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Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized by extensive

structural abnormalities in cortical and subcortical brain areas. However, an associa-

tion between changes in the functional networks in brain white matter (BWM) and

Parkinson's symptoms remains unclear. With confirming evidence that resting-state

functional magnetic resonance imaging (rs-fMRI) of BWM signals can effectively

describe neuronal activity, this study investigated the interactions among BWM func-

tional networks in PD relative to healthy controls (HC). Sixty-eight patients with PD

and sixty-three HC underwent rs-fMRI. Twelve BWM functional networks were

identified by K-means clustering algorithm, which were further classified as deep,

middle, and superficial layers. Network-level interactions were examined via coeffi-

cient Granger causality analysis. Compared with the HC, the patients with PD dis-

played significantly weaker functional interaction strength within the BWM

networks, particularly excitatory influences from the superficial to deep networks.

The patients also showed significantly weaker inhibitory influences from the deep to

superficial networks. Additionally, the sum of the absolutely positive/negative regres-

sion coefficients of the tri-layered networks in the patients was lower relative to HC

(p < .05, corrected for false discovery rate). Moreover, we found the functional inter-

actions involving the deep BWM networks negatively correlated with part III of the

Unified Parkinson's Disease Rating Scales and Hamilton Depression Scales. Taken

together, we demonstrated attenuated BWM interactions in PD and these abnormal-

ities were associated with clinical motor and nonmotor symptoms. These findings

may aid understanding of the neuropathology of PD and its progression throughout

the nervous system from the perspective of BWM function.
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1 | INTRODUCTION

Parkinson's disease (PD) is the second most prevalent neurodegenera-

tive disorder and is characterized by a wide array of motor and non-

motor symptoms (Poewe et al., 2017). The main pathological hallmark

of PD is Lewy bodies, the widespread accumulation of α-synuclein-

immunoreactive inclusions in the nervous system. Studies on neuro-

pathology have revealed that Lewy bodies develop along major fiber

pathways, originating in the brain stem before progressing to neocor-

tical regions (Braak et al., 2003). Simultaneously, axonal loss emerges

in early stages of the disease, preceding somatic neuronal death and

compromising the integrity of the white matter of the brain (brain

white matter [BWM]) (Burke & O'Malley, 2013; O'Malley, 2010;

Tagliaferro et al., 2015). Thus, investigating BWM is crucial to under-

standing the pathological mechanisms of PD.

The development of neuroimaging has promoted the study of

BWM lesions in PD. Diffusion tensor imaging, commonly used in

structural imaging studies, has informed our understanding of the

microstructure of BWM lesions in early PD and revealed marked

involvement of the genu of the corpus callosum and the superior lon-

gitudinal fasciculus. These results suggest alterations in connectivity

within frontal and parietal BWM (Bohnen & Albin, 2011; Gattellaro

et al., 2009). A study adopting repetitive transcranial magnetic stimu-

lation in combination with diffusion tensor imaging suggested that the

structural alignment and cohesion of the superior longitudinal fascicu-

lus tracts may reflect the extent of motor impairments (Rodríguez-

Herreros et al., 2015). Structural imaging also revealed that BWM

hyperintensities are associated with motor and cognitive symptoms of

PD (Bohnen & Albin, 2011; Pavese & Brooks, 2009). However, how

BWM function features in PD pathophysiology remains unclear.

There has been increasing interest in applying resting-state func-

tional magnetic resonance imaging (rs-fMRI) to examine BWM neural

activation and functional organization (Ding et al., 2013; Huang

et al., 2018; M. Li, Newton, et al., 2019; Wu et al., 2017). Studies have

verified the intrinsic functional organization of BWM, which manifests

as interacting networks of functional modules that can be investigated

using rs-fMRI (Fabri & Polonara, 2013; Fabri et al., 2011; Gawryluk

et al., 2011; G.-J. Ji et al., 2017; Marussich et al., 2017). Various psy-

chiatric disorders can be characterized by abnormalities in BWM func-

tional activity (Jiang, Luo, et al., 2019; Peer et al., 2017; Zhao

et al., 2021). Such abnormalities may have important implications in

neurophysiological processes and help explain certain clinical symp-

toms. Recently, one study examined BWM structural–functional cou-

pling and the abnormalities in PD regarding information transfer with

biological networks (i.e., the small-worldness property) (G. J. Ji

et al., 2019). While the disruption of gray matter functional network

interactions features prominently in PD and is associated with PD

symptomatology (Hao et al., 2020; Wang et al., 2022; Wolters

et al., 2019), the interactions among BWM functional networks in

patients have not been studied. Since internetwork interactions are

basic to the integration of brain function, it is reasonable to speculate

that elucidating interactions among BWM functional networks may

explain the pathological mechanisms of PD. The Granger causality

analysis (GCA) method can be used to uncover the causal relation-

ships among brain regions. The coefficient GCA (cGCA), a type of

GCA, can offer insights into the excitatory or inhibitory influences

among functional networks via regression coefficients (Chen

et al., 2009). Thus, in the present study, the cGCA method was

adopted to explore the pathological changes in PD in terms of interac-

tions among BWM functional networks.

The present study illustrates the interactions among BWM func-

tional networks and the corresponding effects on Parkinson's symp-

toms. The evaluation involved a comparison of 68 patients with PD,

relative to 63 healthy individuals (healthy control group, HC). An iden-

tified clustering algorithm was conducted within whole-brain white

matter to derive 12 functional networks. The interactions among the

functional networks were investigated using the cGCA. To further

characterize the total influence of each functional network in the

interaction model, the causal outflow/inflow strength of each network

was examined with a classic graph-theoretic metric. Finally, correla-

tions between interactions and patients' motor and nonmotor symp-

toms were analyzed. Based on the coupling disturbances of PD's

BWM functional network documented in previous studies, we

hypothesized that patients with PD would demonstrate disrupted

interactions among BWM functional networks, and such disruptions

might be associated with the patients' clinical symptoms.

2 | METHODS

2.1 | Subjects

Ninety-two right-handed patients with PD were recruited from the

Department of Neurology, Xiangya Hospital of Central South Univer-

sity. The PD diagnosis was made by two or more experienced neurol-

ogists based on the criteria of the United Kingdom Parkinson's

Disease Society Brain Bank (Hughes et al., 2001). Prior to scanning,

the patients completed neurological examinations with a medical

interview. The motor features of PD were characterized using the part

III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) (Goetz

et al., 2008) and Hoehn and Yahr staging (Hoehn & Yahr, 1998), the

nonmotor features of PD were evaluated using Mini-mental State

Examination (MMSE), Montreal Cognitive Assessment scale (MoCA),

and Hamilton Depression Scale (HAMD). Diagnoses ranged from mild

to severe Hoehn and Yahr stages of PD (Stages 1–5), wherein a higher

score corresponded to a more advanced stage of the disease.
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Levodopa equivalent daily dose (LEDD) (Tomlinson et al., 2010) was

recorded for each PD patient according to the online Levodopa Equiv-

alent Dose Calculator (https://www.parkinsonsmeasurement.org/

toolBox/levodopaEquivalentDose.htm). Patients who participated in

this study were in an off-medication state after 12 h of withdrawal

from dopaminergic drugs. Patients were excluded from the study if

they had any of the following: complicated neuropsychiatric disorders

such as dementia; head trauma; primary and metastatic tumors; other

mental illnesses; any history of drug abuse; or standard contraindica-

tions to MRI scanning. In addition, 24 patients were excluded due to

incomplete MRI or fMRI scanning (n = 13) or excessive head motion

(n = 11). Ultimately, 68 patients were included for the subsequent

analyses.

Sixty-three right-handed healthy individuals were recruited from

the local community to comprise the HC group. Imaging data of the

subjects were matched by age and gender and quality checked. Sub-

jects' demographics are given in Table 1, and the subject-specific

inclusion/exclusion procedure can be found in Section 2.3.

Written informed consent was obtained from all PD patients and

HC before the MRI scanning. All examinations were carried out under

the guidance of the Declaration of Helsinki 1975. This study was

reviewed and approved by the institutional ethics committee of Cen-

tral South University.

2.2 | Data acquisition

Imaging data were acquired using a 3.0 T GE Signa MR scanner

(General Electric Medical Systems) in the Department of Radiology of

Xiangya Hospital of Central South University. High-resolution

T1-weighted images were acquired by a three-dimensional fast

spoiled gradient-echo sequence (repetition time 7.792 ms; echo time

2.984 ms; flip angle 7�; matrix size 256 � 256; slice thickness 1 mm,

no gap; and voxel size 1 mm � 1 mm � 1 mm). Resting-state fMRI

images were acquired via a gradient-echo echo-planar imaging

sequence (repetition time 2000 ms; echo time 30 ms; flip angle 90�;

matrix size 64 � 64; slice thickness 4 mm, 0.6 mm gap; slice number

32; and voxel size 3.44 mm � 3.44 mm � 4.60 mm). The total scan

time was 360 s and a total of 180 volumes were collected.

2.3 | Data preprocessing

The fMRI data preprocessing was performed using Data Processing

Assistant for Resting-State fMRI (DPARSF v4.3; advanced edition;

www.restfmri.net) and Statistical Parametric Mapping toolkits

(SPM12; www.fil.ion.ucl.ac.uk/spm). The individual T1 images were

segmented into white matter (WM), gray matter, and cerebral spinal

fluid (CSF) using SPM12's New Segment algorithm and then normal-

ized to the Montreal Neurological Institute (MNI) template.

During fMRI image preprocessing, the first five volumes were dis-

carded, followed by slice-timing correction, realignment (motion cor-

rection cutoff < 3 mm or 3�) to the mean functional image, and co-

registration to the anatomical image. Motion spikes were identified

using framewise displacement (FD; FD > 0.5 mm) to further minimize

motion effects (Power et al., 2012). Meanwhile, subjects with the

mean FD bigger than 0.3 mm were excluded from the analyses. Linear

detrending was conducted, and nuisance covariates, including

TABLE 1 Clinical and demographic
characteristics of subjects

PD HC p value

Subjects, n 68 63 —

Gender, male/female, n/n 37/31 31/32 .5531a

Age, years 47.37 ± 12.03 52.81 ± 10.99 .6076b

Education, yearsc 9.49 ± 3.96 10.33 ± 4.18 .3283d

Duration, years 7.34 ± 5.18 — —

Onset age, years 47.37 ± 12.03 — —

Mean FD 0.08 ± 0.05 0.08 ± 0.04 .6390d

MMSEc 26.47 ± 3.76 27.07 ± 4.98 .1449b

MOCAc 22.64 ± 4.56 23.80 ± 6.06 .0516b

HAMDc 7.71 ± 6.86 2.59 ± 2.91 <.0001b

UPDRS-IIIc 33.60 ± 16.86 — —

H&Y stage 2.49 ± 0.95

LEDD 411.9 ± 219.9

Note: Values of variables are presented as mean ± SD.

Abbreviations: FD, framewise displacement; HAMD, Hamilton Depression Scale; H&Y, Hoehn and Yahr;

LEDD, levodopa equivalent daily dose; MMSE, Mini-mental State Examination; MOCA, Montreal

Cognitive Assessment; UPDRS-III, the part III of the Unified Parkinson's Disease Rating Scale.
aχ2 test.
bNonparametric Mann–Whitney tests.
cPartial score missed.
dTwo-sample t-tests.
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24 motion parameters (Friston et al., 1996) and mean CSF signals,

were regressed out. Motion spikes were included as separate regres-

sors to censor the signal at the spike so that correlation values were

not further altered (Jiang, Luo, et al., 2019; R. Li et al., 2018). In line

with the previous studies (Fan et al., 2020; Peer et al., 2017), temporal

band-pass filtering with a frequency range from 0.01 to 0.15 Hz was

performed to reduce non-neuronal contributions to blood-oxygen-

level-dependent (BOLD) fluctuations. Spatial smoothing (4 mm full-

width half-maximum) was implemented on WM functional images,

where the WM mask of each subject (identified by co-registering T1

segmentation images to the functional space, threshold set at 0.5)

was applied to smoothing (Fan et al., 2020; Peer et al., 2017). Addi-

tional threshold of 0.9 was conducted to assess the possible influence

of WM probability mask on our results. Finally, the images were nor-

malized to the MNI template and resampled to 3 mm � 3 mm � 3

mm. Six PD patients were excluded for translational or rotational

head motion. Five PD patients with larger mean FD > 0.3 mm were

discarded. None of the controls exceeded the maximal threshold of

translation and maximal rotation or mean FD.

2.4 | White matter functional networks clustering

The clustering analysis on the fMRI data was adapted from the origi-

nal study by Peer et al. (2017). First, the unified group-level WM

masks based on the T1 segmentation results were obtained. Specifi-

cally, with the threshold of percentage >60%, voxels in the WM mask

averaged across subjects were identified as a group WM mask. To fur-

ther correct for the deep brain structures (Lorio et al., 2016;

Wonderlick et al., 2009), the thalamus, caudate, putamen, globus

pallidus, and nucleus accumbens were determined based on the

Harvard-Oxford Atlas (Desikan et al., 2006) and removed from the

group WM mask. The resulting group WM mask, which included

19,543 voxels, was co-registered to the functional space and res-

ampled at the same voxel size as fMRI images.

BWM functional networks were generated by applying K-means

clustering to the group mean Pearson's correlation matrix. Specifically,

correlation matrices were first obtained for each subject by calculating

the correlation between each BWM voxel and the voxels in the group

WM mask, which were subsampled from 19,543 voxels to 4873

nodes based on an interchanging grid strategy (Craddock et al., 2012;

Thomas Yeo et al., 2011). The individual correlation matrixes were

then averaged across subjects to yield a group mean correlation

matrix, which was subjected to K-means clustering.

To evaluate the stability of the number of networks, clusters

ranging from 2 to 22 (Lange et al., 2004; Thomas Yeo et al., 2011)

were measured and the connectivity matrix was randomly divided into

four folds (19,543 � 1218 per fold), after which clustering was per-

formed separately on each fold. To determine the similarity between

the clustering results from each fold, adjacency matrices were calcu-

lated between any two folds and compared via Dice's coefficient. The

averaged Dice's coefficient was used to evaluate the stability of the

cluster number (Jiang, Song, et al., 2019; Peer et al., 2017).

Based on the Dice's coefficient of clustering solutions, the num-

ber of clusters that yielded the most fine-grained and stable BWM

functional networks was 12. Similar to past studies (Fan et al., 2020;

Peer et al., 2017), each BWM functional network was overlaid on

20 major BWM fiber tracts from the JHU White Matter Tractography

Atlas (Hua et al., 2008; Mori et al., 2005) to evaluate the correspon-

dence between networks and tracts. Then, the resulting networks

were classified as superficial, middle, and deep layers.

2.5 | Coefficient GCA

To measure signed and directional influences among the 12 BWM

functional networks, bivariate cGCA was performed as hemodynamic

delay varied from region to region in the BWM (Courtemanche

et al., 2018; M. Li, Newton, et al., 2019; Tong et al., 2017). For each

functional network, the individual preprocessed blood oxygenation

level-dependent fMRI time series was extracted by averaging the time

series of all voxels within the network. The GC strength among net-

works was calculated using REST (v1.8; www.restfmri.net). In accord

with previous works (Fan et al., 2020; Liao et al., 2019), the signed

strength and direction of the relationship between any two networks

were characterized by each regression coefficient. The positive/

negative causal coefficients were interpreted as excitatory/inhibitory

paths (source activity predicts subsequent increases/decreases in tar-

get activity). Finally, a directed asymmetric matrix (12 � 12 regression

coefficient matrix) was acquired for each subject. The following in/out

strength value as the cGCA graph theoretic (Liao et al., 2011) was

used to describe the inflow/outflow influence strengths of each net-

work: Sum of the absolute regression coefficients of a certain network

that denote the incoming or outgoing connections of the network,

which is the target/source variable to significantly predict other

networks.

2.6 | Network statistical analysis

The within-group GC patterns of BWM functional networks were

assessed for each directed edge across subjects in each group with

one-sample t-test. The network-level between-groups difference pat-

terns for each directed edge were obtained using two-sample t-tests.

The statistical significance was set at p < .05 after adjusting for multi-

ple comparisons with false discovery rate (FDR). Gender, age, mean

FD, and Euclidean distance between each two networks were con-

trolled for as confounding variables.

As direct correlation at the same timepoint may be disturbed by

the spread of hemodynamic effects across time, the BWM functional

network is susceptible to influence by Euclidean distance. As a result,

the presumedly across-time causality observed may simply be attrib-

uted to the disturbance of correlation and spatial distance. According

to previous research (J. Li, Biswal, et al., 2019), the spatial distance

and functional connectivity in BWM most likely exhibit a nonlinear

relationship, and spatial distance does not significantly affect the
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topological properties of BWM functional networks or the nonrandom

modular organization. Therefore, Euclidean distances were regressed

from the coefficient matrices to exclude spatial effect and correlation

disturbance. The Euclidean distance D (in mm) was calculated as the

2-norm (jj.jj2) of any pair of nodal centroids in the MNI space (Miši�c

et al., 2014; Salvador et al., 2005).

To determine whether the directed edge between each two net-

works differed from a random result, a permutation test of difference

distribution (5000 times) was performed by randomly assigning each

subject to one of the two groups corresponding to the size of the

original PD and HC groups, respectively, and running a t-test with the

same confounding variables (Fan et al., 2020; Liao et al., 2019). The

p value was estimated as the percentage of permutations exceeding

the actual group difference as calculated in the t-test (p < .05,

network-based statistic adjusted).

The 12 BWM functional networks were categorized as superficial,

middle, and deep network layers. For each subject in the PD and HC

groups, the in/out strength of each layer was computed by summing

the absolute strength value of all networks in the layer within the sig-

nificant group mask. The in/out strength of tri-layer networks in the

PD and HC groups was compared via two-sample t-tests (p < .05,

FDR corrected).

2.7 | Clinical correlation

To explore the associations between GC patterns and motor and non-

motor symptoms of PD, Pearson's correlation analyses were per-

formed between altered network influence values and motor/

nonmotor scales of PD. In particular, outliers were removed from the

scatterplot according to Shepherd's Pi correlation by bootstrapping

the Mahalanobis distance (Schwarzkopf et al., 2012). The statistical

significance level of the correlation analyses was set as

uncorrected p < .05.

F IGURE 1 Brain white matter functional networks. A total of 12 clusters were identified by K-means clustering algorithm, which can be
organized in superficial (WM1-to-WM8), middle (WM9, WM10), and deep (WM11, WM12) layers. WM1, orbitofrontal network; WM2, frontal
network; WM3, pre/post-central network; WM4, inferior temporal network; WM5, superior temporal networks; WM6, inferior corticospinal
network; WM7, cerebellum network; WM8, occipital network; WM9, anterior/posterior corona radiate network; WM10, superior corona radiate
network; WM11, deep frontal network; WM12, deep network
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3 | RESULTS

3.1 | White matter functional networks

The clustering results showed k = 12 as the number of clusters that

yielded both fine detail and high stability (Dice's coefficient > 0.85).

Thus, 12 BWM functional networks were used in the subsequent analy-

sis. The 12 networks were named based on their spatial locations, as fol-

lows. WM1, WM2, and WM3 are, respectively, the orbitofrontal, frontal,

and pre/post-central networks. WM4 and WM5 are the inferior and

superior temporal networks. WM6, WM7, and WM8 are the inferior

corticospinal, cerebellum, and occipital networks. WM9 and WM10 rep-

resent the anterior/posterior and superior corona radiate networks.

Finally, WM11 and WM12 are the deep frontal and deep networks. Cor-

roborating a previous study (Peer et al., 2017), a symmetrical, interlaced

pattern of functional networks was identified within the tri-layer BWM

via K-means clustering (Figure 1). WM1-to-WM8 are superficial; WM9

are WM10 are middle; and WM11 and WM12 are deep networks. The

white matter network-tract correspondence of each network is provided

in Table S1.

F IGURE 2 Within-group white matter functional networks causal influence patterns across PD (n = 68) and HC (n = 63) determined by the
one-sample t-test (p < .05, FDR corrected). Details of the one-sample t-test matrix are shown on the left, where positive/negative t-values
denote excitatory or inhibitory influence, respectively. In the Circos figure on the right, red lines represent significant excitatory influence while
blue ones represent significant inhibitory influence. The color value of each line becomes darker with the strength of the connection. (a) Within-
group white matter functional network interactions in HC. (b) Within-group white matter functional network interactions in PD
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3.2 | Within-group GC patterns

Within-group BWM functional network influence patterns (Figure 2)

across the PD and HC groups were evaluated by one-sample t-test

(p < .05, FDR corrected). Larger total excitatory and inhibitory influ-

ence strengths were found in the deep networks (i.e., deep frontal

and deep, WM11 and WM12) compared with the other networks.

Similar BWM functional network interactions within PD and HC were

F IGURE 3 Between-group differences in white matter functional networks causal influence determined by two-sample t-test (p < .05, FDR
corrected). In the figure, two stars denote p < .01 and one star denotes p < .05. Warm lines denote significantly greater influence; cold lines
denote significantly less influence, relative to the HC. The color value of each line becomes darker with the strength of the connection
differences. (a) Details of the two-sample t-test are shown in the directed connection differences Circos. (b) Interaction pattern diagram:
Compared with HC subjects, in excitatory interaction difference patterns, PD showed significantly lower influence from the superficial ! deep
network, from the superficial ! middle network and from the middle ! deep network; in inhibitory interaction differences pattern, PD showed
significantly lower influence from the deep ! superficial network, from the middle ! superficial network, from the superficial ! superficial
network and showed significant greater influence from the superficial ! superficial network. (c) The out strength of the superficial network
(T = �2.38, p = .019) and deep network (T = �2.43, p = .016) was significantly lower in the PD compared with the HC. Additionally, the in
strength of the superficial network (T = �2.54, p = .012) and deep network (T = �3.41, p = .0009) was significantly lower in the PD.
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obtained using a relative high threshold of 0.9 for WM probability

map (see Figure S1). This partially agrees with previously reported

unique features in the deep network (Fan et al., 2020; Jiang, Luo,

et al., 2019; Peer et al., 2017). In the Circos figure of PD, a sparser

pattern of effective connections can be observed in PD compared

with the HC (Figure 3a).

3.3 | Between-group GC patterns

Differences in GC patterns are summarized as the following tri-layer

network-level results (Figure 3, Table 2). Compared with HC (Figure 3a,b),

in terms of difference patterns in excitatory interactions, PD showed sig-

nificantly less influence from: the superficial ! deep network

(WM4 ! WM11, T = �4.09, p = .00008; WM5 ! WM11, T = �3.42,

p = .0009; WM6 ! WM12, T = �3.35, p = .001; WM7 ! WM12,

T = �3.41, p = .0008); from the superficial ! middle network

(WM6 ! WM10, T = �4.52, p = .00001); and from the middle ! deep

network (WM10 ! WM11, T = �3.29, p = .0013; WM10 ! WM12,

T=�3.39, p= .0009). In terms of difference patterns in inhibitory interac-

tions, PD showed significantly less influence than did the HC group from:

the deep ! superficial network (WM11 ! WM5, T = �3.58, p = .0005;

WM11 ! WM8, T = �3.53, p = .0006; WM12 ! WM5, T = �4.0,

p = .0001); from the middle ! superficial network (WM10 ! WM5,

T = �3.42, p = .0008); and from the superficial ! superficial network

(WM2 ! WM5, T = �3.14, p = .0021; WM4 ! WM5, T = �4.30,

p = .00003). PD showed significantly greater influence than did the HC

group from the superficial ! superficial network (WM1 ! WM2,

T = 3.31, p = .0012; WM5 ! WM4, T = 3.88, p = .0002).

Relative to the HC, the out strength of the superficial (T = �2.98,

p = .0034), middle (T = �2.49, p = .0140), and deep (T = �2.43,

p = .0164) networks was significantly less in the PD group, as was the

in strength of the superficial (T = �2.65, p = .0089) and deep

(T = �3.43, p = .0008) networks (Figure 3c).

We performed additional analysis to verify the main findings. To

investigate whether the brain atrophy of PD may potentially contrib-

ute to the abnormal white matter functional network interactions, we

correlated the absolute volumes of the white matter and gray matter

with the white matter functional network GC strength of PD, respec-

tively. This analysis did not identify any significant correlation

suggesting that abnormalities in the white matter functional network

may be unaffected by functional and structural atrophy in PD

(Table S2).

3.4 | Clinical correlation results

We found that both the UPDRS-III and HAMD scores correlated with

attenuations in network interactions in PD relative to HC. Specifically,

the greater the motor symptoms, the more the network interactions

were weakened (Figure 4a): WM6 ! WM12 influence strength

(r = �.26, p = .0356); WM11 ! WM8 influence strength (r = �.33,

p = .0064); WM11 ! WM5 influence strength (r = �.27, p = .0329);

and WM4 ! WM11 influence strength (r = �.30, p = .0200). Simi-

larly, the HAMD score negatively correlated with attenuations in net-

work interactions in PD (Figure 4b): WM11 ! WM8 influence

strength (r = �.33, p = .0172); WM4 ! WM11 influence strength

(r = �.30, p = .0300).

TABLE 2 Between-group differences
in white matter functional network
interactions between healthy controls
and PD patients

GC pattern Layer Network T value p value

Excitatory Superficial ! Deep WM4 ! WM11 �4.09 <.0001

WM5 ! WM11 �3.42 .0009

WM6 ! WM12 �3.35 .0010

WM7 ! WM12 �3.41 .0008

Superficial ! Middle WM6 ! WM10 �4.52 <.0001

Middle ! Deep WM10 ! WM11 �3.29 .0013

WM10 ! WM12 �3.39 .0009

Inhibitory Deep ! Superficial WM11 ! WM5 �3.58 .0005

WM11 ! WM8 �3.53 .0006

WM12 ! WM5 �4.00 .0001

Middle ! Superficial WM10 ! WM5 �3.42 .0008

Superficial ! Superficial WM2 ! WM5 �3.14 .0021

WM4 ! WM5 �4.30 <.0001

WM1 ! WM2 3.31 .0012

WM5 ! WM4 3.88 .0002

Note: The statistical significance was set at p < .05 after adjusting for multiple comparisons with FDR

correction.

Abbreviations: WM1, orbitofrontal network; WM2, frontal network; WM4, inferior temporal network;

WM5, superior temporal networks; WM6, inferior corticospinal network; WM7, cerebellum network;

WM8, occipital network; WM10, superior corona radiate network; WM11, deep frontal network; WM12,

deep network.
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4 | DISCUSSION

In this study, 12 BWM functional networks composed of three layers

(superficial, middle, and deep) were identified in the PD and HC

groups based on whole-brain resting-state correlation matrices. The

HC group showed significant and consistent influence strength of

excitatory and inhibitory effects in the deep networks, while the

excitability in PD was lower both from the superficial to middle net-

works and from the middle to deep networks. Additionally, compared

with the HC, the inhibition was lower from the middle and deep net-

works to superficial networks and higher among the superficial net-

works in PD. Moreover, the in/out strength of the deep and

superficial networks was significantly lower in the PD group. Finally,

we found the deep BWM networks corresponding to the primary

F IGURE 4 The decreases in
white matter functional network
interactions of PD correlated
with the motor/nonmotor
symptoms. Significant
correlations were identified
between GC strengths and
(a) UPDRS-III scores and

(b) HAMD scores. p was the
adjusted p-statistic to account
for outlier removal by
bootstrapping the Mahalanobis
distance.WM4, inferior temporal
network; WM5, superior
temporal network; WM6,
inferior corticospinal network;
WM11, deep frontal network;
WM12, deep network; UPDRS-
III, the part III of the Unified
Parkinson's Disease Rating Scale;
HAMD, Hamilton Depression
Scale. (a) Correlations between
white matter functional network
interactions and motor
symptoms of PD. (b) Correlations
between white matter functional
network interactions and
nonmotor symptoms of PD
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fiber tracts (superior longitudinal, forceps minor, and anterior tha-

lamic radiation) showed significant changes that were associated

with motor and nonmotor symptoms in PD. To our knowledge, this

is the first GCA-based study that explores the interactions between

BWM functional networks in PD. Consistent with our hypothesis,

patients with PD demonstrated extensive interrupted interactions

among the BWM functional networks, and the deep networks pos-

sessed distinctive traits was correlated with PD motor and non-

motor symptoms.

A total of 12 stable BWM functional networks were identified in

the current study, which is in accord with the previous studies (Fan

et al., 2020; Jiang, Song, et al., 2019; Peer et al., 2017) and adds to

the evidence that the study of BWM networks in PD is feasible. The

HC group showed significant and consistent influence strength of

excitatory and inhibitory effects in the deep networks, indicating that

the deep networks are important to BWM function. However, the PD

group showed fewer effects of within-group interactions of influence

as well as the number of significant connectivity edges, suggesting

that the deep networks in PD are disrupted.

The deep networks correspond to the superior longitudinal fascic-

ulus, forceps major, forceps minor, and thalamic radiation tracts, which

involve body control, motor ability, and other higher-level functions.

Compared with the superficial BWM tracts, the deep networks are

less surrounded by gray matter (Costentin et al., 2019; Pietracupa

et al., 2018; Sanjari Moghaddam et al., 2020; Wen et al., 2016; Wen

et al., 2018). In terms of brain function, in the present study, hardly

any correlation pattern was observed between the deep and gray

matter networks, which differs from the synchronous neural activity

between the superficial BWM networks and cortical gray-matter net-

works (Ding et al., 2018; Peer et al., 2017). Therefore, there is an ana-

tomical basis for the correlation between abnormal changes in the

deep networks and motor symptoms of PD.

This study showed that PD patients exhibited weakened interac-

tions in both excitatory and inhibitory network influences, relative to

HC. The interaction between networks is the basis for the integration

of brain functions (Park & Friston, 2013), namely the interaction

between motor and cognitive brain functions and distributed func-

tional networks. For instance, in schizophrenia, BWM functional net-

works were classified and abnormalities in spontaneous oscillation

and connection with gray matter have been observed (Jiang, Luo,

et al., 2019). In terms of PD, subcortical BWM lesions were associated

with more severe gait symptoms and rigidity (Bohnen & Albin, 2011).

The abovementioned pattern of inhibitory interactions may arise from

a drop in dopaminergic transmission in the motor region of the stria-

tum, leading to lower excitatory interactions. Impairment of the deep

and middle network interactions, which leads to disrupted communi-

cation with the superficial networks, may explain the motor impair-

ments and cognitive dysfunction. The present results revealed the

disrupted excitatory and inhibitory interaction patterns of tri-layer

BWM functional networks at the whole-brain network scale in PD,

which further illustrates the functional activity changes in motor and

nonmotor circuits.

The significantly weakened excitatory influence from the inferior

corticospinal network to the deep network, excitatory influence from

the inferior temporal network to the frontal deep network, as well as

the significantly weakened inhibitory influence from the frontal deep

network to the visual network in PD patients were found to be nega-

tively correlated with the UPDRS-III and HAMD scores. In other

words, greater PD motor and nonmotor symptoms were associated

with greater attenuation in the network interactions relative to

HC. The tracts involved in these BWM functional networks are asso-

ciated with motor and cognition functions physiologically. Specifically,

cortical areas including the primary motor cortex, supplementary

motor area, and premotor cortex project to the spinal cord through

the corticospinal tract, a critical channel that involves the cortico-basal

ganglia-thalamo-cortical network affected by PD (Burciu &

Vaillancourt, 2018). In addition, the basal ganglia network is composed

of intricately interconnected subcortical nuclei that are involved in

cognition, motor control, and motivation (Lanciego et al., 2012). The

loss of dopaminergic cells in the substantia nigra pars compacta is

considered the underlying mechanism of PD and impairment to the

projecting axons of neurons in the substantia nigra are seen in early

stages of PD. These axons are intimately connected to the BWM of

the deep networks, and we therefore speculate that the combination

of changes in the deep networks and basal ganglia-thalamo loop lead

to the motor and nonmotor symptoms of PD. A recent transcranial

magnetic stimulation (TMS) study showed the fractional anisotropy of

the tract from supplementary motor area to globus pallidus was pre-

dictive to the treatment effect of TMS (G. J. Ji et al., 2021), providing

a structural basis for our finding that changes in the deep network are

associated with clinical motor symptoms of PD. Future studies that

explore the relationships between BWM function and clinical out-

comes of TMS or deep-brain stimulation treatment may offer novel

applicable neuromarkers for PD clinical realm.

Despite our findings, this study has limitations in the following

aspects. First, sub-scores for tremor, rigidity, bradykinesia, and pos-

ture were not included in our data, so a more specific assessment

of the association between these subdivided motor symptoms and

BWM function was not possible. In future studies, we will take

these into account and consider specific features, such as freezing

gait, in more detail. Second, the long-term effect of medication may

persist in patients even if assessed in a medication-off state.

Finally, this is a single-center study with a limited sample size;

future studies should enroll more subjects to validate the stability

of results.

This work elucidates the pathological changes of PD regarding

BWM functional network interactions. It was found that the BWM

networks associated with deep structural tracts have extensive abnor-

mal interactions with superficial and middle networks in

PD. Furthermore, the attenuated interactions of the deep networks

were significantly associated with motor and nonmotor symptoms in

PD. These findings suggest that the communication functions

between BWM networks are impaired and these abnormalities may

exacerbate or contribute to some motor and cognitive deficits
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associated with PD. Our study provides novel insights into the neuro-

pathology of PD from the perspective of BWM function.
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