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Abstract 

Background:  Bladder cancer is one of the most common malignancies but the corresponding diagnostic methods 
are either invasive or limited in specificity and/or sensitivity. This study aimed to develop a urine-based methylation 
panel for bladder cancer detection by improving published panels and validate performance of the new panel with 
clinical samples.

Methods:  Related researches were reviewed and 19 potential panels were selected. RRBS was performed on a cohort 
with 45 samples to reassess these panels and a new panel inherited best markers was developed. The new panel was 
applied with qMSP platform to 33 samples from the RRBS cohort and the results were compared to those of RRBS. 
Lastly, another larger cohort with 207 samples was used to validate new panel performance with qMSP.

Results:  Three biomarkers (PCDH17, POU4F2 and PENK) were selected to construct a new panel P3. P3 panel 
achieved 100% specificity and 71% sensitivity with RRBS in corresponding cohort and then showed a better per-
formance of 100% specificity and 84% sensitivity with qMSP platforms in a balanced cohort. When validated with 
207-sample cohort, P3 with qMSP showed a performance of 97% specificity and 87% sensitivity which was modestly 
improved compared to the panels it derided from.

Conclusions:  Overall, the P3 panel achieved relatively high sensitivity and accuracy in bladder cancer detection.
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Background
Bladder cancer (BC) is known as one of the most com-
mon malignancies in the world [1]. It was reported that 
75% of the primary tumors were in non-muscle-invasive 
Ta or T1 stage while others show bladder muscle invasion 
in stages T2–4. Clinically, stage Ta BC was characterized 
by frequent recurrence after resection in up to 60% of 
patients [2]. Typically, within 8 to 10 years, one or more 
tumors would appear each year and 25% of them would 

eventually develop into an aggressive invasive phenotype 
[3].

Currently, cystoscopy/biopsy is the gold standard for 
the BC detection of suspicious lesions. Unfortunately, 
this expensive, invasive and painful procedure would 
miss 10 to 40% of malignancies including up to 15% of 
the papillary carcinoma and up to 30% of the flat recur-
rences. Urine sediment was proposed as samples for non-
invasive detection methods. However, although urine 
cytology possesses a high specificity, it lacks of sensitiv-
ity, particularly in low-risk tumors [4]. The applications 
of nuclear matrix protein 22 (NMP-22), bladder tumor 
antigen and UroVysion FISH were proposed as comple-
ment to improve cytology sensitivity, but they were rarely 
adopted in clinical practice due to unsatisfying perfor-
mance [1, 5, 6].
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Many researchers were committed to develop better 
markers for BC diagnosis and prognosis. DNA methyla-
tion, which plays an important role in transcription regu-
lation [7, 8], had been found to be chemically stable and 
quantifiable in high precision, making it a competitive 
candidate within tumor markers [9, 10]. Inactivation of 
tumor suppressor genes by local DNA hypermethylation 
and activation of suppressed genes by global DNA hypo-
methylation had been both observed in bladder tumors 
[11–13]. Further studies also demonstrated that meth-
ylation changes found in urine sediments resemble those 
found in tumor tissues [14–16].

In last few decades, an increasing number of DNA 
methylation markers had been developed with different 
techniques such as MS-MLPA, quantitative methylation-
specific PCR (qMSP) and pyrosequencing for BC detec-
tion. However, in most cases, the performance of marker 
panels was not satisfying. Thus, it is still urgent to seek 
a reliable DNA methylation marker set operating on a 
low-cost platform with high sensitivity and specificity for 
BC detection. Reduced representation bisulfite sequenc-
ing (RRBS) is a technique for genome-wide methylation 
profiles analysis with single nucleotide precision. One of 
the main goals for RRBS study is to discover differentially 
methylated regions (DMRs) between different samples, 
which makes it a suitable tool for methylation biomarker 
screening and assessing.

In this study, we aimed to develop a reliable DNA 
methylation panel for early BC detection in clinical prac-
tise. We composed an improved urine DNA methylation 
panel based on other published methylation panels. This 
newly proposed panel was compared with published pan-
els using RRBS and further applied to clinical diagnosis 
with qMSP.

Methods
Study design
In this study, panel development went through two 
stages: panel design and validation. In panel design stage, 
a new panel was composed based on RRBS assessment of 
a collection of methylation panels for BC detection pro-
posed by literatures. RRBS results with the new panel 
were then compared with results of qMSP. In validation 
phase, analytical validation with synthesized plasmids 
and performance validation with another larger clinical 
cohort were conducted for the new panel. The outline of 
this study is illustrated in Fig. 1.

Patients and sample collection
All patients with BC were clinically confirmed with mul-
tiple methods including but not limited to cystoscopy, 
cytology and surgery. All samples were collected from 
volunteers of both sex above 18 years old. BC patients 

included were not intentionally balanced on any aspect 
and patients with prior chemotherapeutic treatment 
could be included.

The fresh urine samples were obtained from partici-
pates via the First Affiliated Hospital, Zhejiang Univer-
sity School of Medicine. Cell pellets were centrifuged 
and kept frozen until used for DNA extraction. Clinical, 
demographic, and pathological data were collected for all 
patients. Informed consent was obtained from all partici-
pants. This research was approved by Zhejiang University 
Institutional Review Board including that all methods 
were performed in accordance with the relevant guide-
lines and regulations.

DNA extraction
DNA from the urinary cell pellets was extracted using 
QIAamp DNA Mini Kit (Qiagen) according to the man-
ufacturer’s instructions. DNA quality and quantity were 
assessed using a NanoDrop2000 (Thermo Scientific) 
spectrophotometer and 1% agarose gel electrophoresis.

RRBS library construction
100 ng genomic DNA per sample was used to construct 
RRBS libraries. Genomic DNA was digested overnight 
with MspI restriction enzyme (recognition site C^CGG, 
NEB, Ipswich, MA, USA) at 37 °C. After purification, 
digested DNA was treated with a mix of T4 DNA poly-
merase, Klenow Fragments and T4 polynucleotide kinase 
to repair, blunt and phosphorylate ends. The mixture 
DNA fragments were subsequently 3′ adenylated using 
Klenow Fragments (3′-5′ exo-) then ligated to adaptors 
with 5′-methylcytosine substituting cytosine using T4 
DNA Ligase. Bisulfite conversion was performed with a 
ZYMO EZ DNA Methylation-Gold Kit (ZYMO, Irvine, 
CA, USA) and lambda DNA was added as a conversion 
marker. The final libraries were generated by 13 cycles 
PCR amplification and then quantified by an Agilent 
2100 Bioanalyzer (Agilent Technologies). Sequencing 
were performed on an Illumina Hiseq platform with a 
pair-end 300 cycles setting.

Data analysis
Raw sequencing data were processed by the Illumina 
base-calling pipeline. Low-quality reads that contained 
more than 30% ‘N’s or over 10% low-quality calls (qual-
ity value < 20) were removed. Adapter contamination 
was removed by cutadapt (version 1.9) [17]. The clean 
reads were aligned to the reference genome hg19 using 
BSMAP (version 2.73) [18]. Conversion ratio was cal-
culated on lambda DNA and samples with a conversion 
ratio lower than 99% would be considered unquali-
fied for further analysis and corresponding libraries 
would rebuilt and sequenced. Only uniquely aligned 
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reads containing the Msp I enzyme digestion sites 
were used for further analysis. Only CpG sites with 
sequencing depths ≥5 were selected as candidate sites. 
After bisulfite treatment, cytosines were read as “T” 
if unmethylated or as “C” if methylated. Methylation 
level of the sample was defined as the ratio of number 
of “C”s and the sequencing depth of the site. Differen-
tial methylation analysis on these sites were performed 
with ANOVA (analysis of variance) and the acquired 
p-values were adjusted to Q-values with Benjamini-
Hochberg method [19]. Differential methylation sites 
(DMSs) were defined as sites with a Q-value lower than 
0.05.

Performance verification with RRBS results
To verify panel performance, DMS related to marker 
genes (within 5000 bp to gene region) were extracted 
from RRBS differential analysis. These DMS were 
grouped by individual panel and used as sample features 
for model training and sample classification. Support 
vector machine (SVM) with radial basis function (RBF) 
kernel was applied as the main classification model and 
the panel performance was evaluated in 4-fold/3-fold 
cross validation manners where the cohort was divided 
into 4/3 groups with equal cancer/control proportion 
and reserve one group for testing model performance 
with other groups used for model training. The final 

Fig. 1  Outline of study design. The performance of reviewed panels was assessed using RRBS with 28 BC patient samples with 17 non-BC controls 
(15 healthy samples and 2 patient samples with non-BC bladder diseases). After a new panel was composed, for comparison with RRBS results, 
18 BC samples and 15 healthy samples from the RRBS cohort were tested by the new panel with qMSP. The new panel was then analytically 
validated with synthesized plasmids. Another cohort with 107 BC patients, 24 non-BC patients with other bladder diseases and 76 healthy controls 
was used to validate new panel’s performance. BC: bladder cancer, qMSP: quantitative methylation-specific PCR, LOD: limit of detection
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panel performance was obtained by averaging perfor-
mance estimation of all 4/3 tests. Confusion matrixes and 
Receiver Operating Characteristic (ROC) curves were 
preserved for further performance analysis.

Methylation measuring with qMSP
DNA samples were treated by EZ DNA Methylation-
Gold™ Kit (Zymo Research). The bisulfite modification 
reaction was executed by 96-Well GeneAmp PCR System 
9700 (Applied biosystems) with the 150 μl mixtures con-
taining 130 μl CT conversion reagent (Zymo Research) 
and 200 ng DNA template. The condition of the reac-
tion was configured to 98 °C for 10 min followed by 64 °C 
for 2.5 h and then on hold at 4 °C. Each DNA sample 
was then purified by 20 μl of M-Elution Buffer (Zymo 
Research) and stored at − 20 °C before use.

Primers and probes (Table 1) of candidate biomarkers 
(PCDH17, POU4F2, and PENK) and β-actin (reference 
gene) were used in the qMSP assay. Each reaction mix-
ture (25 μl in total) was consisted with 5 μl of 5X probe 
qPCR Buffer (Tiagen), 2.5 μl of 10X HA Buffer, 2 μl of 
dNTP (2.5 mM), 9.5 μl primer and probe mix, 0.75 μl HA 
Taq, 0.25 μl Taq-Antibody, and 5 μl of DNA template. The 
reactions were performed on 7500 Real-Time PCR Sys-
tem (Applied Biosystems) where samples were pre-incu-
bated for 5 min at 95 °C, and then amplified for 48 cycles 
at 95 °C for 15 s and 60 °C for 40 s. Fluorescence signals 
were measured at the end of each extension step at 60 °C. 
The measurements were done in triplicate and mean Ct 
values were used as final Ct values. According to [20], the 
site methylation rate (SMR) referencing ACTB can be 
calculated as:

where Ct (ACTB) and Ct are Ct values of ACTB refer-
ence and the target marker respectively. Thus, to simplify, 
Ct − Ct(ACTB) as ΔCt was used as a proxy of the SMR. 
However, in this case, ΔCt increases with the decrease of 
SMR and the correlation between is logarithmic.

Cancer detection with qMSP results
QMSP data was all analysed by Random Forest (RF) 
model with 100 decision trees whose maximum depth 

SMR = 2[Ct(ACTB)−Ct]
× 100

was set to 5 when three markers were involved and 4 
otherwise. The cohort was first split into training set and 
testing set in a random manner while maintaining identi-
cal cancer/control ratio. After training and testing, pre-
diction sequence, sensitivity, specificity, accuracy, AUC 
and ROC curves were calculated and exported as results.

Reproducibility and limit of detection (LOD) study
Investigation on reproducibility and LOD requires sta-
ble standard samples with certain methylation ratio. 
Since completely methylated sequences does not change 
in bisulfide conversion, probe sequences (Table  1) were 
synthesized for each marker, including ATCB, to simulate 
completely methylated sequences and standard samples 
were obtained by mixing plasmids carrying synthesized 
sequences in different concentration (details shown on 
supplement Table 1). These plasmids were generated by 
cloning sequences to certain vectors. The synthesized 
ACTB probe sequences were ligated into pGSI/Amp vec-
tors via SmaI sites to construct ACTB plasmids, while 
other plasmids were built with probe sequences ligated 
into pUC-GW-Kan/Amp vectors via the EcoRV sites. For 
reproducibility study, testing with standard samples were 
repeated 10 times on two separate days with same pro-
tocol. For LOD study, standard samples with single plas-
mids in 4 concentrations were measured.

Results
Novel panel design with relevant literature
Methylation based BC detection panels on urine sedi-
mentation samples with potential high performance 
suggested by published literature were selected. Overall, 
panels with more markers were more sensitive but less 
specific toward BCs (Table 2). Nonetheless, a panel con-
sisting only PCDH17 and POU4F2 but reported as one 
of the best performing panels reviewed in terms of sen-
sitivity and specificity attracted our interest. Addition-
ally, although only a few genes were selected by multiple 
panels, the two markers in this panel were completely 
inherited by another well performing panel. Panel per-
formance was evaluated under different circumstances, 
namely different platforms and cohorts, and not always 
available. Therefore, performance reassessment on these 

Table 1  Primer and probe sequences of P3 markers

Gene Forward sequence Reverse sequence Probe sequence

β-Actin GGA​GGT​AGG​GAG​TAT​ATA​GGTTG​ CAC​ACA​ATA​ACA​AAC​ACA​AAT​TCA​C AAA​CTT​ACT​AAA​CCT​CCT​CCA​TCA​CCA​CCC​

PCDH17 CGG​GTG​TTG​GAG​AAT​TTC​G CGC​GAT​CGA​TAC​GCT​ACT​TA CCG​CTA​TCT​ACG​TCC​ACG​TCC​AAC​A

POU4F2 AAG​GGT​TGT​GCG​AAG​TTG​ AAC​GCG​TAA​CCG​AAA​TCA​ CGT​ACA​AAA​TCC​GAA​AAC​GAC​GAC​GAA​

PENK GGT​TGT​TGT​TGT​TCG​GTT​TC CGA​CCG​AAC​GCA​CTA​AAC​ AAC​TAC​ACG​TCG​CGC​AAT​CCT​AAC​TACAT​
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panels with the same technique and cohort was required 
for a more comprehensive comparison.

Panel performance analysis with RRBS on clinical samples
RRBS was performed on clinical samples from 45 par-
ticipates including 28 BC patients, 15 healthy volunteers 
and 2 patients with other bladder diseases (Table  3) to 
reassess panels’ performance for BC detection. The speci-
ficity, sensitivity and accuracy were generated by aver-
aging corresponding figures in a 4-fold cross validation 
process with support vector machine (SVM) models. 
Larsen et al. pointed out that large variability of marker 
performance can be observed across studies [30] and this 
statement were confirmed by our reassessment results 
(Table 2). This variability could be the result of different 
cohort, platforms and prediction model used. Compared 
to the published figures, higher specificity was achieved 
by RRBS in all panels probably due to imbalanced sam-
ple class or model bias. Although the detection specific-
ity was generally high, certain BCs were missed by most 
panels (Fig. 2) suggesting defeats in sensitivity for detect-
ing BC samples with methylation profiles less distinct 
from those of health samples.

Best overall performance was achieved by a panel with 
24 markers from Casadio et al. [31] with highest scores in 
all aspects. Most of the investigated panels containing no 
more than 5 genes only achieved an accuracy lower than 
0.8, except the 2-marker panel from Wang et al. [32] and 
another panel inherits its two markers which managed 
to achieve results comparable to panels with most gene 
markers. Apart from these two panels, PENK marker also 
stood out by achieving a performance close to big pan-
els and slightly surpassed Wang’s panel. Moreover, the 
PENK marker alone successfully detected BCs that rarely 
detected by other panels, including these with more than 
5 genes (Fig.  2). Therefore, for better performance the 
three gene markers mentioned above were combined as 
a new P3 panel but RRBS results showed no substantial 
improvement.

Performance comparison of RRBS and qMSP
Although P3 panel was unremarkable in performance 
measured by RRBS, it was applied to qMSP for further 
evaluation. Compared to RRBS, different error would be 
introduced by qMSP but it is a more widely used low-
cost methylation measuring platform in clinical practise. 
18 BC samples and 15 healthy samples from the cohort 

Table 2  Reviewed panels for bladder cancer detection

SP specificity, SN sensitivity, AC accuracy. # Biomarker reported by Genomictree: http://​www.​genom​ictree.​com/​ko/​index.​asp

ID Gene Panel Method Published 
results

RRBS results ref

SP SN SP SN AC

1 TIMP3,APC,CDKN2A,MLH1,ATM,RARB,CDKN2B,HIC1,CHFR,BRCA1,CASP8,CDKN1B,PTEN,
BRCA2,CD44,RASSF1,DAPK1,FHIT,VHL,ESR1,TP73,IGSF4,GSTP1,CDH13

MS-MLPA – – 1.00 0.83 0.89 [17]

2 HIC1,RASSF1,GSTP1 MS-MLPA 0.66 0.78 0.91 0.67 0.76 [17]

3 HOXA9,ISL1 qMSP 0.91 0.44 0.99 0.71 0.78 [18]

4 PCDH17,POU4F2 qMSP 0.94 0.90 1.00 0.73 0.81 [19]

5 E2F3,CCND1,UTP6,CDADC1,SLC35E3,METRNL,TPCN2,NACC2,VGLL4,PTEN metadata – – 0.98 0.63 0.73 [20]

6 CDH13,CFTR,NID2,SALL3,TMEFF2,TWIST1,VIM2 pyrosequencing – – 1.00 0.63 0.76 [21]

7 CFTR,SALL3,TWIST1 pyrosequencing 0.31 0.90 1.00 0.65 0.77 [21]

8 SOX1,TJP2,MYOD,HOXA9_1,HOXA9_2,VAMP8,CASP8,SPP1,IFNG,CAPG,HLADPA1,RIPK3 pyrosequencing 1.00 1.00 1.00 0.74 0.84 [21]

9 ZNF671,SFRP1,IRF8 qMSP 0.84 0.96 1.00 0.59 0.74 [22]

10 TWIST1,NID2 MSP 0.93 0.96 1.00 0.61 0.76 [23]

11 VIM,TMEFF2,GDF15 qMSP 1.00 0.94 1.00 0.54 0.71 [24]

12 VIM,TMEFF2,GDF15,HSPA2 qMSP 1.00 0.94 1.00 0.54 0.71 [24]

13 SALL3,CFTR,ABCC6,HPR1,RASSF1A,MT1A,ALX4,CDH13,RPRM,MINT1,BRCA1 MSP 0.87 0.92 1.00 0.73 0.83 [25]

14 SALL3,CFTR,MT1A,HPP1,ABCC6,RASSF1A,CDH13,RPRM,MINT1,BRCA1,SFRP1 MSP 0.73 0.92 1.00 0.72 0.83 [26]

15 SALL3,CFTR,MT1A,HPP1,ABCC6,RASSF1A,CDH13,RPRM,MINT1,BRCA1 MSP 0.80 0.90 1.00 0.70 0.81 [26]

16 p14ARF,p16INK4A,RASSF1A,DAPK,APC MSP – 0.91 1.00 0.64 0.77 [27]

17 RARβ,DAPK,CDH1,p16 MSP 0.76 0.91 1.00 0.66 0.79 [28]

18 HOXA9,PCDH17,POU4F2,ONECUT2 qMSP 0.73 0.91 1.00 0.71 0.82 [29]

19 PENK qMSP 0.88 0.89 0.96 0.68 0.78 #

P3 PCDH17,POU4F2,PENK – – – 1.00 0.71 0.82 –

http://www.genomictree.com/ko/index.asp
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tested by RRBS were tested by qMSP in a 3-fold cross val-
idation configuration with SVM instead of 4-fold due to 
the decrease of sample number. Area under ROC curve 
(AUC) was also calculated to estimate detection power. 
The results presented in Table  4 showed qMSP possess 
higher sensitivity with identical specificity leading to 
higher accuracy and AUC compared to RRBS. This could 
be attributed to crucial loci selection by qMSP probes 
since more near gene loci were included and weighted 
equally in RRBS detection.

SP specificity, SN sensitivity, AC accuracy, AUC​ Area 
Under ROC curve.

Performance validation on qMSP platform
Analytical validation on synthetic plasmids
For understanding the stability of panel performance, 
the reproducibility and LOD were investigated. Plasmids 
were synthesized for each marker, including ATCB, and 
mixed in certain concentration to compose standard 

samples. All analytical tests were repeated 10 times 
where intragroup and intergroup difference was calcu-
lated. Detail results can be found in supplement Table 2 
and 3. In summary, the panel produced stable results 
within intended Ct value range.

Performance validation with clinical samples
The cohort used in the technique comparison men-
tioned in the previous section was extended to a larger 
cohort with 107 BC samples and 100 non-BC samples (76 
healthy and 24 with other bladder diseases) (Table 3) for 
further P3 panel performance validation. RF model, simi-
lar to the SVM model, is a model used to classify samples 
based on certain features. It was applied instead of SVM 
for BC/non-BC classification as higher accuracy could be 
achieved with RF when importance is properly distrib-
uted to features and overfitting is avoided by adjusting 
model parameters correlated to number of feature and 
sample. SVM models were used in previous RRBS detec-
tion due to uncertain feature number across panels. The 
RF model was trained with 50% of the cohort and test 
with the rest 50% then the entire cohort was included 
when specificity, sensitivity, accuracy and AUC were 
calculated.

Compared to previous results (Table  4), the P3 panel 
performed with high consistency in all aspects (see 
Table  5and Fig.  3 for details). Wang’s panel and the 
PENK marker were also assessed with this cohort and 
diverse changes in their performances were observed in 
comparison with RRBS results (Table 2). Only subtle per-
formance change was observed in Wang’s panel while the 
sensitivity of marker PENK was significantly higher, con-
sequently facilitated improvement observed in Table  4 
and contribute to the P3 panel performance which 
exceeded its parent panels in every aspect. However, this 
improvement achieved by P3 panel was only moderate.

SP specificity, SN Sensitivity, AC Accuracy, AUC​ Area 
under ROC curve.

Panel potential in BC subtype detection
Given proper panels, non-invasive detection methods 
allow continuous monitoring BC status such as being 
muscle invasive/non-muscle invasive (MIBC/NMIBC), 
high/low grade, early/late stage and primary/recurrents. 
Therefore, we analysed P3 panel performance on BC sub-
type detection with a train-test configuration (find sup-
plement Table  4 for results). Yet missing status details 
further shrank the size of valid cohort which was not ini-
tially large, preventing reliable conclusion to be drawn. 
Moreover, notable potential for detecting any subtype 
had not be observed with P3 panel at this stage.

Table 3  Clinicopathological and demographical information of 
involved population

* IMT Inflammatory myofibroblastic tumor, MIBC Muscle invasive bladder cancer, 
NMIBC Non-muscle invasive bladder cancer. Pathological details were unclear or 
lost for some samples, these samples were excluded in relative analyses

Verification phase 
(RRBS)

Validation 
phase 
(qMSP)

Sample number 45 207

BC patient 28 107

Non-BC control 17 100

Among patients

  Non-BC

    IMT 2 0

    Inflammation 0 19

    Bladder stone 0 4

    Benign tumor 0 1

  BC

    Age range 48–92 29–92

    Mean age 67.9 67.2

  Stage

    Ta 11 28

    T1 6 41

    T2 5 23

    T3 4 6

    T4 2 9

    MIBC 13 54

    NMIBC 10 53

    High grade 18 58

    Low grade 10 49

    Primary 18 72

    Recurrence 10 35
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Discussion
At the panel development stage, BC detection with RRBS 
which measures gene methylation by averaging meth-
ylation ratio of related locus was conducted and com-
pared to detection with qMSP which associates gene 

methylation with methylation of certain short sequences. 
This possess revealed limitations in current panel-
base detection methods which might inspire further 
improvement.

Number of biomarker limits detection performance
The facts that RRBS detection performance improves 
with marker number and certain BCs were only detected 
by one specific panel suggested considerable inter-indi-
vidual methylation heterogeneity of BCs. The results indi-
cated BC specific methylations mostly converge to a few 
genes but remarkable distinction occurs due to unclear 
mechanisms involving extra genes. Similar heterogeneity 
was also discovered on Ewing sarcoma by Sheffield et al. 
[33], who had failed in attempt to align EWS-FLI1 fusion 
related heterogeneity characteristics with disease sub-
types. Correlations between methylation heterogeneity 
and disease subtypes might be identified when including 
more related genes. The small cohort sequenced in this 
study was insufficient for investigating these correlations 
but unknown regulations within BCs might be unveiled 
when sufficient data is available. Another cause of such 
heterogeneity could be the aberrant methylation progres-
sion with cancer for acquiring driving mutations sug-
gested by Brocks et  al. in their study of prostate cancer 

Fig. 2  Bladder cancer predictions of reviewed panel and P3 panel. BCs were represented by red blocks and non-BCs by grey blocks. The condition 
row presents the true status of samples while others display predictions made by panels. A 4-fold cross-validation process was applied so that 4 
predictions were made for every sample by every panel. The high of red blocks represents the proportion of the sample being predicted as BC by 
the corresponding panel in the cross-validation process

Table 4  Performance comparison of RRBS and qMSP in BC 
detection

METHOD SP SN AC AUC​

RRBS 1.00 0.71 0.84 0.99

QMSP 1.00 0.84 0.92 0.96

Table 5  Performance of individual marker and p3 panel in BC 
detection

Gene SP SN AC AUC​

PCDH17 0.83 0.74 0.78 0.87

POU4F2 0.90 0.80 0.85 0.92

PENK 0.93 0.76 0.84 0.92

PCDH17+ POU4F2 0.95 0.78 0.86 0.94

P3 0.97 0.87 0.92 0.96
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evolution [34]. Future study on monitoring cancer status 
with methylation based biomarkers could validate this 
hypothesis.

Considering heterogeneity in methylation measurement
In comparison of RRBS and qMSP, PENK related methyl-
ation measured with a shorter region by qMSP appeared 
to have stronger correlation with BCs suggesting gene 
methylation level could be better measured rather than 
adopting a simple mixture of methylation proportion of 
all related loci. Mikeska et al. concluded that heterogene-
ity should be taken into account in measuring methyla-
tion [35]. Scherer et al. further concluded and compared 
serval scores in quantifying within-sample methylation 
heterogeneity [36]. Applying appropriate quantification 
methods with RRBS or targeted bisulfite sequencing 
should improve BC detection accuracy. However, clinical 
application of sequencing techniques is mainly limited by 
the requirements of expensive instruments and reagents 
and a multidisciplinary operator team.

Conclusion
In conclusion, we developed a three-gene methylation 
panel P3 for BC detection with qMSP, which demon-
strated performance improvement in a cohort with 207 
samples and was proven to be stable in analytical vali-
dation. Although further validation will be required for 
commercialising the panel on qMSP platform, it has 
shown great potential value in clinical application.

Abbreviations
ANOVA: Analysis of variance; AUC​: Area under the curve; BC: Bladder cancer; 
DMR: Differentially methylated region; DMS: Differential methylation site; DNA: 
Deoxyribonucleic acid; FISH: Fluorescence in situ hybridization; IVD: In vitro 
diagnostics; MIBC: Muscle invasive bladder cancer; MS-MLPA: Methylation-Spe-
cific Multiplex Ligation-Dependent Probe Amplification; NMIBC: Non-muscle 
invasive bladder cancer; NMP-22: Nuclear matrix protein 22; PCR: Polymerase 
Chain Reaction; qMSP: Quantitative methylation-specific PCR; ROC: Receiver 
Operating Characteristic; RRBS: Reduced representation bisulfite sequencing; 
SVM: Support vector machine.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​022-​09268-y.

Additional file 1. 

Acknowledgements
We thank Bingfeng Leng and Qi Hu for helpful discussion on this study.

Authors’ contributions
Shujun Zhou and Chaojun Wang made substantial contributions to the 
concept and design of the work. Qixun Fang analyzed and interpreted the 
data and was a major contributor in writing the manuscript, and Jianqiang 
Hu substantively revised it. Xu Zhang and Qing Nie performed the sample 
collection and major technical work. All authors read and approved the final 
manuscript.

Funding
None

Availability of data and materials
Sequencing data was deposited to NCBI SRA database and can be accessed 
via https://​www.​ncbi.​nlm.​nih.​gov/​sra/​PRJNA​715028. Differential methylation 
sites and qMSP results can be found in supplementary materials.

Fig. 3  Receiver Operating Characteristic (ROC) curve of individual marker and combined P3 panel

https://doi.org/10.1186/s12885-022-09268-y
https://doi.org/10.1186/s12885-022-09268-y
https://www.ncbi.nlm.nih.gov/sra/PRJNA715028


Page 9 of 10Fang et al. BMC Cancer          (2022) 22:237 	

Declarations

Ethics approval and consent to participate
The fresh urine samples used in this study were obtained from adult patients 
at the First Affiliated Hospital, Zhejiang University School of Medicine, which 
was approved by Zhejiang University Institutional Review Board.
Informed consent was obtained from all of participants with both sex above 
18 years old.
This research was approved by Zhejiang University Institutional Review Board 
including all experimental protocols and all methods in accordance with the 
relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
Shujun Zhou and Qixun Fang are postdoctors in South China University of 
Technology, and Jianqiang Hu is the supervisor and guide. Shujun Zhou 
and Qixun Fang are also the technical directors of the department of R&D in 
Yaneng Bioscience, Co., Ltd., and receive research funding from this company. 
Qing Nie is an employee of Yaneng Bioscience, Co., Ltd. Xu Zhang is a junior 
doctor in the First Affiliated Hospital, Zhejiang University School of Medicine, 
and Chaojun Wang is the head of the Department of Urology. Also, as a uro-
logical surgeon, he is part of the Yaneng Bioscience Medical Advisory Board.

Author details
1 Yaneng Bioscience, Co., Ltd, Shenzhen 518100, China. 2 South China University 
of Technology, Guangzhou 510641, China. 3 Department of Urology, the First 
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, 
China. 

Received: 26 August 2021   Accepted: 2 February 2022

References
	1.	 Parker J, Spiess PE. Current and emerging bladder Cancer urinary bio-

markers. Thescientificworldjo. 2011;11:1103–12. https://​doi.​org/​10.​1100/​
tsw.​2011.​104.

	2.	 Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, Palou J, 
Algaba F, Vicente-Rodriguez J. Primary superficial bladder cancer risk 
groups according to progression, mortality and recurrence. J Urology. 
2000;164(3):680–4. https://​doi.​org/​10.​1016/​S0022-​5347(05)​67280-1.

	3.	 Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Bohle A, Palou-Redorta J, 
et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the 
bladder, the 2011 update. Eur Urol. 2011;59(6):997–1008. https://​doi.​org/​
10.​1016/j.​eururo.​2011.​03.​017.

	4.	 Tritschler S, Sommer ML, Straub J, Hocaoglu Y, Tilki D, Strittmatter F, 
et al. Urinary cytology in era of fluorescence endoscopy: redefining the 
role of an established method with a new reference standard. Urology. 
2010;76(3):677–80. https://​doi.​org/​10.​1016/j.​urolo​gy.​2010.​01.​083.

	5.	 Pisitkun T, Johnstone R, Knepper MA. Discovery of urinary biomarkers. 
Mol Cell Proteomics. 2006;5(10):1760–71. https://​doi.​org/​10.​1074/​mcp.​
R6000​04-​MCP200.

	6.	 Schroeder GL, Lorenzo-Gomez MF, Hautmann SH, Friedrich MG, Ekici S, 
Huland H, et al. A side by side comparison of cytology and biomarkers for 
bladder cancer detection. J Urology. 2004;172(3):1123–6. https://​doi.​org/​
10.​1097/​01.​ju.​00001​34347.​14643.​ab.

	7.	 Esteller M. Molecular origins of cancer: epigenetics in cancer. New Engl J 
Med. 2008;358(11):1148–59. https://​doi.​org/​10.​1056/​NEJMr​a0720​67.

	8.	 Schubeler D. Function and information content of DNA methylation. 
Nature. 2015;517(7534):321–6. https://​doi.​org/​10.​1038/​natur​e14192.

	9.	 Wolff EM, Liang GN, Jones PA. Mechanisms of disease: genetic and 
EPIGENETIC alterations that drive bladder cancer. Nat Clin Pract Urol. 
2005;2(10):502–10. https://​doi.​org/​10.​1038/​ncpur​o0318.

	10.	 Laird PW. The power and the promise of DNA methylation markers. Nat 
Rev Cancer. 2003;3(4):253–66. https://​doi.​org/​10.​1038/​nrc10​45.

	11.	 Kim WJ, Kim YJ. Epigenetic biomarkers in urothelial bladder cancer. Expert 
Rev Mol Diagn. 2009;9(3):259–69. https://​doi.​org/​10.​1586/​Erm.​09.5.

	12.	 Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, et al. 
Comprehensive genome methylation analysis in bladder Cancer: identifi-
cation and validation of novel methylated genes and application of these 
as urinary tumor markers. Clin Cancer Res. 2011;17(17):5582–92. https://​
doi.​org/​10.​1158/​1078-​0432.​Ccr-​10-​2659.

	13.	 Vallot C, Stransky N, Bernard-Pierrot I, Herault A, Zucman-Rossi J, 
Chapeaublanc E, et al. A novel epigenetic phenotype associated with 
the Most aggressive pathway of bladder tumor progression. Jnci-J Natl 
Cancer I. 2011;103(1):47–60. https://​doi.​org/​10.​1093/​jnci/​djq470.

	14.	 Friedrich MG, Weisenberger DJ, Cheng JC, Chandrasoma S, Siegmund 
KD, Gonzalgo ML, et al. Detection of methylated apoptosis-associated 
genes in urine sediments of bladder cancer patients. Clin Cancer Res. 
2004;10(22):7457–65. https://​doi.​org/​10.​1158/​1078-​0432.​Ccr-​04-​0930.

	15.	 Seifert HH, Schmiemann V, Mueller M, Kazimirek M, Onofre F, Neuhausen 
A, et al. In situ detection of global DNA hypomethylation in exfoliative 
urine cytology of patients with suspected bladder cancer. Exp Mol Pathol. 
2007;82(3):292–7. https://​doi.​org/​10.​1016/j.​yexmp.​2006.​08.​002.

	16.	 Kim YK, Kim WJ. Epigenetic markers as promising prognosticators for 
bladder cancer. Int J Urol. 2009;16(1):17–22. https://​doi.​org/​10.​1111/j.​
1442-​2042.​2008.​02143.x.

	17.	 Martin M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet journal. 2011;17(1):10–2.

	18.	 Li YX, Li W. BSMAP: whole genome bisulfite sequence MAPping program. 
Bmc Bioinformatics. 2009;10:1–9.

	19.	 Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practi-
cal and powerful approach to multiple testing. J Roy Stat Soc B Met. 
1995;57(1):289–300.

	20.	 De Strooper LMA, Meijer CJLM, Berkhof J, Hesselink AT, Snijders PJF, Steen-
bergen RDM, et al. Methylation analysis of the FAM19A4 gene in cervical 
scrapes is highly efficient in detecting cervical carcinomas and advanced 
CIN2/3 lesions. Cancer Prev Res. 2014;7(12):1251–7. https://​doi.​org/​10.​
1158/​1940-​6207.​Capr-​14-​0237.

	21.	 Chihara Y, Kanai Y, Fujimoto H, Sugano K, Kawashima K, Liang G, et al. 
Diagnostic markers of urothelial cancer based on DNA methylation analy-
sis. BMC Cancer. 2013;13:275. https://​doi.​org/​10.​1186/​1471-​2407-​13-​275.

	22.	 Yeh CM, Chen PC, Hsieh HY, Jou YC, Lin CT, Tsai MH, et al. Methylomics 
analysis identifies ZNF671 as an epigenetically repressed novel tumor 
suppressor and a potential non-invasive biomarker for the detection of 
urothelial carcinoma. Oncotarget. 2015;6(30):29555–72. https://​doi.​org/​
10.​18632/​oncot​arget.​4986.

	23.	 Yegin Z, Gunes S, Buyukalpelli R. Hypermethylation of TWIST1 and NID2 
in tumor tissues and voided urine in urinary bladder cancer patients. DNA 
Cell Biol. 2013;32(7):386–92. https://​doi.​org/​10.​1089/​dna.​2013.​2030.

	24.	 Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim 
RI, et al. Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately 
predict bladder cancer from DNA-based analyses of urine samples. Clin 
Cancer Res. 2010;16(23):5842–51. https://​doi.​org/​10.​1158/​1078-​0432.​
CCR-​10-​1312.

	25.	 Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, et al. A novel set of DNA 
methylation markers in urine sediments for sensitive/specific detection of 
bladder cancer. Clin Cancer Res. 2007;13(24):7296–304. https://​doi.​org/​10.​
1158/​1078-​0432.​CCR-​07-​0861.

	26.	 Sun J, Chen Z, Zhu T, Yu J, Ma K, Zhang H, et al. Hypermethylated SFRP1, 
but none of other nine genes "informative" for western countries, is valu-
able for bladder cancer detection in mainland China. J Cancer Res Clin 
Oncol. 2009;135(12):1717–27. https://​doi.​org/​10.​1007/​s00432-​009-​0619-z.

	27.	 Pietrusinski M, Kepczynski JA, Borkowska E, Traczyk-Borszynska M, Con-
stantinou M, Kauzewski B, et al. Detection of bladder cancer in urine sedi-
ments by a hypermethylation panel of selected tumor suppressor genes. 
Cancer Biomark. 2017;18(1):47–59. https://​doi.​org/​10.​3233/​CBM-​160673.

	28.	 Chan MW, Chan LW, Tang NL, Tong JH, Lo KW, Lee TL, et al. Hypermeth-
ylation of multiple genes in tumor tissues and voided urine in urinary 
bladder cancer patients. Clin Cancer Res. 2002;8(2):464–70.

	29.	 Wu Y, Jiang G, Zhang N, Liu S, Lin X, Perschon C, et al. HOXA9, PCDH17, 
POU4F2, and ONECUT2 as a urinary biomarker combination for the 
detection of bladder Cancer in Chinese patients with hematuria. Eur Urol 
Focus. 2020;6(2):284–91. https://​doi.​org/​10.​1016/j.​euf.​2018.​09.​016.

	30.	 Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-methylation-based detection 
of urological Cancer in urine: overview of biomarkers and considerations 
on biomarker design, source of DNA, and detection technologies. Int J 
Mol Sci. 2019;20(11). https://​doi.​org/​10.​3390/​ijms2​01126​57.

https://doi.org/10.1100/tsw.2011.104
https://doi.org/10.1100/tsw.2011.104
https://doi.org/10.1016/S0022-5347(05)67280-1
https://doi.org/10.1016/j.eururo.2011.03.017
https://doi.org/10.1016/j.eururo.2011.03.017
https://doi.org/10.1016/j.urology.2010.01.083
https://doi.org/10.1074/mcp.R600004-MCP200
https://doi.org/10.1074/mcp.R600004-MCP200
https://doi.org/10.1097/01.ju.0000134347.14643.ab
https://doi.org/10.1097/01.ju.0000134347.14643.ab
https://doi.org/10.1056/NEJMra072067
https://doi.org/10.1038/nature14192
https://doi.org/10.1038/ncpuro0318
https://doi.org/10.1038/nrc1045
https://doi.org/10.1586/Erm.09.5
https://doi.org/10.1158/1078-0432.Ccr-10-2659
https://doi.org/10.1158/1078-0432.Ccr-10-2659
https://doi.org/10.1093/jnci/djq470
https://doi.org/10.1158/1078-0432.Ccr-04-0930
https://doi.org/10.1016/j.yexmp.2006.08.002
https://doi.org/10.1111/j.1442-2042.2008.02143.x
https://doi.org/10.1111/j.1442-2042.2008.02143.x
https://doi.org/10.1158/1940-6207.Capr-14-0237
https://doi.org/10.1158/1940-6207.Capr-14-0237
https://doi.org/10.1186/1471-2407-13-275
https://doi.org/10.18632/oncotarget.4986
https://doi.org/10.18632/oncotarget.4986
https://doi.org/10.1089/dna.2013.2030
https://doi.org/10.1158/1078-0432.CCR-10-1312
https://doi.org/10.1158/1078-0432.CCR-10-1312
https://doi.org/10.1158/1078-0432.CCR-07-0861
https://doi.org/10.1158/1078-0432.CCR-07-0861
https://doi.org/10.1007/s00432-009-0619-z
https://doi.org/10.3233/CBM-160673
https://doi.org/10.1016/j.euf.2018.09.016
https://doi.org/10.3390/ijms20112657


Page 10 of 10Fang et al. BMC Cancer          (2022) 22:237 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	31.	 Casadio V, Molinari C, Calistri D, Tebaldi M, Gunelli R, Serra L, et al. DNA 
Methylation profiles as predictors of recurrence in non muscle invasive 
bladder cancer: an MS-MLPA approach. J Exp Clin Canc Res. 2013;32:1–9e. 
https://​doi.​org/​10.​1186/​1756-​9966-​32-​94.

	32.	 Wang YQ, Yu Y, Ye R, Zhang D, Li QL, An D, et al. An epigenetic biomarker 
combination of PCDH17 and POU4F2 detects bladder cancer accurately 
by methylation analyses of urine sediment DNA in Han Chinese. Onco-
target. 2016;7(3):2754–64. https://​doi.​org/​10.​18632/​oncot​arget.​6666.

	33.	 Sheffield NC, Pierron G, Klughammer J, Datlinger P, Schonegger A, Schus-
ter M, et al. DNA methylation heterogeneity defines a disease spectrum 
in Ewing sarcoma. Nat Med. 2017;23(3):386–95. https://​doi.​org/​10.​1038/​
nm.​4273.

	34.	 Brocks D, Assenov Y, Minner S, Bogatyrova O, Simon R, Koop C, et al. 
Intratumor DNA methylation heterogeneity reflects clonal evolution in 
aggressive prostate cancer. Cell Rep. 2014;8(3):798–806. https://​doi.​org/​
10.​1016/j.​celrep.​2014.​06.​053.

	35.	 Mikeska T, Candiloro IL, Dobrovic A. The implications of heterogeneous 
DNA methylation for the accurate quantification of methylation. Epig-
enomics. 2010;2(4):561–73. https://​doi.​org/​10.​2217/​epi.​10.​32.

	36.	 Scherer M, Nebel A, Franke A, Walter J, Lengauer T, Bock C, et al. Quantita-
tive comparison of within-sample heterogeneity scores for DNA methyla-
tion data. Nucleic Acids Res. 2020;48(8):e46. https://​doi.​org/​10.​1093/​nar/​
gkaa1​20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/1756-9966-32-94
https://doi.org/10.18632/oncotarget.6666
https://doi.org/10.1038/nm.4273
https://doi.org/10.1038/nm.4273
https://doi.org/10.1016/j.celrep.2014.06.053
https://doi.org/10.1016/j.celrep.2014.06.053
https://doi.org/10.2217/epi.10.32
https://doi.org/10.1093/nar/gkaa120
https://doi.org/10.1093/nar/gkaa120

	Improved urine DNA methylation panel for early bladder cancer detection
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study design
	Patients and sample collection
	DNA extraction
	RRBS library construction
	Data analysis
	Performance verification with RRBS results
	Methylation measuring with qMSP
	Cancer detection with qMSP results
	Reproducibility and limit of detection (LOD) study

	Results
	Novel panel design with relevant literature
	Panel performance analysis with RRBS on clinical samples
	Performance comparison of RRBS and qMSP
	Performance validation on qMSP platform
	Analytical validation on synthetic plasmids
	Performance validation with clinical samples

	Panel potential in BC subtype detection

	Discussion
	Number of biomarker limits detection performance
	Considering heterogeneity in methylation measurement

	Conclusion
	Acknowledgements
	References


