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Emotional Activity Is Negatively
Associated With Cognitive Load in
Multimedia Learning: A Case Study
With EEG Signals
Xiang Guo, Tianshui Zhu, Chennan Wu, Zongliang Bao and Yang Liu*

School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China

We aimed to investigate the relationship between emotional activity and cognitive
load during multimedia learning from an emotion dynamics perspective using
electroencephalography (EEG) signals. Using a between-subjects design, 42 university
students were randomly assigned to two video lecture conditions (color-coded vs.
grayscale). While the participants watched the assigned video, their EEG signals were
recorded. After processing the EEG signals, we employed the correlation-based feature
selector (CFS) method to identify emotion-related subject-independent features. We
then put these features into the Isomap model to obtain a one-dimensional trajectory
of emotional changes. Next, we used the zero-crossing rate (ZCR) as the quantitative
characterization of emotional changes ZCREC. Meanwhile, we extracted cognitive load-
related features to analyze the degree of cognitive load (CLI). We employed a linear
regression fitting method to study the relationship between ZCREC and CLI. We
conducted this study from two perspectives. One is the frequency domain method
(wavelet feature), and the other is the non-linear dynamic method (entropy features).
The results indicate that emotional activity is negatively associated with cognitive load.
These findings have practical implications for designing video lectures for multimedia
learning. Learning material should reduce learners’ cognitive load to keep their emotional
experience at optimal levels to enhance learning.

Keywords: emotional activity, cognitive load, multimedia learning, emotion dynamics, EEG signals

INTRODUCTION

Cognitive load theory (CLT) has been widely used in learning research to explain the learning
process (Sweller, 1988, 1994). Cognitive load represents the load that performing a particular
task imposes on a learner’s cognitive system (Paas et al., 1994). CLT is based on the cognitive
architecture associated with working memory. Owing to the limitations of human working
memory, inappropriate learning materials may cause high cognitive load (Paas and Sweller, 2014).
Mayer introduced CLT to multimedia learning and established the cognitive theory of multimedia
learning (CTML). However, this theory only focuses on the cognitive process and neglects the
influence of emotion on learning.

Moreno extended the CTML by adding motivational and affective aspects and established
the cognitive affective theory of learning with media (CATLM) (Moreno, 2007). The central
theme in the CATLM is that in multimedia learning, learners’ cognitive processing is jointly
affected by emotional, motivational, and metacognitive factors (Mayer and Estrella, 2014).
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Learning includes both affective and cognitive processes. Every
information-processing step in the learning process is emotional
and cognitive. Therefore, researchers began to study how
affective and cognitive aspects may affect each other during
multimedia learning.

Plass and Kaplan (2016) further proposed the Integrated
Cognitive Affective Model of Learning (ICALM) based on the
CATLM (Moreno and Mayer, 2007). The main hypothesis of this
model is that affective and cognitive processes are intertwined
and inseparable. The cognitive affective processing of multimedia
learning materials demands cognitive resources. According to
the unlimited capacity assumption, humans can handle an
unlimited amount of material (Baddeley, 1992). Does an increase
in cognitive load reduce emotional activity? So far as we know,
this issue has not been studied from a neuroscientific perspective.
In this study, we designed an experiment to investigate the
relationship between cognitive load and emotional changes
using EEG signals.

Emotion and cognitive load can be measured using
subjective (rating scales) and objective techniques (physiological
parameters). A survey found that the most common methods
used to assess cognitive load are subjective measures (Duygu
et al., 2019). Subjective measures include indirect types such
as self-reported mental effort (Paas et al., 1994) and direct
types such as material difficulty ratings (Kalyuga et al., 1999).
The Achievement Emotions Questionnaire, Self-Assessment
Manikin, and Positive and Negative Affect Schedule are
the most popular questionnaires used in emotion studies
(Elaheh et al., 2019). Subjective measures, however, have
some limitations, such as limited reliability and validity
(Brunken et al., 2003; Anmarkrud et al., 2019). For example,
participants may not answer exactly in accordance to how
they are feeling, but how they feel others would answer
(Bethel et al., 2007).

Furthermore, theories on emotion dynamics suggest that
the fundamental feature of emotions is that they change
over time (Kuppens et al., 2010). Thus, by subjective
measurement, people are characterized only in terms of
how they feel, on average. Using physiological signals,
such as electroencephalography (EEG), which are objective
data, we can instantaneously and continuously measure
emotional states. Thus, we can record how people’s
emotions change over time. By doing this, we can better
understand the participants’ underlying responses during the
learning process.

Electroencephalography is a neuroimaging technique
that can non-invasively measure brain activity in a real-
world environment using electrodes placed on the scalp.
Compared to other external appearance clues, such as gestures
and facial expressions, EEG is a technology that is more
reliable at recognizing emotion due to its higher accuracy
and objective evaluation (Ahern and Schwartz, 1985). Various
psychophysiological studies have demonstrated correlations
between emotions and EEG signals (Sammler et al., 2007;
Mathersul et al., 2008; Knyazev et al., 2010). Additionally,
with the rapid development of wearable devices and dry
electrode techniques (Chi et al., 2011; Grozea et al., 2011;

Wang et al., 2012; Huang et al., 2015), EEG-based emotion
recognition has the potential to be implemented in practical
settings, such as mental state monitoring. In addition, EEG
signals have been shown to provide informative signal
features in response to emotional states (Harmony et al.,
1996; Hammond, 2007; Heinrich et al., 2007). Affective states
can be continuously monitored via these signals. Furthermore,
signal features extracted from specific brain regions have
been demonstrated to correlate with emotion dynamics
(Alarcao and Fonseca, 2019).

Since EEG not only reflects emotional states but also
indicates other cognitive activities in the brain, it is
necessary to choose independent variables to discriminate
emotions from EEG rhythms and lobe locations. Researchers
have observed a correlation between emotional activity
and EEG signals. Features that can reflect emotional
changes are mainly found in the right occipital lobe and
parietal lobe for the alpha band, the parietal lobe and
temporal lobe for the beta band, and the left frontal lobe
and right temporal lobe for the gamma band (Davidson
et al., 1985; Ray and Cole, 1995; Schutter et al., 2001;
Guntekin and Basar, 2007).

Electroencephalography measurements vary with the level
of cognitive stimulation (Klimesch, 1999; Anderson and
Bratman, 2008). This makes EEG an appropriate technology
for measuring the cognitive load in educational psychology.
The conventional analysis of the alpha, beta, theta, delta,
and gamma bands has been reported as the foundation for
several EEG-based models of mental load (Klimesch, 1999;
Kirmizi-Alsan et al., 2006; Khosrowabadi et al., 2010). Theta
and alpha oscillations are more sensitive to task difficulty.
Several researchers have proven that alpha and theta activities
are related to task difficulty or cognitive load for various
demanding tasks. Beta waves have been proven to be related
to perception and cognition (Rangaswamy et al., 2002). In
summary, the theta, alpha, and beta bands are most related
to cognitive load.

It has already been proven that the use of different learning
design features impacts learners’ emotions and cognitive load
(Um et al., 2012; Mayer and Estrella, 2014; Plass et al.,
2014, 2020; Park et al., 2015). In our previous study (Liu
et al., 2021), we tested the effectiveness of color coding
on the learning of computer programming students who
were learning from video lectures. The results showed that
a color-coded design is more beneficial than a grayscale
design, as indicated by lower EEG cognitive load and better
learning performance.

In the present study, we aimed to investigate the relationship
between emotional activity and cognitive load in multimedia
learning from an emotion dynamics perspective, using EEG
signals. We aimed to investigate the trajectory of learners’
emotional changes under different cognitive load states and
explore the modulatory effect of cognitive load on emotional
activity. Specifically, we propose the following hypothesis:
Learners in higher cognitive load states undergo slower emotional
changes than those in lower cognitive load states. That is,
emotional activity is negatively associated with cognitive load. To
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the best of our knowledge, this issue has not been studied by the
neuroscientific method from an emotion dynamics perspective.

MATERIALS AND METHODS

Participants
The participants were 42 graduate students (31 males vs. 11
females) recruited from the Zhejiang University of Science and
Technology (ZUST). All the participants were over 18 years
old (M = 20.81, SD = 1.13). The study was approved by the
ethics committee of the School of Information and Electronic
Engineering, ZUST. All participants had taken C/C++ courses
to ensure that they had the necessary programming foundation.
Prior knowledge was assessed to ensure that participants had the
same level of prior knowledge (Liu et al., 2021). All participants
signed an informed consent form before the experiment and
received a small gift at the end of the study to thank them for
their time and effort.

Tasks
In this study, we used the same materials as in our previous
study (Liu et al., 2021; Figure 1). One video lecture was grayscale
(Figure 1A), with a black background and white text. The
other video lecture was color-coded (Figure 1B). We used the
“Palenight Theme” for code highlighting as it is widely used
in computer programming. Each video lecture included the
same PowerPoint slideshow accompanied by a lecture given
by a professor who frequently taught this topic. The video
lectures were identical in terms of speed, sound, and light. The
materials were not self-paced, and did not allow learners to
start, stop, or replay short sequences. Each video lecture lasted
approximately 5 min and introduced the topic of “List Expression
in Python” in Chinese.

The participants were randomly assigned to one of the
following two video lecture conditions: a grayscale group and
a color-coded group. As a result, one group received learning
material with a grayscale design. The other group received
learning material with a color-coded design.

Procedure
Before starting the experiment, all participants washed their hair
to lower impedance. Each participant then learned about the
experimental procedure and signed a consent form. After that,
the participants closed their eyes for 3 min so that we could
take a baseline measurement of their EEG signal features. Next,
participants viewed one of the video lectures and then completed
a cognitive load questionnaire immediately after viewing the
lecture (Liu et al., 2021). Participants’ EEG signals were assessed
while they watched the videos. The experiment was conducted
in a laboratory which free of electromagnetic interference for
approximately 20 min.

Data Collection and Analysis
Figure 2 shows the flowchart of the proposed method.
First, we preprocess the EEG signals. To represent emotion
changes, we extracted emotion-related features and put those

features into a dimensionality reduction model to obtain a
one-dimensional trajectory of emotional changes. Then, we
quantitatively characterized the emotional changes. Meanwhile,
we extracted cognitive load related features to analyze the degree
of cognitive load. Lastly, we designed a linear regression model to
fit the relationship between emotional changes and cognitive load
for multimedia learning.

Electroencephalography Data Collection
Electroencephalography was recorded at 15 electrode sites (Fp1,
Fp2, F7, F3, Fz, F4, F8, T7, Cz, T8, P7, Pz, P8, O1, and O2)
positioned according to the international 10/20 system (Jasper,
1958). CPz served as a reference during recording. The data were
referenced to the average of all electrodes. The ground electrode
was located at AFz. EEG data were recorded (OpenBCI) at a
125 Hz sampling rate (OpenBCI, Inc.) using active electrodes.

Data Preprocessing
The EEG data preprocessing procedure was composed of the
following steps:

(1) The power-frequency interference was eliminated by band-
stop filter.

(2) The DC components were removed at 1 Hz using a finite
impulse response (FIR) high-pass filter. We then removed
other artifact noises at high frequencies using a FIR low-
pass filter at 50 Hz.

(3) We referenced the EEG data by subtracting the average of
all collected electrodes from each individual electrode.

(4) We conducted independent component analysis to remove
EOG and eye artifacts (Jung et al., 2000; Delorme et al.,
2007).

(5) The Hilbert Huang Transform (HHT) (Huang et al., 1998)
technique was used to calculate the power spectrum of each
EEG epoch (4 s) with a frequency resolution of 0.1 Hz.

(6) We computed the power of the delta (0–3.9 Hz), theta
(3.9–7.8 Hz), alpha (7.8–13.7 Hz), beta (13.7–29.3 Hz),
and gamma (29.3–46.9 Hz) rhythms by averaging the
spectral powers in the corresponding frequency bands.
Consequently, the number of EEG features for each
participant was 5 (no. EEG rhythm features) × 15 (no.
of channels) = 75.

Feature Extraction
Power Spectrum Feature: Hilbert Huang Transform
Spectral analysis is a useful method for revealing the statistical
characteristics of stochastic data in neuroscience research.
Fourier spectral analysis is a powerful tool for examining
global energy-frequency distributions, but it has some crucial
restrictions, such as the system must be linear and the data
must be strictly stationary. However, most natural physical
processes are non-linear and non-stationary. The HHT (Huang
et al., 1998) provides a full informational representation
of non-linear and non-stationary data, especially for time-
frequency representations. It can discriminate between the
natural amplitude and frequency modulations that often
occur in non-linear systems. The basic idea of HHT is
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FIGURE 1 | Two video lecture conditions (A) Grayscale design; (B) color-coded design.

FIGURE 2 | Flowchart of the proposed method.

to combine empirical mode decomposition (EMD) and the
Hilbert transform. The HHT can preserve the characteristics
of various frequencies. This is an important advantage of
HHT because real-world signals usually occur at multiple and
different time intervals.

The HHT procedure consists of the following steps:
(1) EMD decomposes the data into a finite number of

intrinsic mode function (IMF) components and applies the
Hilbert spectral analysis (HSA) method to the IMFs to obtain
instantaneous frequency data.

(2) The Hilbert transform was applied to each component,
and the instantaneous frequency was calculated according to

TABLE 1 | EEG rhythms.

EEG rhythm Components Frequency range (Hz)

Delta 1–2 0–3.9

Theta 3–4 3.9–7.8

Alpha 5–7 7.8–13.7

Beta 8–15 13.7–29.3

Gamma 15–24 29.3–46.9

the equation. HSA is a method that checks the instantaneous
frequency of each IMF as a function of time. The final result is
a frequency-time distribution of the signal amplitude (or energy)
to be designated as the Hilbert spectrum, which allows the
identification of local features.

(3) After performing the Hilbert transform on each IMF
component aj, the data can be expressed in the following form:

X (t) = real
n∑

j = 1

aj(t)ei
∫

ωj(t)dt (1)

In this study, we used the HHT method to build the
frequency-time distribution of signal energy, which permits the
identification of local features and physical meanings.

Frequency Domain Feature: Wavelet Feature
Wavelet transform is a typical method for time-frequency
analysis which maintains the idea of short-time Fourier
transform local signal processing and overcomes the shortcoming
of an unalterable window size, making it an ideal tool for signal
time-frequency analysis and processing. The wavelet feature is
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the general time–frequency domain feature used for EEG signal
analysis (Rosso et al., 2001).

In this study, we also found that Daubechies 10 was the most
suitable for accurate analysis of EEG signals (Ganorkar et al.,
2019). The EEG signal was decomposed into 32 components
using sixth-order Daubechies wavelet package decomposition.
We decomposed these components to compute classical EEG
rhythms, as shown in Table 1.

To find general features we used the wavelet energy ratio Rito
represent the i-th EEG rhythm energy Ej.

Ri =
Ej

Etotal
(2)

Then, the wavelet entropy can be defined as:

We = −

n∑
i = 1

Riln Ri (3)

Non-linear Dynamical Feature: Entropy Feature
Electroencephalography data are highly complex and non-
linear. In recent years, many researchers have proposed
methods for analyzing EEG signals using non-linear dynamics
theory. Among these, approximate entropy, sample entropy,
permutation entropy, and state space correlation entropy are
important tools used to quantify the complexity of a time series.
They can keep the information captured in an original time series
as “whole” as possible, thus proving to be more effective than
other methods in this respect.

By using sliding windows, raw signal can be divided into
several pieces. Then the distance matrix D between each two
pieces can be calculated. We employed two entropy algorithms
for complexity estimate.

As proposed by Pincus (1991), approximate entropy can
be used to consider the complexity and integrated degree of
a sequence. It uses a non-negative number to represent the
complexity and irregularity of the time series and can reflect
the occurrence rate of new sequence information in the time
series (Wan et al., 2021). If the time series is more irregular and
complex, then the corresponding approximate entropy is larger.

Consider a signal with n sample points. First, we set a distance
threshold F, then calculated the proportion Cm

i (t) of elements
greater than F in each row. Here m is the windows length, i is
the row index. Logarithmic mean can then be calculated:

8m(t) =
1

n−m+ 1

n−m+1∑
i = 1

lnCm
t (t) (4)

By change windows length we can give the approximate
entropy expression:

ApEn(t) = 8m(t)−8m+1(t) (5)

Sample entropy (Richman and Randall, 2000) has the
following advantages: (1) the calculation of sample entropy does
not rely on the duration of the data, and (2) sample entropy
displays greater consistency. Similar to the approximate entropy,

the greater the sample entropy, the lower the sequence’s self-
similarity and the more complex the sample sequence.

The calculation of sample entropy is slightly different. We do
not calculate this window when calculate logarithmic mean.

8m(t) =
1

n−m

n−m∑
i = 1

Cm
t (t) (6)

The sample entropy can be defined as:

SampEn(t) = ln8m(t)− ln8m+1(t) (7)

Permutation entropy (Bandt and Pompe, 2002) is a kind of
quantification measure index of complexity. In a dynamic system,
permutation entropy can capture the order relationship between
time series values, and extract the probability distribution of the
ordinal pattern. The first step is to partition the time series into
same length pieces. Set the length is D. Between pieces there is a
series overlapping part. The second step is to stack those pieces
into a matrix Y, which is also called state matrix. The final step is
to sum all entropy of the full permutation in the D-wise as:

PEn (D) = −

D!∑
i = 1

pilog2pi (8)

The state space correlation entropy is an extension of
permutation entropy (Tripathy et al., 2017). After obtain state
matrix, we calculate the auto correlation matrix by matrix
multiplication YTY. Then we use the upper triangular elements to
calculate the histogram and probability pk of the k-th bin. Finally,
the state space correlation entropy can be defined as:

SSCEn (K) = −

K∑
i = 1

pilog2pi (9)

Feature Dimensionality Reduction:
Isomap Method
Emotions usually fluctuate across time. Wang et al. (2012)
employed a CFS method to find subject-independent features of
EEG signals which related to emotion trajectory. In this step, we
chose Fp1, F7, T7, Cz, T8, P8, and O2 as research lobes which
were consistent with the findings reported by Wang. These lobes
were mostly related with emotion activity, allowing us to calculate
the emotion trajectory curve using the Isomap method.

First, with the help of the CFS method, we chose the top-
15 subject-independent features, following Wang et al. (2014).
Those features were then put into the Isomap model to reduce
them into a one-dimensional curve representing an emotion
trajectory curve.

An Isomap attempts to maintain the internal geometry of
the non-linear data by using the geodesic manifold distances
between data points. The algorithm can be divided into three
steps (Tenenbaum et al., 2000).

(1) Construct neighborhood graph. For each sample point, we
first search the k nearest neighbors. In the original spaces, we
construct a neighborhood connecting graph by calculating the
distance of each pair of points as edge weights.
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(2) Compute shortest paths. The dij means the paths of each
pair of points i, j. Then the shortest paths can be computed using
the Dijkstra method with the neighborhood graph.

(3) Construct d-dimensional embedding. With the shortest
paths, we can represent the data as a matrix D =

{
d2

ij

}
,

expressing the geodesic distance of point pairs. Classical
multidimensional scaling (MDS) can then be applied to this
matrix to construct an embedding of the data that best maintains
the manifold’s estimated internal geometry.

(4) Input the selected features into the Isomap model and
reduce to one dimension. This one-dimension curve is the
trajectory of emotion changes (Wang et al., 2014).

Zero Crossings Rate of Emotional
Changes
Petrantonakis and Leontios (2010) used a zero-crossing count
to express the EEG oscillations. A higher zero-crossing rate
(ZCR) indicates a more violent EEG oscillation. This can provide
information about the user’s emotional status, such as time-
dependent emotional trends. Because the Isomap method output
curve has zero mean, we followed Petrantonakis’s conclusion
and used ZCR as the quantitative characterization of emotional
changes (ZCREC).

The EEG time series s(n) related to emotional changes is
converted into a zero-mean series Z (n) , n = 1, 2,, N. Apply M
high-pass filters are applied to series Z (n), and k represents the
order of the filters, k = 1, 2,, M.

Lk {Z(n)} =

k∑
j = 1

(
k− 1

)
!(

j− 1
)
!
(
k− j

)
!
(−1)j−1Z(n− j+ 1) (10)

Based on Lk {Z(n)} to construct binary time series Xn
(
k
)
,

Xn
(
k
)
=

{
1, Lk {Z(n)} ≥ 0
0, Lk {Z(n)} < 0

, k = 1, 2, , M; n = 1, 2, , N

(11)
The desired simpleZCRECare then estimated by counting

symbol changes in Xn
(
k
)
.

ZCREC =

N∑
n = 2

[
Xn
(
k
)
− Xn−1

(
k
)]2 (12)

Cognitive Load Index
According to Pope et al. (1995), task engagement can be reflected
by beta/ (theta + alpha). There is a direct correlation between
the EEG engagement index and task load (Klimesch, 1999),
and this index is very effective in quantifying the state of an
individual’s mental load.

In our previous research (Liu et al., 2021), we demonstrated
that one group that received learning material with a grayscale
design had a higher cognitive load than another group that
received learning material with a color-coded design. We
calculated the main effect of different electrodes on the delta,
theta, alpha, beta, and gamma powers under both conditions. The

analysis results indicated that the Fp1, Fp2, F3, T8, Cz, P8, O1,
and O2 lobes for alpha power, the Fp1, F3, F7, F8, Fz, F4, T8,
and Cz lobes for beta power, and all lobes for theta power showed
significant differences. In this study, we sampled these cognitive
load related EEG signals to analyze the degree of cognitive load,
which we defined as cognitive load index (CLI).

Linear Regression Model
Using the least square method, we constructed a linear regression
model to fit the relationship between emotional changes and
cognitive load in multimedia learning.

ZCREC = αCLI + β (13)

Larger α values reflect stronger ZCREC modulation by CLI.

RESULTS

Electroencephalography
Frequency-Domain Features
Data from four participants were deleted because of low signal
quality. As a result, the grayscale and color-coded design groups
included data from 19 participants each (n = 38).

The Shapiro–Wilk test was used to test the normality of the
EEG power features (p > 0.05). One-way ANOVA was conducted
with the between-subject factors of the two design conditions
and delta, theta, alpha, beta, and gamma power as dependent
variables. One-way ANOVA revealed a significant difference
between the experimental conditions in theta, alpha, beta, and
gamma power [F (1, 37) = 9.36, p = 0.004, η2

p = 0.206; F (1,
37) = 4.43, p = 0.042, η2

p = 0.110; F (1, 37) = 4.89, p = 0.034,
η2

p = 0.119; F (1, 37) = 4.40, p = 0.043, η2
p = 0.109]. There was no

difference in delta power [F (1, 37) = 0.233, p = 0.632, η2
p = 0.006].

Figure 3 shows the electrode frequency distribution maps for
the grayscale and color-coded designs. The HHT was applied
to each EEG channel of all the samples obtained above, and
the transformed results were normalized to produce input data
suitable for correlation-based feature selection. As illustrated in
Figure 2, we found obvious differences between the theta, alpha,
beta, and gamma bands.

Entropy Features
In this study, we studied four different entropy values of
EEG time-domain signals (approximate entropy,sample
entropy,permutation entropy, and state space correlation
entropy) and compared them with EEG frequency domain
signals (wavelet entropy).

The Shapiro–Wilk test was used to test the normality of
the entropy features (p > 0.05). Figure 4 shows the boxplot
of approximate entropy, sample entropy, permutation entropy,
state space correlation entropy, and wavelet entropy in the two
conditions. One-way ANOVA revealed statistically significant
differences across the experimental conditions on approximate
entropy [F (1, 37) = 624.03, p < 0.001, η2

p = 0.617], sample
entropy [F (1, 37) = 191.58, p < 0.001, η2

p = 0.331], permutation

Frontiers in Psychology | www.frontiersin.org 6 June 2022 | Volume 13 | Article 889427

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-889427 June 13, 2022 Time: 9:58 # 7

Guo et al. Emotional Activity and Cognitive Load

FIGURE 3 | Boxplot of approximate entropy, sample entropy, permutation entropy, state space correlation entropy, and wavelet entropy in the two conditions.

FIGURE 4 | Electrode-frequency distribution maps for grayscale design and
color-coded design

entropy [F (1, 37) = 1,037.46, p < 0.001, η2
p = 0.727], state space

correlation entropy[F (1, 37) = 463.03, p < 0.001, η2
p = 0.543]

and wavelet entropy [F (1, 37) = 27.31, p < 0.001, η 2
p = 0.069].

The average approximate entropy, sample entropy,
permutation entropy, state space correlation entropy, and
wavelet entropy of all the participants with different video

lecture designs are shown in Figure 5. The study revealed
that the participants who watched the grayscale material had
higher approximate entropy, sample entropy, permutation
entropy, state space correlation entropy, and wavelet
entropy than those who watched the color-coded design
material. As shown in Figure 5, the approximate entropy,
permutation entropy, and state space correlation entropy
more clearly distinguished between the two types of video
lecture designs, while the distinction between the two lecture
designs was less obvious for sample entropy and wavelet
entropy. These were consistent with one-way ANOVA results
that approximate entropy, permutation entropy, and state
space correlation entropy had large effect size, the sample
entropy had medium effect size, and the wavelet entropy had
small effect size.

Cognitive Load Index
The cognitive load curve based on Pope’s index beta/(theta
+ alpha) for cognitive load related channels is illustrated in
Figure 6.

As shown in Figure 6, the beta/(theta + alpha) index
is suitable for distinguishing higher cognitive load from
lower cognitive load in multimedia learning. Participants
had significantly higher beta/(theta + alpha) power when
learning through color-coded video lectures than through
grayscale lectures.

The ZCR can also be used to directly observe the intensity
of EEG signal changes. By choosing the same channels as those
described in section “Feature Dimensionality Reduction: Isomap
Method,” we represent the ZCR -CLI fitting curve in Figure 7.
The modulation parameter α was fitted to 1.3969 which indicated
that a larger CLI caused more violent fluctuations in the EEG
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FIGURE 5 | The average approximate entropy, sample entropy, permutation entropy, state space correlation entropy, and wavelet entropy of all participants
engaging with grayscale design and color-coded design.

time-domain raw signals. With entropy as a complexity measure
(Parbat and Chakraborty, 2021), more violent fluctuations in the
EEG time-domain may induce higher entropy. This provides
evidence that the higher the entropy, the higher the cognitive load
in cognitive processing.

Linear Regression
As illustrated in Figure 2, we employed a linear regression fitting
method to study the relationship between ZCREC and CLI. We
conducted this study from two perspectives. One is the frequency
domain method (wavelet feature), and the other is the non-linear
dynamic method (entropy feature).

Frequency Domain Method
For the two participant groups, after feature dimension
reduction, the emotion trajectory curves are shown in Figure 8A.
The red line represents the participants who were given the
color-coded material and the blue line represents those who were
given the grayscale material. The participants had more obvious
changes in their emotional trajectory when learning through
color-coded video lectures than through grayscale lectures.

For the linear regression model in Equation 13, the ZCREC-
CLI fitting curve for all subjects is shown in Figure 8B. The
modulation parameter α = −0.0031 indicates that a larger
CLI leads to slower emotional change. Stated differently, the
participants who received the color-coded learning material
experienced lower cognitive load, and their emotional trajectory
changed more obviously. That is, emotion changes more actively
in a lower cognitive load state than in a higher cognitive load
state. This result was consistent with our hypothesis.

Non-linear Dynamic Method
Vacha-Haase and Thompson (2004) reported no matter which
statistic method was used that an effect size 0.5 meant something

very different. One-way ANOVA revealed that the effect sizes
of approximate entropy, permutation entropy, and state space
correlation entropy were larger than 0.5. Therefore, we chose
them as the entropy features to fit the linear regression model.
Approximate entropy, permutation entropy, and state space
correlation entropy can also be applied via a dimensionality
reduction method such as Isomap. In particular, when calculating
the entropy, we set the window width to 5 s, approaching a cycle
of emotional changes. A typical result is shown in Figures 9A,
10A, 11A. The participants who received the color-coded video
lectures, that is, those in a lower cognitive load state, experienced
more active emotional changes. Figures 9B, 10B, 11B show
the ZCREC-CLI fitting curve for all participants. Obviously, a
higher cognitive load caused a slower change in the entropy one-
dimensional reduced curve. In other words, emotional activity is
negatively associated with cognitive load in multimedia learning.
This result supports our hypothesis.

DISCUSSION

The main goal of this study was to investigate the relationship
between emotional activity and cognitive load in multimedia
learning. We examined this issue from an emotion dynamics
perspective using EEG signals. A computer programming
learning experiment was conducted. We investigated the learners’
trajectory of emotional changes under different cognitive load
states and explored the influence of higher and lower cognitive
loads on emotional activity. We conducted this study from two
perspectives. One is the frequency domain method (wavelet
feature), and the other is the non-linear dynamic method
(entropy features). The results indicated that participants in
lower cognitive load states had more active changes in their
emotional trajectory than those in higher cognitive load states.
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FIGURE 6 | Cognitive load curves for grayscale design and color-coded design.

FIGURE 7 | Fitting curve of CLI and ZCR of EEG time-domain raw signals.

This observation is consistent with the findings of several
emotion dynamics studies (Kuppens et al., 2010; Kuppens and
Verduyn, 2017), confirming that emotional activity is negatively
associated with cognitive load.

Our results are in line with the emotional design hypothesis
(e.g., Mayer and Estrella, 2014; Plass et al., 2014). The emotional
design hypothesis suggests that learning material with color
effects is a positive emotional design, while grayscale material has
a neutral emotional design. Positive emotion design can reduce
cognitive load (Um et al., 2012; Plass et al., 2014; Park et al.,
2015). Figure 4 illustrates that the participants who watched the
color-coded learning material had lower entropy than those who
watched the grayscale learning material. Figure 7 shows that the

lower the entropy, the lower the cognitive load. These results
demonstrated that the participants who received the color-coded
learning material had a lower cognitive load. The results provide
empirical evidence for the emotional design hypothesis.

We selected EEG features with significant differences between
the two groups to test our hypothesis from two perspectives.
We used wavelet features to perform the frequency domain
method analysis and entropy to conduct a non-linear dynamic
method analysis. The results of these analyses were consistent
with our hypothesis. Figures 8A–11A demonstrate that the
participants in the grayscale design group underwent slower
emotional changes than those in the color-coded design group.
Because the color-coded design group was associated with lower
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FIGURE 8 | (A) 1-D trajectory of emotion change of wavelet feature for two designs; (B) ZCREC-CLI fitting curve of wavelet feature.

FIGURE 9 | (A) 1-D trajectory of emotion change of approximate entropy for two design; (B) ZCREC-CLI fitting curve of approximate entropy.

cognitive load and the grayscale design group was associated with
higher cognitive load, based on the linear regression model that
we promoted, emotional activity was negatively associated with
cognitive load both in the color-coded and grayscale design group
(see Figures 8B–11B). Neuroscience research has shown that the
late positive potential (LPP) of EEG signals is significantly related
to emotional stimuli (Weinberg and Hajcak, 2010). Evidence has
shown that compared to the low-load task, the high-load task
decreased the LPP amplitude (MacNamara et al., 2011; Gan et al.,
2017). Cognitive load reduces activity in emotion response brain
regions (Sun et al., 2020). Our results are consistent with prior
neuroscience research using EEG signals.

This study provides further explanation for our previous
research (Liu et al., 2021). The color-coded design as a
positive emotion design increased germane cognitive load and

learning motivation (Um et al., 2012). In addition, learning
is compromised when an individual’s emotional diversity
and emotional experience intensity are below optimal levels
(Pekrun, 2006; Pekrun and Stephens, 2010). Learners in a lower
cognitive load state can promote their emotional activity to
benefit from learning.

ICALM assumes that every information-processing step in
the learning process is emotional and cognitive. According
to Baddeley and Hitch (1994), working memory is a
resource-limited system, and the simultaneous performance
of the two tasks introduces a competition for cognitive
resources. Our study demonstrated that EEG emotional
activity is negatively associated with cognitive load in
multimedia learning, providing neuroscientific evidence
for ICALM theory.
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FIGURE 10 | (A) 1-D trajectory of emotion change of permutation entropy for two designs; (B) ZCREC-CLI fitting curve of permutation entropy.

FIGURE 11 | (A) 1-D trajectory of emotion change of state space correlation entropy for two designs; (B) ZCREC-CLI fitting curve of state space correlation entropy.

This study has some limitations that should be addressed in
future studies. First, to create standardized learning conditions,
the study was conducted in a laboratory setting. Future studies
should be conducted in realistic learning settings in order to
confirm their ecological validity. Second, we did not strictly
control for metacognitive factors. ICALM recognizes that
metacognition mediates the cognitive processing of multimedia
information. Although we controlled for participants’ prior
knowledge, metacognition also includes understanding and
controlling for other cognitive processes (Lindnera et al., 2021).
Future research should test participants’ metacognitive capacity,
which might influence their emotion and cognitive processing
in multimedia learning. Third, the number of participants
were relatively small, and the research had not considered
the gender factor. Gender differences are an important
topic in computer thinking research. Gender differences in
self-efficacy and interest may affect programming learning
(Allaire-Duquette et al., 2022), these may have influence on

learners’ emotion and cognitive load during the experiment.
Future studies should take gender difference as the experimental
control variable for further research. Moreover, future researches
should use different materials to assess the generalizability of the
current findings.

CONCLUSION

The present study explores multimedia learning, a topic that
has received much interest and is of considerable importance at
present because of the COVID-19 pandemic and increased online
learning. Based on the research method of emotional dynamics,
the present study discusses the relationship between cognitive
load and emotional activity in multimedia learning and provides
EEG neuroscience evidence that emotional activity is negatively
associated with cognitive load. To our knowledge, this is the first
study to fit cognitive load effects on emotional activity from a
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neural perspective. This study provides neural evidence for the
emotional design hypothesis and ICALM theory. This research
also provides empirical support for the argument that learning
material should reduce learners’ cognitive load to keep learner’s
emotional experience at optimal levels to benefit learning.
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