Le Thomas et al., 2014). The other known and admitted

characteristic of piRNAs is that they appear in clusters on the genome.

This is why the tentative for computational methods for piRNA identi-

fication are methods that predict clusters of piRNAs (Jung et al., 2014;

Rosenkranz and Zischler, 2012). In Brennecke et al. (2007), it is also

stated that in Drosophila, piRNA clusters can span up to 200kb and

are located in pericentromeric and subtelomeric regions. Finally, it has

been shown in (Zhang et al., 2011) that a set of k-mer motifs have dif-

ferent frequencies in piRNA and non-piRNA sequences. Thus, in the

present version of our algorithm, we consider the following features:

(1) The frequency of certain k-mer motifs.

(2) The presence of a uridine base at the first position of the sequence.

(3) The distance to centromeric and telomeric regions of the

chromosome.

(4) The occurrence of piRNAs in clusters on the genome.

We define three kernels: one kernel representing the two first features,

and two kernels representing the third and the fourth kernels,
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respectively. Each kernel is a square similarity matrix of size N�N, N

being the size of the training dataset (including positive and negative

samples), and the building process is performed as following: for each

sequence, we built a vector (or a matrix) representing the feature.

A square distance matrix is then constructed by calculating the

Euclidian distances between the vectors (or Frobenius distances between

matrices). From this matrix, we calculate the Gaussian kernel:

kðx; yÞ=exp ��jjx�yjj
2

ð1Þ

The estimation of the value of � is done using the method described

below in Section 2.3.

2.1.1 K-mer string and uridine position K-mers refer to specific

k-tuple or k-grams of nucleic acid or amino acid sequences that can be

used to identify certain regions within biomolecules. To characterize

piRNA sequences, we consider k-mer strings, as performed by (Zhang

et al., 2011). We make use of the results obtained by Zhang et al., which

indicate that 32k-mer stings (2 4-mer and 30 5-mer) are differentially

present in piRNA and non-piRNA sequences. We thus calculated, for

each sequence, a vector containing the frequencies of these 32k-mers in

the sequence.

To this kernel, we added information about the presence or the ab-

sence of a uridine base at the first position of the sequence. We consider

this piRNA characteristic as a learning feature instead of a filter to avoid

eliminating the sequences that do not present this characteristic. Not all

piRNAs present this characteristic; we analyzed the piRNA sequences of

Human andDrosophila available in piRNABank (Lakshmi and Agrawal,

2008; http://pirnabank.ibab.ac.in/), and, respectively, 79.68 and 65.93%

of Human and Drosophila piRNAs have a uridine at their first position.

Each sequence is then represented by a vector of 33 dimensions: the first

dimension represents the information on the uridine base, and the other

32 dimensions represent the k-mer frequencies. We then compute a

Gaussian kernel using these vectors.

2.1.2 Distances to pericentromeric and subtelomeric regions The

second kernel corresponds to the distance of the sequence to the pericen-

tromeric and subtelomeric regions of the genome. We built a 4D feature

vector, which represents the distance to each of these regions on each

strand of each chromosome (see Fig. 1): the distance to the first telomere

(t1), the distance to the second telomere (t2), the distance to one side

of the centromere (c1) and the distance to the other side of the

centromere (c2).

When the sequence is in a telomeric or centromeric region, the value

of the distance is infinity, as well as when the sequence is not in the

analyzed strand and chromosome. When a sequence appears in differ-

ent positions in the genome, the minimal value for each of the four dis-

tances is used. The Gaussian kernel is then calculated with these minimal

values.

2.1.3 piRNA clusters using k-nearest neighbor sequences To take

into consideration the cluster location on the chromosome of piRNAs in

a supervised manner, we propose a new kernel, which takes into account

the neighbors of each sequence in the genome. The neighbors in our

approach represent the closest sequences that are located on the same

chromosome as the target sequence and contained in the training set. We

propose to find the k-nearest neighbors of each sequence and then to

construct a ðk+1Þ � ðk+1Þ matrix containing the distances between all

the sequences (the target sequence and its k-nearest neighbors). Each

matrix represents a density ‘context’ of a target sequence in the training

set without using the labels of the neighbors. We then compute the

Frobenius distances between the obtained matrices, and a Gaussian

kernel is computed using these distances.

The value of k depends on the number of piRNAs contained in a

cluster. This value is variable. Cluster size varies between two and several

hundred (Girard et al., 2006). By default, we set this value to 4 (see

Section 3.5). It is, however, a parameter that can be changed by the user.

2.2 SVM and kernel fusion

The SVM is a widely used classifier in bioinformatics. It is a discrimina-

tive classifier proposed for binary classification problems (Vapnik, 1995).

It defines a hyperplane that divides the space into two sides according to

the sign of a discriminant function. The boundary between regions clas-

sified as positives and negatives is called the decision boundary of the

classifier. The decision boundary defined by a hyperplane is said to be

linear because it is linear in the input examples. A classifier with a linear

decision boundary is called a linear classifier. Conversely, when the deci-

sion boundary of a classifier depends on the data in a non-linear way, the

classifier is said to be non-linear. The SVM chooses the separating hyper-

plane that maximizes the margin (the hyperplane that leaves as much

room as possible between the hyperplane and the closest examples). In

addition to performing linear classification, SVM can efficiently perform

a non-linear classification using kernels.

Many MKL formulations have been proposed, and some have been

proven effective in several applications (G€onen and Alpayd, 2011). The

simple way to combine kernels is to use fixed rules without any parameters

like computing the mean of the kernels and then applying SVM. The

GMKL (Varma and Babu, 2009) is a general purpose optimizer capable

of handling a wide range of formulations and admits fairly general kernel

parameterization. Jain et al. (2012) propose to speed up GMKL optimiza-

tion by an order of magnitude in many cases. They achieve this by design-

ing an alternative optimizer based on spectral projected gradient (SPG)

descent (Birgin et al., 2000). SPG is particularly well suited to large-scale

problems because it builds a coarse approximation efficiently and without

any memory overhead. We have used a free SVM software package called

LIBSVM (Chang and Lin, 2011) for the averaged kernel approach and the

SPG-GMKL software (Jain et al., 2012) for the MKL approach.

2.3 Kernel parameter selection

Determining the kernel parameters for the SVM is a problem in practice.

A popular method for defining the kernel parameters is the grid search

method (Hsu and Lin, 2002). The classifier is trained with different kernel

parameters, and the parameters that provide the best results are chosen.

This makes the training process time-consuming, especially when there

are large datasets. To avoid this problem, the choices concerning param-

eter settings are often driven by heuristics. An example of a heuristic is to

select the value of � that should be relative to the variance of the data, but

this is rarely the best choice. An alternative to classic grid search is to

define the parameter � using the between-cluster distances in the feature

space (Wu and Wang, 2009). For each kernel parameter value, we calcu-

late a distance index and choose the value, which leads to the best sep-

aration index. This index represents the separation degree of the classes in

the feature space. The between-cluster distances in the sample space is

defined by

�ðX+;X�Þ=d

X
x+2X+

x+

l+
;

X
x�2X�

x�

l�

0
BB@

1
CCA ð2Þ

where X+ and X� are the positive and negative classes, respectively, and

l+ and l� are sample sizes of X+ andX�, respectively. The correspondingFig. 1. A chromosome with telomeric and centromeric regions
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distance measure �F in the feature space using the kernel similarity

matrix K is:

�FðX+;X�Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A+B+C
p

ð3Þ

where

A=

X
xj� 2 X�

xi+ 2 X+

Kðxi+; xj�Þ

l2+
;

B=

X
xq� 2 X�

xp+ 2 X+

Kðxp+; xq�Þ

l2�

and

C=

2
X

xn� 2 X�

xm+ 2 X+

Kðxm+; xn�Þ

l+l�

3 RESULTS AND DISCUSSION

3.1 Training datasets

We use different sets of positive and negative data to perform

the cross-validation and the prediction tests on Human and

Drosophila species.
Positive data are taken from piRNABank (Lakshmi and

Agrawal, 2008; (http://pirnabank.ibab.ac.in/). The piRNABank

currently contains 23439 and 22 336 non-redundant piRNA

sequences of Human and Drosophila genomes, respectively.

We built the negative dataset with non-redundant sequences of

several types:

� Sequences of size between 25 and 33 nt corresponding to

portions at 50 of transfer RNA (tRNA) sequences, that

are taken from tRNA database (http://lowelab.ucsc.edu/

GtRNAdb/).

� Sequences corresponding to mature miRNAs and taken

from miRBase (http://www.mirbase.org/, version 20).

� Sequences of size between 25 and 33 nt chosen randomly

from the exonic regions of protein-coding genes taken from

Ensembl Genes 75 database through Biomart (http://www.

ensembl.org/biomart)

The Human negative dataset and the Drosophila negative

dataset contain, respectively, 59 947 and 16243 non-redundant

sequences, composed of 590 and 301 sequences of tRNA por-

tions, 2576 and 698 sequences of mature miRNAs and 56 781

and 15 244 sequences of exonic regions.
For training samples, we randomly selected five positive data-

sets and five negative datasets each composed of 7500 Human

sequences, and five positive datasets and five negative datasets

each composed of 5000 Drosophila sequences. We also selected

randomly 2500 positive sequences for each Human and

Drosophila, other than the ones used in the training step, to

test our algorithm on classifying new sequences.

Finally, for each sequence, we gathered the following

information: the name (id), the nucleotide sequence, the strand

(‘+’ or ‘–’), the chromosome ID and the position on the

chromosome.

3.2 Measures

To evaluate the classification performance, we use several statis-

tical measures: accuracy ACC, sensitivity SE, specificity SP and

positive predictive value PPV. These measures are defined as

follows:

� Accuracy ACC= TP+TN
TP+TN+FP+FN, which measures the per-

centage of samples that are correctly classified.

� Sensitivity SE= TP
TP+FN, which measures the accuracy on

positive samples.

� Specificity SP= TN
TN+FP, which measures the accuracy on

negative samples.

� Positive predictive value PPV= TP
TP+FP, which measures the

percentage of correctly classified positive samples among all

positive-classified ones.

where TP, FP, TN and FN are the numbers of true-positive,

false-positive, true-negative and false-negative predictions,

respectively.

3.3 Cross-validation results on our training datasets

The evaluation of our method is conducted through a 5-fold

cross-validation on Human and Drosophila datasets. Because

we have large sets of data, we also performed a 10-fold cross-

validation, and the results are similar to the ones obtained with

the 5-fold cross-validation. The experiment was repeated five

times, considering at each time a matrix containing 7500 (respect-

ively 5000) positive sequences and 7500 (respectively 5000) nega-

tive sequences for Human (respectively Drosophila).

The value of � in the Gaussian kernel (see Section 2) is esti-

mated to 1.73 in Human and 1.79 in Drosophila for the first

kernel (k-mer kernel), to 8.73e-17 in Human and 4.67e-17 in

Drosophila for the second one (position kernel) and to 4.48e-13

for Human and 5.21e-12 for Drosophila for the third one

(k-nearest neighbors kernel).
To evaluate the relevance of the defined kernels, we tested our

method using each of the three kernels, and then the combin-

ation of the three kernels by the kernels mean method and by the

SPG-GMKL method (see Section 2.2). The cross-validation re-

sults obtained on our training datasets of Human andDrosophila

are given in Table 1. Km represents the kernel implementing the

k-mer and the uridine features (see Section 2.1.1), Kd represents

the kernel implementing the distance of the sequences from peri-

centromeric and subtelomeric regions on the chromosome (see

Section 2.1.2) and Kn represents the kernel implementing the

k-nearest neighbors sequences (see Section 2.1.3). The tool de-

veloped by Zhang and collaborators (Zhang et al., 2011), based

on the k-mer method, was tested and compared with our

method. To test it under the same conditions as our tool, it

was re-trained on our datasets, and a 5-fold cross-validation

was performed. The results are also given in Table 1. The clas-

sification results are evaluated using the measures given above
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(Section 3.2), and the best score for each measure is given in

bold.

As shown in Table 1, the results obtained by piRPred with the

SPG-GMKL method as well as with the kernels mean method

are 40.8 in almost all measurements for both Human and

Drosophila. Our results are clearly better than the ones reported

by Zhang et al. Their tool fails on our training datasets, particu-

larly on Human data. The accuracy is close to 0.5, the value of a

random classification. Besides, the sensitivity is 50.5 both for

Human and Drosophila, which means that it fails to identify

positive piRNAs. Interestingly, using just the single Km kernel

gives better results than those obtained using Zhang’s method,

which confirms the superior performance of our non-linear clas-

sifier SVM in comparison with the linear classification method

proposed by Zhang et al.
As expected, results are slightly different between Human and

Drosophila sequences, reflecting species differences in the used

features. This is, for instance, the case of the Kd kernel that

produces better results in Drosophila than in Human. This

kernel represents the characteristic for piRNA sequences to be

close to telomere/centromere regions; characteristic that was re-

ported in Drosophila (Brennecke et al., 2007), but to our know-

ledge, not (yet?) confirmed in Human. Therefore, it is not clear

whether applying this kernel in Human will be beneficial or not.

The results obtained in Drosophila demonstrated positive results

(values �0.82), thus confirming its utility in Drosophila.

Somewhat surprisingly, slightly positive results were obtained

also in Human (values 40.5), suggesting that distances of

piRNAs to telomere and centromere regions are significant (stat-

istically) also in Human, although to a much lower level than in

Drosophila. Inversely, Km kernel gives better results in Human

than in Drosophila, suggesting better relevance of the corres-

ponding features, i.e. the differential frequencies of certain k-

mer motifs and the occurrence of a uridine at the first position.

These results agree on one hand with the study we did on the

uridine feature (see Section 2.1.1), which shows that the percent-

age of sequences containing a uridine at the first position is

higher in Human than in Drosophila (79.68 and 65.93% respect-

ively), and on another hand with the results published in (Zhang

et al., 2011), where a better performance of the k-mer method on

Human than on Drosophila was shown. Surprisingly, however,

the results obtained by Zhang et al. method, when we retrain it

on our data, give completely opposite results. This is probably

because our Drosophila training dataset is bigger than the one

used by Zhang et al. (composed of 987 sequences), whereas our

human training dataset is smaller than the one used by Zhang

et al. (composed of 32046 sequences).
Finally, the combination of the three kernels presents an

advantage over each single kernel in almost all measures in

both Human and Drosophila, showing a certain relevance of

their combination. Besides, using the SPG-GMKL method for

combining the kernels is clearly more beneficial than performing

a simple mean of the kernels. Therefore, we chose as a model for

our piRPred algorithm the one calculated by the SPG-GMKL

method.

3.4 Predictive sensitivity on new sequences

For both Human and Drosophila, we investigated our algorithm

on 2500 piRNA sequences distinct from the ones used in the

training step. Again, this was done in comparison with the

Zhang et al. method, for which we tested both the online tool

available on the web server (http://122.228.158.106/piRNA/ana

lysis.php), as well as the model obtained after re-training on our

datasets. The results are given in Table 2.
The prediction results obtained by piRPred and by Zhang

et al. method are in agreement with those obtained in the

cross-validation. They show clearly superior performance of

our algorithm. The re-trained version of Zhang et al. method

fails completely to predict the given sequences as piRNAs.

However, when using the web server version, the results are

better. The reason could be because Zhang and collaborators

trained their method on a very large set of data (173 090 se-

quences including 32046 Human sequences and 987 Drosophila

sequences), that probably include the studied sequences.

3.5 Robustness regarding the value of k in the k-nearest
neighbors kernel

The value of k in the k-nearest neighbors kernel (Kn) represents

the number of piRNAs in a cluster on a chromosome strand.

This value is variable, as can be seen in the piRNABank. Some

Table 1. Cross-validation results obtained by our method (using different combinations of kernels) and by Zhang et al. method in Human and

Drosophila training datasets

Method Human Drosophila

ACC SP SE PPV ACC SP SE PPV

Km 0.76� 0.03 0.75� 0.01 0.81� 0.01 0.75� 0.02 0.67� 0.01 0.70� 0.02 0.65� 0.01 0.66� 0.02

Kd 0.61� 0.02 0.55� 0.02 0.72� 0.03 0.59� 0.01 0.86� 0.02 0.88� 0.03 0.83� 0.01 0.86� 0.02

Kn 0.74� 0.01 0.82� 0.02 0.67� 0.03 0.80� 0.02 0.83� 0.03 0.82� 0.01 0.83� 0.04 0.82� 0.01

Km/Kd/Kn mean 0.81� 0.03 0.82� 0.02 0.78� 0.03 0.81� 0.02 0.87� 0.02 0.93� 0.01 0.81� 0.03 0.91� 0.02

Km/Kd/Kn SPG-GMKL 0.86� 0.02 0.84� 0.01 0.88� 0.03 0.85� 0.02 0.89� 0.03 0.95� 0.02 0.83� 0.03 0.94� 0.03

Zhang et al. 0.58� 0.05 0.82� 0.01 0.30� 0.04 0.63� 0.03 0.69� 0.02 0.92� 0.01 0.45� 0.02 0.85� 0.01

Note: ACC, accuracy; SP, specificity; SE, sensitivity; PPV, positive predictive value. In bold: The highest value in each column.
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clusters contain only two or three piRNAs on a strand, whereas

others contain several hundreds (Girard et al., 2006).

To determine the value of k, we performed several tests,

and the results obtained with different values of k are given in

Figures 2 and 3. For computational purposes, we decided to

choose the smallest value for which the accuracy is maximal.

As we can see in both Figures 2 and 3, the accuracy remains

fairly stable from the value k=4. Therefore, we chose the value

k=4 as the default value. In the case of Human, we have also

made this choice to improve the specificity, which is low with the

other two kernels. As we can see in Figure 2, the specificity is

higher than the sensitivity from k ’ 4 to k ’ 17 and is lower

than the sensitivity from k ’ 27. In the case of Drosophila, the

four measures are fairly stable for any value of k, from k=4 (see

Figure 3).

This parameter is still tuned by the user, and other choices can

be made depending on the features used and on the need to

improve the sensitivity or the specificity.

4 CONCLUSION

The present study aimed at the development of a novel algorithm

for the identification of piRNA sequences. We propose a mul-

tiple kernel fusion and an SVM-based approach that allows to

use heterogeneous features, each kernel implementing a class of

features. Our approach is therefore modular, extensible and

adaptive, allowing the implementation of new features or the

use of more appropriate ones (depending on the species). In

the context of piRNAs, which have not been studied as exten-

sively as miRNAs, for instance, it is appreciable to be able to

take into account new knowledge and discoveries on these

RNAs.
Because of the lack of known conserved characteristics of

piRNA sequences (except the occurrence of a uridine base at

the first position) and structure (there is no known structure

for piRNAs), their identification by computational methods is

a difficult task. To our knowledge, only one computational

method, based on k-mer motifs, has been reported in the litera-

ture for piRNA prediction (Zhang et al., 2011). Two other meth-

ods have been reported, based on the characteristic of piRNAs to

occur in clusters in the genome (Jung et al., 2014; Rosenkranz

and Zischler, 2012), which identify piRNA clusters from deep

sequencing data.

In the present study, we have provided a few new elements. We

have suggested and confirmed a new feature for piRNA identi-

fication, which is the distance to telomere/centromere regions,

which was reported on Drosophila (Brennecke et al., 2007; Le

Thomas et al., 2014). We then tested this feature in combination

with previously published features in the context of a modular

algorithm, and surprisingly, we were able to identify its utility

not only in Drosophila but also in Human. Last, we provide a

computational tool for piRNA identification that gives better

results than the previously published Zhang et al. method

(Zhang et al., 2011).
One of our further perspectives is to continue our investigation

by finding other characteristics of piRNAs that would allow us

to define new kernels and thus to improve the prediction results.

We plan, for instance, to consider a characteristic of piRNA

clusters highlighted by a computational analysis performed in

the mouse by Betel et al. (2013), who suggest that 25% of

piRNA clusters are bracketed by inverted repeats of varying

length.
One of our other perspectives for improving our classification

results is to perform the training step on all known piRNAs, i.e.

on piRNA sequences of piRNABank, and to build kernels with

all these sequences. For this classification problem with large

training dataset, accuracy, training and testing speed and

Fig. 3. Results obtained by the k-nearest neighbors kernel with different

values of k on Drosophila training datasets

Fig. 2. Results obtained by the k-nearest neighbors kernel with different

values of k on Human training datasets

Table 2. Predictive performance of our method (piRPred) on Human and

Drosophila sequences in comparison with the Zhang et al. method

Method Human Drosophila

TP SE TP SE

piRPred 1989 0.80 2146 0.86

Zhang et al. method on web server 1953 0.78 1636 0.65

Zhang et al. method retrained 849 0.34 1568 0.63

Note: TP, true-positive predictions; SE, sensitivity. In bold: The highest value in

each column.

i369

piRNA prediction

 ones
)
In order t
Figure
s
  and 
We t
in order 
Indeed, a
,
indeed 
n
)
hare 
)
; Jung etal.
,
 (2014)
)
)
)


memory usage are the main concerns. One solution is to combine

the SVM to a Nystr€om methods (Gittens and Mahoney, 2013;

Zhang et al., 2012) commonly used to obtain good-quality low-

rank approximations of large kernel matrices.
In the present study, we have proposed a new k-nearest neigh-

bors kernel, which represents the cluster structure in the

training set. To improve the classification results, we will

extend these cluster structure to the test set, using transductive

or semi-supervised learning algorithms (Weston et al., 2005). We

can also use the labels of the neighbors by exploiting collective

classification (Sen et al., 2008) approaches.
Finally, in the present version of piRPred, the input is a set of

sequences, with the position of each sequence in the genome,

including the ‘+’ or ‘–’ strand, the chromosome ID and the

position on the chromosome. The algorithm returns 1 or 0 for

each given sequence; 1 if it is predicted as a piRNA, 0 if not. We

are currently working on an extension of the input and the

output of our algorithm to (i) consider deep sequencing data

as input and (ii) return clusters of piRNAs. Thanks to the

kernel of k-nearest neighbors, building clusters that contain

close piRNA sequences in the genome is feasible.
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