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ABSTRACT: In this article, we present a machine learning
enhancement for our recently developed “Computational Reverse
Engineering Analysis for Scattering Experiments” (CREASE) method
to accelerate analysis of results from small angle scattering (SAS)
experiments on polymer materials. We demonstrate this novel
artificial neural network (NN) enhanced CREASE approach for
analyzing scattering results from amphiphilic polymer solutions that
can be easily extended and applied for scattering experiments on
other polymer and soft matter systems. We had originally developed
CREASE to analyze SAS results [i.e., intensity profiles, I(q) vs q] of
amphiphilic polymer solutions exhibiting unconventional assembled
structures and/or novel polymer chemistries for which traditional fits using off-the-shelf analytical models would be too
approximate/inapplicable. In this paper, we demonstrate that the NN-enhancement to the genetic algorithm (GA) step in the
CREASE approach improves the speed and, in some cases, the accuracy of the GA step in determining the dimensions of the
complex assembled structures for a given experimental scattering profile.
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1. INTRODUCTION

Characterization of structures formed in complex solutions
containing homopolymers, block copolymers, polymers blended
with nanoparticles, or macromolecular conjugates (e.g.,
protein−polymer conjugates) is key to developing soft materials
for applications in healthcare, energy, electronics, and many
other fields (see review articles1−14). Past studies have shown
that one can control the observed nanostructures through
tailored polymer design (e.g., choice of chemistries, polymer
architecture, and sequence) and processing conditions (e.g.,
polymer concentration, solvent quality, and tempera-
ture).7,9,15−21 In all these studies, unambiguous characterization
of the shape and size of the equilibrium or kinetically trapped
structures is a critical step toward building an understanding of
the factors that drive and tune these structures.
Methods commonly used for direct visual characterization of

nanostructures are scanning electron microscopy (SEM),
transmission electron microscopy (TEM), cryogenic TEM
(cryo-TEM),22,23 and atomic force microscopy (AFM).24,25

These direct imaging methods can have some limitations due to
their two-dimensional output for a three-dimensional structure
and their inability to resolve small length scales (Å to 10 nm)
relevant to polymer materials. Additionally, these microscopy
methods require sample preparation prior to imaging (e.g.,
depositing sample on to an imaging plate) which can alter the
environment around the molecules and the solution structure.

Another technique used to analyze structures in polymers and
soft materials is small-angle X-ray or neutron scattering (SAXS
or SANS, respectively).26−28 These techniques can analyze
polymer solution or melt structures over a broad range of length
scales that span Å to μm. Output from SANS or SAXS is usually
the scattered intensity, I(q), as a function of the wavevector q,
which is a function of the wavelength of incoming beam and the
incidence angle. Interpreting these SANS and SAXS intensity
profiles (i.e., I(q) versus q), however, requires nontrivial
procedures4,29−31 including fitting the small angle scattering
(SAS) profiles with analytical models to extract parameters that
describe structural information (e.g., dimensions of the domains,
average radius of gyration, etc.). The fitting procedure is
facilitated with software packages that have user-friendly
interfaces such as ATSAS,32 McSAS,33 SASfit,34 Irena,35 and
SASVIEW.36 The software packages contain libraries of
analytical models that are applicable to many conventional/
canonical shapes that have been observed in polymer solutions.
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As an example pertaining to polymer solutions, there are many
analytical models developed for spherical and cylindrical
micelles with varying features of the core and corona such as
sizes and dispersity.37−40 These models were developed based
on assumptions of the solvophilic block chain configurations in
the micelle corona (e.g., semiflexible40 or Gaussian37,40).
However, with the increasing number of new polymer
chemistries with previously unseen chain conformations and/
or unconventional/novel assembled structures, these available
analytical models and their assumptions become too approx-
imate or even invalid. For example, in recent work41 we found
that the analytical spherical core−corona micelle model failed to
capture the correct micelle size and aggregation number which
we attributed to the model’s assumption of Gaussian chain
conformations in the micelle corona that was likely inapplicable
for the new polymer chemistry in that study. There are also
studies (e.g., refs 42 and 43) where the assembled structures are
either kinetically trapped using solvent processing or are
dynamic and observed during structural transition from one
state to another (e.g., refs 44 and 45); in such cases these
structures may not have a corresponding appropriate analytical
model.
To avoid these limitations of fitting I(q) versus q with

analytical models, one could consider computational methods
like reverse Monte Carlo (RMC)46 and Empirical Potential
Structure Refinement (EPSR)47 that have been used to
determine the structure in simple liquids and glasses. These
methods manipulate the position and/or interactions of the
molecules in the system toward improving the match between
the calculated and experimental scattering intensities. In the
context of polymers forming assembled structures with large
domain sizes (in solutions or melts), these methods require
significant modification (e.g., coarse-graining, sophisticated
chain moves)48,49 and their application may still be limited by
their low computational efficiency.
To overcome the above limitations in analyzing SAXS or

SANS profiles from amphiphilic polymer solutions that exhibit
unconventional assembled structures and/or novel polymer
chemistries, we recently developed Computational Reverse
Engineer ing Analys is for Scatter ing Exper iments
(CREASE).41,50 CREASE comprises two steps: the first step
involves a genetic algorithm51,52 (GA) which is a robust global
optimization method to determine the relevant dimensions of
the structure whose computed scattering matches the input
experimental scattering; the second step involves molecular
dynamics (MD) simulations to reconstruct molecular details in
the GA’s optimized structure and determine the spatial
distribution of monomers as well as the dispersity in chain
conformations within the structure, which is not always obtained
even with fits to good analytical models. CREASE’s GA step has
been successfully validated and used to analyze both in silico and
in vitro scattering profiles from solutions with spherical and
fibrillar micelles assembled using new polymer chemistries and
architectures.41,50,53 CREASE’s GA step has advantages over
other computational analysis methods like RMC and EPSR in
that the macromolecular details and molecular interactions of
the system are not needed in the GA step that only uses
scatterers and not polymer chains/amphiphilic macromolecules,
a representation reserved for the molecular reconstruction step.
By only working with scatterers, the computational efficiency of
the GA step within CREASE is significantly increased and allows
for efficient use of machine learning by using themany structures
generated in previous generations to inform future generations.

In this paper, we present a new machine learning-based
enhancement for the GA step within the CREASE framework
to improve both the speed and accuracy of the GA step.
In CREASE, the GA step outputs the dimensions of the “best”

structure whose computed scattering intensity profile matches
the input experimental scattering intensity profile. The GA
optimizes this match, quantified by fitness, (e.g., high fitness
indicates a close match between the experimental and computed
scattering intensity profiles) by considering generations of
structures (i.e., candidates) that either are carried over due to
high fitness or are mutated/changed by genetic operators. The
speed of the entire GA step within CREASE is dependent on the
speed of calculating the computed scattering intensity profiles.
Because of this computed scattering calculation being based on
distances for all pairs of scatterers in each structure, the
computational requirement for this calculation scales with the
number of scatterers squared. To speed up this slow computed
scattering profile calculation, in this paper we introduce an
artificial neural network-based enhancement. This neural
network-enhanced GA (in short, NN-en GA) is partly inspired
by other (unrelated to CREASE) studies that used similar ideas
of NN enhanced GA for soft materials design optimization.54−60

In our implementation within CREASE, the NN-en GA uses the
information from each generation of the GA step to train a
neural network (NN) that can predict the computed scattering
intensity profile directly from the structure’s dimensions without
doing the computationally intensive pairwise calculation for the
scatterers. This direct prediction of the computed scattering
intensity profile significantly lowers the computational time
compared to the computed scattering intensity profile
determination using pairwise distance calculation for all the
pairs of scatterers. Furthermore, this process allows the NN-en
GA to learn from all of the many structures that have been
considered in previous generations and improve the accuracy of
the output structure prediction (i.e., performance) of the GA.
With multiple examples of applications of this NN-en GA
method to different micelle structures, in this paper we
demonstrate that the NN-en GA improves the accuracy and/
or computational speed of the original GA.
The machine learning-enhanced CREASE method described

in this paper can be easily extended and applied to determine
structures in other soft matter systems from their SAS profiles, in
a computationally efficient manner. This improved computa-
tional efficiency and the demonstrated ability to “learn” the
relationship between I(q) versus q and the structural features
that give rise to those intensity profiles should serve as a solution
for fast analysis of high throughput scattering experiments as
well as to characterize scattering profiles from kinetically trapped
nonequilibrium structures for which standard fitting to conven-
tional analytical models would be inaccurate/too approximate.
The rest of the paper is organized as follows. In Section 2, we

briefly overview the CREASE methodology, describe the GA
step of CREASE, and demonstrate the optimization and
implementation of the NN in conjunction with the GA step.
In Section 3, we present our results and discussion of the
performance in analyzing scattering intensities of cylindrical,
elliptically cylindrical, and fibrillar micelle in silico and in vitro
structures of the machine learning enhanced method as
compared to the original GA without any machine learning.
We conclude with an overview of the paper in Section 4 and
potential future directions.
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2. METHODS

2.A. Overview of CREASE Method
In this paper, we integrate machine learning into our previously
developed CREASE algorithm41,50 to improve the algorithm’s
computational speed and efficiency, measured in terms of the
computational time needed to achieve the output. In this section, we
provide a brief overview of CREASE, Figure 1, motivating the need for

the new machine learning enhanced genetic algorithm (GA) step of
CREASE. We direct the reader to our previous publications on
CREASE41,50,53 where we presented all of the necessary details of
CREASE, its validation, and application to analyze scattering profiles
obtained from solutions containing spherical, cylindrical, elliptical
cylindrical, and fibrillar micelles.
The inputs to CREASE are the experimental scattering intensity

profiles, Iexp(q), as a function of the wavevector q, the design of the
amphiphilic polymers (e.g., the chemistry of the solvophilic “A” and
solvophobic “B” repeat units and relative ratio of the two chemistries in
the polymer), and an estimate of the shape of the assembled structure
(e.g., spherical, cylindrical, fibrillar, vesicle, etc.) from another
technique. The assembled structure shape can be based on independent
measurements using other microscopy techniques or the shape/
dimensionality could be estimated from the Porod exponent of the
scattering data.61

The input information is taken into theGenetic Algorithm (GA) step
of the CREASE (Figure 1) that outputs the macroscopic dimensions of
the micelle by optimizing to the “best” configuration (examples of
which are shown in Figure S1) whose computed scattering intensity,
Icomp(q), matches the input Iexp(q). The GA step starts with an initial
population containing N random configurations (“individuals”), where
the configuration stores “genetic” information about the macroscopic
dimensions relevant to themicelle shape specified in the input. The user
selects the value of N to balance the computational cost (e.g., real time
used by the computer doing the calculations for all individuals in one
generation) and population diversity (e.g., individuals varying in
relevant dimensions for the given micelle shape). The computational
cost associated with the Icomp(q) calculation increases with the number
of individuals, N. However, a large value of N allows for increased
population diversity which is good for optimization. Thus, the optimal
value of N is dependent on the user and their available computational
resources and desired accuracy of the GA optimization, as described in
Section 2.B.
As stated above, each configuration holds the genetic information

about the dimensions relevant to the micelle shape. Supporting
Information Figure S1 describes these dimensions for a few assembled

structure shapes. For cylindrical micelles, these dimensions include the
micelle core diameter, corona width/thickness, and the micelle length.
For elliptical cylinders and fibrils, these dimensions include the core
cross-sectional width (smallest dimension), the ratio of the width to the
height of the core cross-section (P, which is equal to or greater than 1),
the corona thickness, and the micelle length. Each of these dimensions
are varied among the different configurations (“individuals”) while still
being within some set bounds, where the bounds are derived by the
input polymer chemistry and given micelle shape. For example, the
upper bound of the core radius can be based on the contour length of
the solvophobic block of the amphiphilic polymer, and similarly the
upper bound of the corona width could be based on the contour length
of the solvophilic block of the amphiphilic polymer. The variables
carrying these dimensions are then encoded in binary within the GA, as
discussed in our previous papers.41,50,53

For each configuration, we calculate the Icomp(q), by placing
scatterers of size, d, within the relevant dimensions of the configuration
(e.g., within the core and corona dimensions of a spherical micelle) and
then calculate the intramicellar structure factor, ω(q), based on the
Debye equation, as follows

∑ ∑ω = +
= >

q
N

qr

qr
( ) 1

2 sin( )

i

N

j i

N
ij

ijtot 1

tot tot

(1)

For an amphiphilic polymer,Ntot is the sum ofNA andNB whereNA is
the number of solvophilic and NB the number of solvophobic point
scatterers placed in the configuration, and rij is the distance between
point scatterers i and j. We note that the ratio ofNA toNB is based on the
composition of the amphiphilic polymer. These solvophilic and
solvophobic point scatterers are randomly placed within the solvophilic
and solvophobic domains, respectively, unique to the configuration that
is considered. Equation 1 is the key but not the only equation in the
Icomp(q) calculation; all equations involved in Icomp(q) calculation are
described in our previous papers.41,50,53 The total number of scatterers
and scatterer size, d, are choices the user makes to optimize the
increased computational cost that comes with more scatterers and the
smaller structural length scales that can be resolved by smaller scatterer
size. In our previous papers,41,50 we demonstrate that the scatter size
can be varied to some degree, as long as the scatterer size is small
enough to capture the relevant dimensions of the structure; we
demonstrate for a select few cases that the scatterer size did not
significantly impact the resulting dimensions determined by CREASE.

The fitness of each configuration is then calculated from the log-
scaled sum of squared error (sse or fit error) between the Iexp(q) and the
Icomp(q) of that configuration, where a high fitness has a low value of sse.
The log-scaled form of sse that we have used in this study and past
studies,41,50,53 is chosen because it gives similar importance to the log-
scaled features of the I(q) and takes into account the spacing of the q-
values, so that themethod does not overfit regions where there are more
narrowly spaced q-values. After the fitness has been determined for
every configuration in the current population, the configurations are
selected for the next generation based on a probability that is
proportional to the fitness of the configuration. The selected
configuration with the highest fitness is preserved as is for the next
generation. All selected configurations have a probability to undergo
mutation (which increases population diversity) and a different
probability to undergo crossover (which improves the convergence of
the configurations with high fitness). The probabilities to undergo
changes via genetic operators, namely mutation or crossover, are
modified in each generation to keep the population from becoming too
similar (leading to trapping in local minima of this optimization) or too
dissimilar (essentially becoming a random search method that does not
consider the fitness of the population). These steps of fitness
calculations, selection, and genetic operators are repeated until the
fitness of the best configuration and the average fitness of the generation
both plateau over multiple generations; in our case the fitness generally
converges (reaches a plateau) after 60 generations. At this point, when
this plateau is observed we conclude that the GA has converged.

Figure 1. Schematic flow diagram of CREASE.
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In this paper, our focus is on improving the speed and efficacy of the
GA step. We note that the most computationally intensive step within
the GA is the computed scattering intensity, Icomp(q), calculation based
on eq 1. The computational cost of eq 1 scales with square of the
number of scatterers and is affected by the choice of the number of
scatterers, the densities of the different chemistries, and the complexity
of the structure. Our goal is to use machine learning to either eliminate
this computationally intensive step of the GA or improve the efficacy of
the GA step by reducing the number of generations (which results in
fewer Icomp(q) calculations) needed for convergence.
As the focus of this paper is on how we have incorporated machine

learning to improve the GA algorithm of CREASE, we only briefly
overview the second step of CREASE, the molecular reconstruction
step (Figure 1). We refer the reader to our previous papers41,50 for
details about the implementation and application of this molecular
reconstruction step. Briefly, using the dimensions for the assembled
structure output from the GA in step 1, we perform molecular
reconstruction using molecular dynamics (MD) simulations. The
polymer chains are modeled using an atomistic or appropriate coarse-
grained models (e.g., see perspective and review articles62,63) and
placed into an initial configuration with the shape and dimensions from
the GA output. The chains are then relaxed and equilibrated in that
assembled structure using standard MD simulation protocol. After
equilibration is completed, one can calculate the distribution of chain
configurations, spatial distribution of different monomers, and
characterization of interfaces within the assembled structure. For
example, in our previous paper50 we presented the results from the
molecular reconstruction part of CREASE and compared the output

(e.g., distribution of chain conformations, radial distribution functions)
from our molecular reconstruction directly against the ones from the
simulation that produced the input in silico Iexp(q). We validated the
protocol of the molecular reconstruction by demonstrating excellent
agreement between the results from the molecular reconstruction and
that from the simulations that produced the input in silico Iexp(q). In
summary, through this molecular reconstruction step, all of the
information about the macromolecular packing within the assembled
structures in the amphiphilic polymer solutions is obtained, all of which
is not easily accessible using standard approaches involving fits of
Iexp(q) with analytical models.

2.B. Overview of the Neural-Network-Enhanced Genetic
Algorithm (NN-en GA)

To reduce the computational intensity of the Icomp(q) calculation
(based on eq 1) in the GA, we present an artificial neural-network-
enhanced genetic algorithm (in short, NN-en GA). NN-en GA makes
use of a neural network to link the relevant structural dimensions
specific to a shape (e.g., core and corona dimensions) of the
configuration to its Icomp(q) in a computationally efficient manner.
Based on past studies that used a similar NN-en GA architecture in a
different context for soft material optimization,54−60 we anticipate
arriving at the “best” configuration in fewer generations in the NN-en
GA than the original GA. In Figure 2A, we show the original GA as
described in our previous studies41,50,53 and in Figure 2B we describe
the key steps in this new NN-en GA.

The NN-en GA (Figure 2B) differs from the original GA (blue cycle,
Figure 2A) as it integrates a GA (the main GA shown as the green cycle,
Figure 2B) with a neural-network-evaluated genetic algorithm (NN-

Figure 2. Schematic flow diagrams of (A) genetic algorithm (GA) without machine learning and (B) neural-network-enhanced genetic algorithm
(NN-en GA) which contains a neural-network-evaluated genetic algorithm (NN-eval GA). (C) Demonstration of how the micelle configuration is
used to determine the Icomp(q) with Debye calculations (eq 1) and with an NN.
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eval GA, pink cycle, Figure 2B). The NN uses the micelle configuration
(variables used in the genetic algorithm) and predicts its corresponding
Icomp(q) (Figure 2C); we show an example of potential setups in Figure
S2. For each generation of the main GA, the best NN prediction from a
full run of a NN-eval GA serves as an NN suggested candidate into the
population of the next generation of the main GA. We note that the
combination of the NN-eval GA cycle and the main GA cycle is
together referred to as theNN-enGA. TheNN-eval GA differs from the
main GA in the Icomp(q) calculation; the NN-eval GA determines the
Icomp(q) with the NN trained model that uses the data generated up to
the current generation, while the main GA determines the Icomp(q) for
every configuration in the current generation using eq 1. The Icomp(q)
calculation in the NN-eval GA is (significantly) more computationally
efficient than the main GA’s or original GA’s Icomp(q) calculation by
placing scatterers and using eq 1. The trained NN model predicts the
“best” Icomp(q) corresponding to the dimensions of the configuration
using all of the structural data saved from a full run of the NN-eval GA
which considers many different configurations over multiple gen-
erations. The NN-eval GA outputs the “best” configuration that has an
Icomp(q) that is the closest to Iexp(q). The best configuration, the
configuration with the highest fitness, is then provided from the NN-
eval GA as a suggested candidate to the main GA. The NN suggested
candidate is then explicitly evaluated by placing scatterers and
calculating Icomp(q) using eq 1 in the next generation of the main GA.
This means that if the NN’s suggested configuration is closer to the
right structure (i.e., global optimum) corresponding to the input
Iexp(q), then it would persist through generations of genetic operations,
and accelerate the main GA with explicitly calculated Icomp(q) toward
the “best” structure in fewer generations. On the other hand, if the NN’s
suggested configuration is a poor match to the Iexp(q), then that
candidate would exhibit low fitness and be expelled from the main GA
through the genetic operators in a few generations. As a result, even in
the worst-case scenario the NN-en GA (Figure 2B) would perform
similarly to the original GA (Figure 2A).
We show in the results section that the training of the NNmodel and

running the NN-eval GA are both faster than explicitly calculating
Icomp(q) for the population of one generation in the main GA,
demonstrating that there is little additional cost toward implementing
the NN-en GA. Furthermore, NN-en GA does not require an existing
large database from which to train the NN; instead, it progressively
builds the NN model with the data generated in each generation of the
main GA. This strategy enables the NN-en GA to “learn” from the
progressively built database rather than being limited to genetic
information contained in the configurations of the current generation.
As the computational cost of the NN training scales mainly with the
database size (number of training sets) and not the number of scatterers
that are placed for the corresponding Icomp(q) calculation, this method
provides a significant improvement on the evaluation time in the cases
where many small scatterers are required to capture the dimensions of
the structure. The computational cost of the NN-eval GA depends
mainly on the choice of the NN-eval GA architecture (number of
generations and individuals/configurations in each generation) as the
NN prediction is orders of magnitude more computationally efficient.
2.B.1. Optimizing the NN Architecture and the NN-eval GA

Setup. Implementing the NN-en GA requires optimization of the NN
hyperparameters and architecture (e.g., number of nodes and hidden
layers in the NN as shown in Figures S3−S7), population size of the
main GA, and population size of the NN-eval GA. In this subsection, we
describe our choices and procedure to optimize these choices.
For the main GA component of the NN-en GA, we use the same

choices as those from the original GA from our recent CREASE
studies,50,53 as we will compare with the results from those studies to
test the performance of this paper’s newly developed NN-en GA. The
original GA and the main GA component of the NN-en GA each have a
population of 80 individuals or configurations; this number of 80 was
chosen to balance the computational cost of the Icomp(q) calculations
for every configuration in the population size and the need for a large
enough population to achieve true global optimum (confirmed by
consistent results between independent GA runs). As the NN-eval GA
is significantly more computationally efficient than the main GA, a

larger population size of 150 was chosen in NN-eval GA. The main GA
is run for as many generations as needed for convergence. In contrast,
the NN-eval GA is run for 100 generations during which all cases in this
paper exhibit convergence, as marked by the best and average sse values
reaching a plateau before 100 generations (see Figure S8).

The NN component of the NN-en GA needs to be optimized to
create a surrogatemodel that connects the input (e.g., dimensions of the
configurations) and output, the Icomp(q). NNs in general consist of an
input layer, output layer, and one or more hidden layers, each with a
different number of nodes that connect to the nodes of the previous and
following layers.64 The weights and biases that relate the nodes’ inputs
to the nodes’ outputs through the activation function are then
optimized through backpropagation to minimize the loss function,
which is the error between the NN prediction and the training data.64

We use the Adam optimization algorithm to perform the back-
propagation calculations to determine the weights and biases of each
layer, the Rectified Linear Unit (ReLU) activation function, and mean
squared error as our loss function. Our tests show that the NN tends to
work well with these choices without showing signs of significant
overfitting (e.g., such as the training loss decreasing while the validation
loss plateaus as a function of the training epoch). As such, we focus on
optimizing the number of layers, the number of nodes in each layer, the
number of epochs for which to train, as well as the structure of the NN
outputs.

Training Data for the NN. We preprocess our data to improve the
stability and performance of the NN. To facilitate the NN with learning
data over different scales, such as the logarithmic nature of the I(q), we
standardize the NN training data. Each of the different categories (e.g.,
each of the micelle dimensions and the I(q) data) in the training data
are standardized by subtracting the mean of the data in that category
and then dividing the data in that category by the standard deviation of
that category. If the standard deviation of a category is equal to 0, we
would only divide by 1. Additionally, for the I(q) values, we take the
logarithm of the data before standardizing, as the values of the I(q)
differ by multiple orders of magnitude. These preprocessing steps
reduce large differences in the weights and biases which would unduly
affect the stability and performance of the NN.We then postprocess the
results of the NN predictions by reversing the preprocessing steps. By
performing these steps in our initial tests, we reduced the prediction
error of the NNs as compared to NNs trained without the preprocessed
data. We also split the data into training and validation sets, with two-
thirds of the data used to train the NN. This allows us to monitor and
compare the performance of the NN on data that it was not trained with
(validation set) to tune the hyperparameters and to look for signs of
whether the NN was overfitting the training data.

NN Architecture. We describe the details of how we optimized the
NN architecture in Supporting Information Figures S2−S9. The
optimized NN architecture consists of 1 hidden layer with 40 nodes.
The NN architecture is kept consistent for each generation and each
test case considered in this study. The input layer to the NN consists of
a node for each of the variables in the GA configuration (i.e., the
dimensions of the micelle, background scattering intensity), and the
output layer consists of multiple nodes, one for each I(q) at the
corresponding q value of the Iexp(q). The NN is trained for 2000
epochs; as a representative example, we show that the choice of 2000
epochs leads to a plateau in the validation loss during the NN training at
generations 1, 5, 50, and 100 of the NN-en GA for Iexp(q) of in silico
cylinders in Figure S9. In the early generations of the NN-en GA, we see
that the validation error plateaus before the training error, which
indicates that if we train for more epochs then the NN would be
overfitting the training data, while the choice of 2000 epochs balances
optimizing the NN without significantly overfitting to the training data.
At later generations, the training and validation loss both plateau before
2000 epochs, indicating that the NN is training well without overfitting
to the training data. While this choice could be varied for each
generation, we found that the choice of 2000 epochs work well enough
in all cases. We use Keras65 software package for setting up the NN
architecture as well as to save and load the trained NNs and use
Tensorflow66 to train the NN models. For benchmarking the code, we
performed all calculations on an Intel Core i7-10870H CPU.
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Additionally, we demonstrate that predicting the Icomp(q) from a
configuration efficiently holds more value in this case than the reverse
[i.e., training theNN to predict the configuration from the Iexp(q)]. This
reverse prediction would perform poorly for the case where different
configurations could potentially have the same I(q), as it would have
conflicting training data. In contrast, the NN-eval GA enables analysis
of Iexp(q) even in the case where the Icomp(q) is nonunique to a single
configuration. Efficiently determining the different possible config-
urations that have the same Icomp(q) is valuable as those configurations
can then be compared and some possibly eliminated with independent
measurements.

2.C. Description of Test Cases

To test the performance of the NN-en GA against the performance of
the original GA, we make use of Iexp(q) from a selection of different
morphologies and scattering profiles described in our previous
papers.50,53 The number of q values can be as low as 24 or as high as
61 for the cases we consider in this paper. We have found that these
choices proved to contain enough q values to resolve the key features of
the structures for the q range considered. The choice of q values and q
range is discussed in more detail in our previous papers.41,50 The
following specific cases of Iexp(q) are considered
(a) “cylinder”: in this case, the Iexp(q) for the cylindrical micelles

comes from in silico experiments (i.e., molecular simulations) of a
solution of linear A3−B18−A3 chains, where A represents the solvophilic
chemistry and B the solvophobic chemistry.
(b) “ellipse with P = 2” and “ellipse with P = 8”: in these cases, the

Iexp(q) is calculated based on eq 1 for elliptical cylindrical micelles with a
typical core−corona type packing with known dimensions without

dispersity in the dimensions for P = 2 and P = 8, where P is the ratio of
the largest to smallest dimension of the cross section.

(c) “fibril with P = 2” and “fibril with P = 8”: in these cases, the Iexp(q)
is calculated based on eq 1 for fibrillar micelles with a typical core−
corona type packing with known dimensions that have 15% dispersity in
the dimensions for P = 2 and P = 8.

(d) “compact ellipse” and “compact fibril”: in these cases, we analyze
the Iexp(q) from small angle scattering experiments on solutions that in
our past work53 have been confirmed to have fibrillar micelles with a
compact packing (i.e., the whole polymer chain packs into the micelle
core) using both the fibril GA code as well as elliptical GA code.

3. RESULTS AND DISCUSSION
In this results section, we evaluate the performance of theNN-en
GA against the original GA by comparing the fit error (sse) as
well as the resulting dimensions obtained for Iexp(q) from
different structures between both methods. We test the two
methods on Iexp(q) for all cases described in Section 2.C.

3.A. Inner Workings of the NN-Enhanced GA Step and
NN-Evaluated GA Step

To evaluate the performance of the NN-en GA, we compare the
fit error or sse [i.e., log sum of squared errors between Icomp(q)
and Iexp(q)] of the best configuration for each generation
between theNN-enGA (Figure 2B) and the original GA (Figure
2A).
For cylinder and the ellipse with P = 8 (Figure 3A,C), the sse

for the best configuration in the NN-en GA (green curve)

Figure 3. Evolution of the sse (fit error) of the best candidates (highest fitness) in each generation for the original GA (shown in blue) and NN-en GA
(shown here in green) as well as the suggested candidate from the NN-eval GA at that generation, for an input Iexp(q) from (A) cylinder, (B) ellipse
with P = 2, (C) ellipse with P = 8, (D) fibril with P = 2, (E) fibril with P = 8. The results shown here are the averages from five independent runs. The %
error (95% confidence interval) from these independent runs range from 3 to 40% for the best candidate of the NN-en GA, 8−40% for the best
candidate of the original GA, and 100−500% error for the NN-eval GA suggested candidate (this large error is because the suggestion from NN-eval
GA is expected to vary significantly from run to run, as shown in Figure S10).
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converges to approximately the same value as the sse of the best
configuration in the original GA (blue curve), approximately 20
generations before the original GA. For fibrils with P = 2 and P =
8 (Figures 3D,E, the sse for the best configurations for both NN-
en GA and original GA converge at approximately the same
generation, although the NN-en GA converges to a lower value
of sse than the original GA. For the ellipse with P = 2 (Figure
3B), at all generations the sse of the best configuration from both
NN-en GA and the original GA mostly overlap. In this case, the
amount of training data required for the NN to predict the best
structure for a given Iexp(q) is like the number of configurations
needed for the original GA to converge. Overall, the results
shown in Figure 3 indicate that in general the NN-en GA
decreases the sse value and/or the number of generations
required for convergence of the GA or, in the worst case,
matches the results from the original GA.
Interestingly, even at later generations the sse of the NN-eval

GA suggested candidate in Figure 3 has a higher value than the
sse of the best configuration both in the original GA and theNN-
en GA. However, if we consider the evolution of sse of the NN-
en GA and the NN suggested candidate for each independent
run, for the cylinder case in Figure S10, we see that NN
suggested candidates becomes the best configuration of the next
generation in the main GA of the NN-eval GA, at least once in
the first few generations of each of the independent runs. The
NN suggested candidate from the NN-eval GA is the best
configuration of the next generation in the main GA for the cases
where the sse of the NN suggested candidate and the best
configuration are equal in Figure S10. While on average the NN
suggestion might not reach the converged low sse obtained
through the NN-en GA and the original GA, the NN suggested
candidate steers the first few generations toward the final sse in
fewer generations than without the NN ssuggested candidate.
To understand how the NN suggested candidate varies with

increasing generations of theNN-enGA, for the cylinder case we
compare at various generations the NN-model derived Icomp(q)
of the NN suggested candidate [in short, the INN‑pred(q)], the eq
1 derived Icomp(q) by placing scatterers for the NN suggested
candidate [in short, the INN‑Debye(q)], and the eq 1 derived
Icomp(q) of the best candidate at that generation in the main GA
component of the NN-en GA [in short, the Imain‑GA(q)]. In
generation 1 of the NN-en GA (Figure 4A), the INN‑pred(q) has
the closest match to the Iexp(q). The INN‑Debye(q) is different
from the INN‑pred(q) as the NN does not have enough training
data to make accurate predictions in this generation. In
generation 2, Figure 4B, the INN‑pred(q) and the INN‑Debye(q) do
not completely match, but both are closer to the Iexp(q) than the
best Imain‑GA(q), helping guide the NN-en GA to match the
Iexp(q). However, by generation 7 the INN‑pred(q) matches
INN‑Debye(q) (Figure 4C) and are both closer to the Iexp(q) than
the Imain‑GA(q). In generation 30 (Figure 4D), all of the Icomp(q)
curves quantitatively approach the Iexp(q) as the sse has
converged (Figure 3A). These results show how the NN
“learns” the appropriate Icomp(q) for a given micelle config-
uration and how the NN-eval GA is able to provide the NN
suggested candidate that results in an earlier convergence for the
NN-eval GA than the original GA.
Next, we understand how the training of the NN changes over

different generations of the NN-en GA. For cylinders, we
evaluate the sse between the INN‑pred(q) and the INN‑Debye(q)
(Figure S11); this sse generally converges within approximately
the first 20 generations of the NN-en GA implying that the
benefit of the NN in the NN-en GA is primarily within the first

20 generations of theNN-enGA. After generation 20 of theNN-
en GA, the difference between the INN‑pred(q) and the
INN‑Debye(q) is larger than the final sse obtained by the NN-en
GA (Figure 3) and the NN-eval GA does not impact the
performance of the NN-en GA. This behavior is inherently
linked to how well the NNmodel is trained; the training loss and
validation loss of the NN-model is shown in Figure S12 along
with a discussion below that figure.
The sse results for the compact ellipse and compact fibril in

Figure S13 are analogous to the ones presented in Figure 3. The
sse for the NN-en GA applied to the compact ellipse and
compact fibril has both a lower final sse as well as converge at a
lower generation as compared to the original GA.
In the next sections, we will look at how the differences in the

sse impact the required computational time and the dimensions
determined by the NN-en GA and the GA.
3.B. Comparing the Outputs of the NN-en GA and the
Original GA

In Figure 5, we compare the dimensions of the final “best”
structures as determined from the original GA (without any
NN)50 and this new NN-en GA. We see that the dimensions
determined by the original GA, the NN-en GA, and the
measured dimensions from the in silico cylinders all match within
error, specifically the dimensions determined with the original
GA and theNN-en GA are similar. In Figure S14, we do a similar
comparison for the ellipses with P = 2 and P = 8 as well as the
fibrils with P = 2 and P = 8. In all cases, the dimensions from the
original GA and the NN-en GA match. We see that the original
GA and NN-en GA determine the known dimensions of the
Iexp(q) within error, except for the total dimensions of the
ellipses (Figure S14B,D), for which both GAs obtain dimensions

Figure 4. Comparing the input Iexp(q) from in silico cylindrical micelles
with the Icomp(q) of the “best” (highest fitness) structure of the main
GA, the NN determined Icomp(q) of the NN suggested candidate, and
the eq 1 determined Icomp(q) of the NN suggested candidate. The
results shown are for generations (A) 1, (B) 2, (C) 7, (D) 30 of theNN-
en GA.
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close to the known dimensions but outside of the error. The
match between dimensions from original GA and theNN-enGA
is surprising in the case of the fibrils with P = 2 and P = 8 (Figure
S14E−H), as the final sse values of the best configuration of the
NN-en GA is lower than the sse values of the original GA,
indicating that the additional reduction in sse occurred at q
values that likely did not significantly impact the dimensions.
In Figure 6, we compare the results from NN-en GA and

original GA for an input Iexp(q) obtained from scattering
experiments on 0.4 wt % of poly(D-glucose carbonate)-based
amphiphilic diblock copolymers in a 60:40 vol % mixture of
THF andH2O. The fibril dimensions obtained with TEM, Cryo-
TEM, SANS, and the original GAwere originally published in ref
53. We see that the dimensions from the NN-en GA are in closer
agreement with both the dimensions determined with fits from
analytical models to the SANS data and the dimensions from
microscopy results than those from the original GA. Addition-
ally, we find that the final sse of best configuration of the NN-en
GA is lower than the sse from the original GA (Figure S13). This
is an example where NN-en GA improved the accuracy of the
CREASE approach.
Overall, all of the results discussed in this section indicate that

the NN-en GA reduces the number of generations required to
reach a solution that either matches the dimensions determined
from the original GA and/or improves the agreement with the
target dimensions over those determined by the original GA.

3.C. Computational Cost of the NN-Enhanced GA versus the
Original GA

To evaluate the computational cost of the NN-en GA as
compared to the original GA, we compare the average
computational time that it takes to train the NN for a single
generation, run a full NN-eval GA for a trained NN, and do the
Debye calculation (eq 1) for all 80 configurations in 1
generation. For all of the results presented in this section, the
calculations were performed on the University of Delaware’s
Farber community cluster compute nodes containing 3800 Intel
E5 family processor core and 14TB RAM, a 256TB Lustre
filesystem, and an FDR InfiniBand high-speed network.
The results shown in Figure 7 are that for the cylinder. Figure

S15 has the corresponding results for ellipses with P = 2 and P =
8, fibrils with P = 2 and P = 8, the compact ellipse, and compact
fibril. In all cases, the amount of time required to train the NN is
about an order of magnitude less than one generation of the
original GA run due to its Debye calculation (eq 1), and the time
required to run the NN-eval GA is about 2 orders of magnitude
less than one generation of the original GA run. For a direct

comparison, we take the ratio of the NN training time, Figure
S16A, and the run time of the NN-eval GA, Figure S16B, to the
total Debye calculation (eq 1) time. On the same computational
hardware, the NN training time requires about 20% or less time

Figure 5. (A) Schematic of ABA amphiphilic polymer and a representative simulation snapshot of in silico experiment. (B) Different views of scatterers
placed within the micelle configuration whose Icomp(q) matches Iexp(q). (C) Dimensions of the cylindrical micelles (open symbols) and dimensions
obtained from the original GA and NN-en GA. We report the average and standard deviation of the dimensions from five independent runs.

Figure 6. (A) Chemical structure of the poly(D-glucose carbonate)
block copolymer with the PGC backbone illustrated in green, the
hydrophobic side chains in red, and hydrophilic side chains in blue. (B)
Cryogenic-TEM image showing the fibril structures with an average
fibril width of 13.2 nm. Arrows in B show twist regions with a different
density contrast along the fibril. (C) Negatively stained TEM image is
provided to show more detailed characteristics such as (D) folds and
twists that are hard to observe from cryo-TEM due to a low contrast
from solvent swollen structures. (E) Dimensions obtained with TEM,
Cryo-TEM, and SANS presented originally in ref 53 for fibrils formed at
0.4 wt % of poly(D-glucose carbonate)-based amphiphilic diblock
copolymers in a 60:40 vol % mixture of THF and H2O. Also shown in
colored symbols are the analyzed results from the original GA and NN-
en GA results (the symbols correspond to averages and standard
deviations from five independent runs of either original GA or NN-en
GA. Images in A, B, C, and D and the data (besides NN-en GA) in part
E are reprinted with permission from Macromolecules 2020, 53, 19,
8581−8591. Copyright (2020) American Chemical Society.
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than the Debye calculations while requiring nearly half the
number of generations to reach a plateau in the sse. This implies
an overall speedup of∼30% in the cases that it takes more than a
few generations for the sse to converge.
We note that in Figures 7 and S15 the total run time of the

NN-eval GA requires <5% of the time that one needs for the
Debye calculations of all 80 configurations in one generation.
This motivates one to consider using only the NN-eval GA
trained with Iexp(q) from high throughput experiments or from a
collection of scattering profiles obtained at different times for
structures with a similar shape as the case at hand; using only the
NN-eval GA could significantly speed up the use of CREASE for
systems in which the trained NN is used to calculate Icomp(q),
completely replacing the computationally intensive Icomp(q)
calculations using eq 1. This is demonstrated next.
3.D. Applying Only the NN-eval GA to Analyze Scattering
Profiles

Having demonstrated that the NN-en GA generally improves
the performance of the GA step in CREASE as compared to the
original GA, in this section we present the use of the NN-eval

GA on its own (i.e., only the pink cycle in Figure 2B). In this
strategy, one would train the NN to predict the Icomp(q) for a
specific structure over the full range of parameters relevant to
that structure. After the NN is trained, it should be capable of
predicting structures like the structures on which it has been
trained. For example, we could train the NN to predict the
Icomp(q) of core−shell elliptical cylindrical micelles if one inputs
the micelle dimensions. Once trained, the user could solely use
the trained NN and the NN-eval GA cycle to analyze the
scattering from different experiments (e.g., high throughput
scattering data) determining the dimensions of that structure
within a significantly shorter computational time as compared to
the NN-en GA or original GA of CREASE, which have
computationally intensive Icomp(q) calculations in the GA cycle.
We demonstrate the use of NN-eval GA on its own for the

case of ellipses. For this demonstration, we trained the NN with
data from structures for ellipses with P = 2 and P = 8. We choose
to train the NN-models using data from all 101 generations of
the corresponding NN-en GA. These NN models trained on
data for P = 2 and P = 8 core−shell elliptical cylinders are then
applied solely in anNN-eval GA cycle to determine the structure
for an input Iexp(q) of core−shell elliptical cylinders for a broad
range of P-values (= 1, 2, 4, 6, and 8). We use five different NN-
models, where each NN-model is trained on the data from an
independentNN-enGA run, as shown in Figure S17. The results
for the different NN-eval GA runs are shown in Figure S18, with
the best performing NN-eval GA results shown in Figure 8. For
all P-values, the target core dimensions used to generate the
input Iexp(q) (open symbol) match up reasonably well with the
core dimensions determined by using solely the NN-eval GA.
The qualitative trend in the target micelle dimensions is also
captured by the NN-eval GA results. This is remarkable as the
NN-model is trained mostly on P = 2 and P = 8 related
configurations sampled in the various generations of the NN-
eval GA. In Figure S19, we show the Iexp(q) and Icomp(q)
determined by the NN-eval GA for ellipses with target
dimensions and P = 1, 2, 4, 6, and 8. The results in Figure S19
demonstrate that the Icomp(q) from the NN-eval GA capture the

Figure 7. Average computational time required per generation to train
the NN, run the NN-eval GA, and perform the GA Debye calculations
for inputs from cylinder. The results shown here are the average and
95% confidence interval of five independent runs. The error bars (95%
confidence interval) are presented.

Figure 8. Elliptical cylinder core (red) and micelle (blue) “target” dimensions (open symbols) and dimensions obtained from the NN-eval GA’s best
configurations (closed symbols). TheNNs used (NN1−5) are trained during independent data sets obtained fromNN-en GAs for (A) ellipse with P =
2 and (B) ellipse with P = 8. In each case, we report the average and standard deviations from five independent NN-eval GA runs. The images shown are
an example of the scatterers placed within the target dimensions.
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changes in the Iexp(q) as the P-value changes. We note that these
NN-eval GA runs (post NN-training) complete in a matter of
minutes on a modest workstation demonstrating the fast and
robust predictive power of NN-eval GA.
We expect that the few discrepancies in the NN-eval GA

determined dimensions and target dimensions in Figure 8 and
Figure S18, result from the data generated during the NN-en GA
being skewed toward sampling the dimensions relevant to the
target Iexp(q) and as such not necessarily sampling a
representative set of micelle configurations and their corre-
sponding Icomp(q). For example, the P = 2 data used to train NN
model 1 might have sampled a wider variety of structures and, as
such, is trained on a more representative set of data of the full
variety of core and total micelle dimensions for elliptical
cylinders. Additionally, other considerations made while
running the original GA could also be revised to improve the
dimensions determined by theNN-enGA. These considerations
include choices such as the size and number of the scatterers that
are placed to generate the I(q) and the range of q-values that
were fit over; the discussion of the size of scatterers and its
impact on the q-values fit over is presented our previous
papers.41,50 Indeed, since the computational cost of the NN-eval
GA is independent of the choice of the scatterer size, smaller
scatterer sizes could be used to generate the training data for the
NN to resolve complex structures with features at smaller length
scales.
Overall, these results indicate that while the NN-eval GA

could provide accurate results for determining the micelle
dimensions in a reasonable time for a user to apply this method
in practice, the NNs would require training on a representative
data set to be able to quantitatively determine the dimensions of
structures from Iexp(q). Additionally, if the NN-eval GA is to be
used on new systems, uncertainty estimates for the NN
predictions would be important to include. We do not include
the uncertainty estimates in this work because in this
implementation we use the NN in the NN-en GA to improve
the speed and efficacy of the GA. If one wishes to use uncertainty
estimates, then the error estimates for the NN predictions would
have to be determined either by testing the trained NN over the
relevant parameter space or by using different training schemes
that focus on achieving predictions within a set error tolerance
over the parameter space of interest. Further, one can also
evaluate the error in the NN predictions by comparing the
INN‑pred(q) for the NN-eval GA’s “best” candidate by directly
comparing it with the Icomp(q) calculated using eq 1.
Finally, we consider the reverse case: training the NN to

predict the micelle dimensions directly from the Iexp(q) and not
through a NN-eval GA; we refer to this NN as the direct NN. As
shown in Figures S20 and S21 and the accompanying text in the
SI, we first determine an appropriate NN architecture to use for
the direct NN. Then, to test the performance of the direct NN,
we train direct NN models 10 separate times on the same data
generated during the NN-en GA run for an ellipse with P = 2.
These 10 trained direct NN models are then applied to input
Iexp(q) of core−shell elliptical cylinders with a broad range of P-
values (= 1, 2, 4, 6, and 8). The results in Figure S22 show that
the direct NN qualitatively predicts the increase in P-values,
although the uncertainties of the dimensions are significantly
larger than those obtained using a NN-eval GA (Figure 8).
Additionally, as we briefly discussed in Section 2.B, the Iexp(q)
features are not necessarily unique to a single micelle
configuration, further increasing the large uncertainties in the
direct NN predictions. In contrast, the NN-eval GA provides

multiple candidates whose Icomp(q) matches the Iexp(q) which
can then be considered or carefully eliminated through
additional experimentation, rather than using direct NN and
providing a single micelle configuration with large uncertainties
in the predicted values.

4. CONCLUSIONS
In this paper, we have presented a machine learning enhanced
computational approach (CREASE) that can be used to analyze
scattering results from amphiphilic polymer solutions and
determine structural features of the assembled polymers. The
original computational approach, CREASE, consists of two
steps: the first step involves the use of a genetic algorithm (GA)
to determine the macroscopic dimensions of the assembled
structure and the second step involves the use of molecular
simulations to elucidate the molecular and chain packing within
the domains of the assembled structure. By using machine
learning techniques, we have demonstrated significant improve-
ment in the computational speed and efficacy of the GA step of
CREASE, making it faster and in some cases, more accurate for
scattering analysis than our original CREASE method.
The GA step in CREASE is used to determine the dimensions

of the domains in the assembled structure by finding the optimal
configuration whose computed scattering profile matches the
input experimental scattering profile. This calculation of the
computed scattering profile is computationally intensive as it is
based on pairwise distances of the scatterers and thus, scales with
squared number of scatterers placed within the dimensions of
each structure. The number of scatterers is related to scatterer
size which is chosen to resolve the dimensions of the structure
being investigated; if one chooses a smaller scatterer size, then
that leads to the need for more scatterers to define the shape of
the structure. Furthermore, this calculation of the computed
scattering profile is also repeated for every structure sampled in
the various generations of the GA step leading to a large
computational cost. By using artificial neural networks (NNs),
we have reduced the number of generations required by the GA
step in CREASE to converge and quickly identify the “best”
structure whose computed scattering matches with the
experimental scattering. We tested the application of the NN-
enhanced GA on scattering profiles from cylindrical, elliptical
cylindrical, and fibrillar micelles. The results demonstrate that
the NN-enhanced GA generally improves the speed and efficacy
of the GA step in CREASE by reducing the number of
generations required for the GA fitness to plateau as well as
matching or improving the dimensions determined by the
original GA without machine learning.
Furthermore, the trained NN model could also be applied to

determine the dimensions for an input Iexp(q) for structures with
different dimensions but the same shape as the structures used to
train the NN model. By using that trained NN model, we could
completely skip the costly calculation that scales with the
number of scatterers in the main GA, and run the NN-evaluated
GA alone, which is much faster than the original GA component
of CREASE.
Both the NN-enhanced GA step and NN-evaluated GA step

of the CREASE approach are useful for quickly analyzing results
from high throughput scattering experiments on amphiphilic
polymer solutions and can be easily extended and used for
analyzing scattering experiments on other polymer and soft
matter systems. These approaches are valuable for characterizing
scattering profiles from kinetically trapped, nonequilibrium
structures and/or novel polymer chemistries for which standard
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fitting to conventional analytical models would be inaccurate/
too approximate.
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