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Abstract: Au nanoparticles (NPs) were prepared by UV light irradiation of a mixed solution of
HAuCl4 and sodium deoxycholate (NaDC) under alkaline condition, in which NaDC served as both
reducing agent and capping agent. The reaction was monitored by circular dichroism (CD) spectra,
and it was found that the formed gold NPs could catalyze the oxidation of NaDC. A CD signal at
~283 nm in the UV region was observed for the oxidation product of NaDC. The intensity of the
CD signal of the oxidation product was enhanced gradually with the reaction time. Electrospray
ionization (ESI) mass spectra and nuclear magnetic resonance (NMR) spectra were carried out to
determine the chemical composition of the oxidation product, revealing that NaDC was selectively
oxidized to sodium 3-keto-12-hydroxy-cholanate (3-KHC). The chiral discrimination abilities of
the micelles of NaDC and its oxidation product, 3-KHC, were investigated by using chiral model
molecules R,S-1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate (R,S-BNDHP). Compared with NaDC,
the micelles of 3-KHC displayed higher binding ability to the chiral model molecules. In addition,
the difference in binding affinity of 3-KHC micelles towards R,S-isomer was observed, and S-isomer
was shown to preferentially bind to the micelles.

Keywords: noble metal nanoparticles; catalytical oxidation; chiral recognition; bile salts;
supramolecular chemistry

1. Introduction

Bile acids are ubiquitous in humans and animals. They are steroid acids biosynthesized from
cholesterol in the liver and have important physiological functions. They promote the solubilization of
lipids and fat-soluble vitamins in living organisms and facilitate their metabolism [1,2]. Bile acids are
usually present in the form of sodium salts in living organisms. Bile salts (BSs) are amphiphilic molecules
possessing a rigid steroid backbone with hydrophilic and hydrophobic faces. Due to the unique
structural properties, BSs are provided with detergent properties. They are a class of biosurfactants
with distinctive aggregation behaviors. The commonly accepted mechanism for the aggregation of BSs
suggests that the micellization of BSs takes place in a stepwise fashion [3–5]. Primary aggregates with
very few BS monomers are formed in aqueous solution driven by hydrophobic interactions between
the monomers at low BS concentration. At higher concentration, secondary aggregates characterized
by larger aggregation numbers are formed via hydrogen bonding interactions between the primary
aggregates. The aggregates of BSs possess hydrophobic pockets that can accommodate hydrophobic
molecules, making them ideal for applications in biological science, biochemistry, drug delivery system,
and separation science [6–10].

Molecules 2019, 24, 4508; doi:10.3390/molecules24244508 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules24244508
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/24/24/4508?type=check_update&version=2


Molecules 2019, 24, 4508 2 of 13

Compared with the conventional surfactants, biosurfactant BSs exhibit exclusive chirality. Chirality
is a fundamental phenomenon found in nature and living organisms. Many biomacromolecules,
such as proteins, enzymes, nucleic acids, and polysaccharides, which are important foundations
of life activities, are homochiral. A pair of enantiomers of chiral molecules may exhibit significant
differences in pharmacological activities, metabolic processes, and toxicities [11,12]. Chiral recognition
is of considerable significance in life and biological sciences and has aroused widespread concern
in the fields of chemistry, medicine, pharmaceuticals, material sciences, and food industries [13–15].
The chiral environments of the BS aggregates provide geometrical specificity for chiral recognition.
They are widely employed as chiral mobile phase additives for separation of chiral isomers in high
performance liquid chromatography (HPLC) and as pseudostationary phases for separation chiral
drugs in micellar electrokinetic capillary chromatography (MECC) [16–18].

During the past few decades, chromatography [e.g., high performance liquid chromatography
(HPLC) and gas chromatography (GC)] and nuclear magnetic resonance (NMR) spectroscopy have
been used extensively to identify chiral isomers [19,20]. These conventional methods are not readily
amenable to high-throughput screening assays and are unsuitable for real-time analysis. In recent years,
some new methods for the determination of the enantiomers have emerged [21–23]. Among them,
optical methods such as UV-Vis absorption, circular dichroism (CD), and fluorescence have been
developed, which can offer direct, fast, reliable, and highly sensitive responses in high-throughput
screening assays [24–26]. CD spectroscopy can provide information on the absolute configuration of
chiral molecules and is most widely utilized to identify enantiomers and their compositions.

Herein, we report the synthesis of Au nanoparticles (NPs) by a photochemical reduction method
by using biosurfactant sodium deoxycholate (NaDC) (Figure 1) as reducing agents and capping ligands.
It was found that the hydroxyl groups of the BSs were involved in the reduction of the noble metal ions.
Under UV light illumination, the hydroxyl groups of NaDC were oxidized to carbonyl groups, and at
the same time, Au3+ ions were reduced to form Au NPs. The oxidation of hydroxyl groups to carbonyl
groups after UV light illumination was confirmed by CD spectrum, revealing a CD signal in the range
of 250–325 nm that corresponded to the absorption of carbonyl groups. After finishing the reduction of
Au3+ ions, the emerging CD signal in the UV region was observed to be further enhanced with the
aging time, indicating that more NaDC molecules were oxidized. That is to say, the generated Au NPs
acted as catalysts to catalyze the oxidation of NaDC with O2. The synthesized oxidation product of
NaDC was further exploited to recognize the chiral enantiomers. By monitoring the evolutions of the
CD signals and the fluorescence of the chiral enantiomers, the performances of NaDC and its oxidation
product in the chiral discrimination were investigated.

Figure 1. Chemical structure of sodium deoxycholate (NaDC).
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2. Results and Discussion

2.1. Chemical Oxidation of NaDC to 3-KHC Catalyzed by Au NPs

Au nanoparticles were synthesized by mixing aqueous solutions of HAuCl4 and sodium
deoxycholate (NaDC) under alkaline condition followed by UV light irradiation for 3 h at room
temperature. The reaction solution exhibited no absorption in the visible wavelength range before UV
light irradiation (Figure 2a). Upon UV light irradiation, the color of the reaction solution changed to
red, and an intense absorption peak appeared at ~536 nm, which was the characteristic surface plasmon
resonance (SPR) of the Au NPs generated by UV light irradiation of the reaction solution [27–29].
Figure 2c-e shows the typical low- and high-magnification transmission electron microscopy (TEM)
images, which illustrate the formation of Au NPs with a diameter of 10.5 ± 2.5 nm after UV light
irradiation. The high-resolution TEM (HR-TEM) image displays interplanar spacing of 0.235 nm
that corresponded to the (111) planes of face-centered cubic (fcc) Au. The circular dichroism (CD)
spectrum showed a strong negative Cotton effect (CE) at about 283 nm, which was different from
the CD signal of the NaDC solution at ~212 nm (Figure 2b). It should be noted that the CD signal
of NaDC decreased after UV light illumination, suggesting that the concentration of NaDC in the
reaction solution decreased. During the photochemical reaction, the NaDC molecules were oxidized;
simultaneously, HAuCl4 were reduced to gold atoms that aggregated into Au NPs [30–32]. It can be
inferred that the CD signal appearing at ~283 nm came from the absorption of the oxidation products
of NaDC for the carbonyl groups obtained by the oxidation of the hydroxyl groups of the NaDC
molecules had an absorption band at ~280 nm.

Figure 2. (a) Absorption and (b) circular dichroism (CD) spectra of HAuCl4 solution, NaDC solution,
the mixed solution of HAuCl4 and NaDC and Au nanoparticles (NPs) prepared by UV light irradiation
in the presence of NaDC. (c) and (d) Representative TEM images of Au NPs prepared by UV light
irradiation in the presence of NaDC. (e) High-magnification TEM image of an individual Au NP.
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The effects of UV exposure times, concentrations, and aging times on the CD signals at ~283 nm
were investigated. As shown in Figure 3a, the intensity of the SPR band was found to increase with
UV irradiation time, and no significant change in the absorbance was observed after 3 h irradiation,
indicating the completion of the reduction of HAuCl4. The evolution of CD signal at ~283 nm is
shown in Figure 3b, revealing that the CD signal increased gradually with increasing irradiation
time. After the completion of the reduction of HAuCl4, the sample obtained was aged at 20 ◦C for
different time, and the CD signal was monitored with varied aging time. As shown in Figure 3c, the CD
signal was enhanced by increasing aging time, whereas the SPR band of Au NPs remained almost
unchanged (Figure 3d). It indicates that the generated Au NPs acted as catalysts for the oxidation of
NaDC. Noble metal NPs are widely used as catalysts for oxidation reactions (such as alcohol and CO
oxidations) and hydrogenation reactions [33,34]. The reaction temperature has an important influence
on the reaction rate. Upon increasing the temperature, the oxidation reaction rate was obviously
accelerated (Figure S1).

Figure 3. (a) Absorption spectra of Au NPs prepared at different times of UV light irradiation. (b) CD
spectra of the oxidation products obtained at different times of UV light irradiation upon the reaction
solutions of HAuCl4 and NaDC. (c) CD spectra of the oxidation products after aging different times.
(d) Absorption spectra of Au NPs after aging different times.

To reveal the effect of the concentrations of NaDC on the generated CD signals, Au NPs were
synthesized in varied NaDC concentrations. Figure 4a–d shows the TEM images of Au NPs prepared
with different concentrations of the NaDC (3, 6, 12, and 24 mM), illustrating that the Au NPs prepared
at low NaDC concentration were irregular in shape, and with an increase in NaDC concentration,
the prepared Au NPs evolved gradually into nearly spherical shapes. The size distributions of the
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synthesized Au NPs at NaDC concentrations of 3 and 24 mM are shown in Figure 4e,f, respectively.
It reveals that the average diameter of the Au NPs prepared at low NaDC concentration was
~17.5 ± 3.5 nm and at higher NaDC concentration was ~10.5 ± 2.5 nm. With increasing NaDC
concentration, the size of Au NPs generated decreased, indicating that a higher concentration of NaDC
was beneficial to the growth of Au NPs with regular morphology and smaller size.

Figure 4. Representative TEM image of Au NPs prepared by UV light irradiation with different
concentration of NaDC: (a) 3 mM, (b) 6 mM, (c) 12 mM, and (d) 24 mM. (e) and (f) demonstrate the size
distribution of Au NPs corresponding to (a) and (d), respectively.

Figure 5a exhibits the UV-Vis absorption spectra of Au NPs prepared at varied NaDC concentrations.
A blue shift of the SPR band was observed with an increase in the concentration of NaDC, suggesting that
the size of the Au NPs decreased, which was confirmed by the results of TEM images. The corresponding
CD spectra shown in Figure 5b demonstrate that the CD signals at ~283 nm were strengthened with
increasing NaDC concentrations. It can be explained based on the fact that the increase in the
concentration of NaDC resulted in an increase in the amounts of oxidized products of NaDC. A
nearly linear relationship existed between the intensity of CD signal at 283 nm and the concentration
of NaDC when NaDC concentration was below 24 mM, as shown in Figure 5c. This suggests that
the catalytical efficiency for the Au NPs prepared at different NaDC concentrations during catalysis
of NaDC oxidation was equivalent. When the concentration of NaDC was higher (e.g., 48 mM),
the amount of Au NPs was insufficient to catalyze the oxidation of NaDC.
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Figure 5. (a) Absorption spectra of Au NPs prepared at different concentrations of NaDC. (b) CD
spectra of the oxidation products obtained at different concentrations of NaDC. (c) Relationship between
the CD intensity (at 283 nm) and the concentration of NaDC over the range from 3 mM to 48 mM.

To investigate the effect of particle size on the catalytical conversion efficiency, NaDC powders
were added to the solution of Au NPs prepared with 3 mM NaDC to give a total NaDC concentration
of 12 mM. The results are shown in Figure S2, revealing that NaDC added after the reduction of Au3+

was also oxidized to products by the Au NPs prepared with 3 mM NaDC. The catalytical efficiency of
the Au NPs with larger size (prepared with 3 mM NaDC) was ~30% lower than that of the Au NPs
with smaller size (prepared with 12 mM NaDC). Furthermore, Au NPs prepared by sodium citrate (SC)
reduction were examined in the catalytical oxidation of NaDC, and the results are shown in Figure S3.
It can be clearly seen that the catalytical efficiency of SC-capped Au NPs was very low. This may
have been due to the presence of the capping agent SC on the surface of Au NPs, which hindered the
catalytical oxidation reaction.

To characterize the oxidation product of NaDC, mass spectra (MS) and nuclear magnetic resonance
(NMR) spectra were measured. ESI mass spectra of the oxidation product is displayed in Figure S4,
showing that the molecular ion of the oxidation product was observed at m/z 389.4. Compared with
the molecular ion of deoxycholic acid ([DC]−) appearing at m/z 391.3, the mass spacing 2 Da
meant the loss of 2H. Thus, the molecular ion of the oxidation product at m/z 389.4 could be
assigned as [DC-2H]−. For NaDC with two hydroxyl groups, the possible oxidation products were
3-keto-12-hydroxy-cholanate, 3-hydroxy-12-keto-cholanate, and 3,12-diketo-cholanate. Based on the
results of MS, the oxidation product of NaDC should have been 3-keto-12-hydroxy-cholanate and/or
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3-hydroxy-12-keto-cholanate. To further identify the oxidation product, NMR measurement was
performed, as shown in Figure S5. The chemical shifts of the two carbon atoms attached to oxygen
atoms appeared at 69.97 and 71.15 ppm in the 13C NMR spectrum of NaDC. In comparison with NaDC,
the 13C NMR spectrum of the oxidation product showed the appearance of a signal of carbonyl carbon
at 216.18 ppm and the loss of a signal of carbon atom attached to an oxygen atom, suggesting that
a hydroxyl group of NaDC was selectively oxidized to a carbonyl group. It can be inferred that the
oxidized hydroxyl was at the C3 position, and the product was sodium 3-keto-12-hydroxy-cholanate
(3-KHC) (see Scheme 1) by comparison of 13C-NMR and 1H-NMR data with those reported [35–38].

Scheme 1. Oxidation of NaDC to sodium 3-keto-12-hydroxy-cholanate (3-KHC) catalyzed by Au NPs.

2.2. Chiral Recognition of R,S-BNDHP in Bile Salt Micelles

Figure 6a shows the CD spectra of R,S-1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate (R,S-BNDHP)
in water and low concentrations of NaDC solutions. The CD spectrum of the aqueous solution of
R,S-BNDHP showed a split Cotton effect with a mirror image relationship in the region of 200–250 nm,
which was assigned to the exciton coupling of 1Bb transitions of the two naphthyl moieties [39,40].
There were no significant changes in CD signals when R,S-BNDHP molecules were dissolved in low
concentrations of NaDC solutions. It should be noted that for R,S-BNDHP in a higher concentration
of NaDC solution the Cotton effect at the short wavelength was gradually weakened (Figure 6b),
which meant that the coupling effect of transition dipoles between the two naphthyl moieties was
weakened. It is well known that NaDC molecules form micelles at high concentrations, which provides
a hydrophobic environment capable of accommodating guest molecules [41–47]. It is supposed that
one of the naphthyl moieties of the BNDHP is embedded in the micelles, which results in the weakening
of the coupling between the two naphthyl moieties.

Figure 6c,d exhibit the evolution of the CD spectra of R,S-BNDHP in the solutions of NaDC
and 3-KHC with different molar fractions. The intensity of the Cotton effect at the short wavelength
decreased with an increasing molar fraction of 3-KHC in the mixed micelles, which was accompanied
by a red shift of the Cotton effect. These results suggest that the increase in the concentration of 3-KHC
facilitated the binding of the R,S-BNDHP in the micelles. As shown in Figure 6e, comparison of the
change in the intensity of the Cotton effect at the short wavelength for the R,S-isomer of BNDHP
indicates that there was a considerable difference in the binding ability between R,S-BNDHP with the
mixed micelles. The observation shows that the S-isomer preferred to bind with the mixed micelles.
This is consistent with the reported literature [38,39].
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Figure 6. (a) CD spectra of R,S-1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate (R,S-BNDHP) in water
and low concentrations of the NaDC solutions. (b) CD spectra of R,S-BNDHP in water and higher
concentrations of the NaDC solutions. (c) CD spectra of R-BNDHP in water and mixed solutions of
NaDC and 3-KHC with a different molar fraction of 3-KHC. (d) CD spectra of S-BNDHP in water and
mixed solutions of NaDC and 3-KHC with a different molar fraction of 3-KHC. (e) Comparison of the
CD intensity (at 214 nm) for R,S-BNDHP in mixed solutions of NaDC and 3-KHC with a different molar
fraction of 3-KHC.
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To further understand the interaction between R,S-BNDHP and the micelles of NaDC and the
mixed micelles of 3-KHC and NaDC, the fluorescence spectra were recorded at excitation wavelengths
of 305 and 317 nm. As shown in Figure 7a,b, the emission spectrum of the aqueous solution of
R,S-BNDHP exhibited a maximum at ~385 nm. In NaDC solutions, the emission spectra of R,S-BNDHP
were varied with an increase in NaDC concentration. In the low concentration of NaDC solution
(0.003 M) below critical micelle concentration (CMC), the emission spectrum of R,S-BNDHP was
similar to that in the aqueous solution. However, as NaDC concentration increased from 3 to 48 mM,
a gradual blue shift of the emission maximum of R,S-BNDHP (from 385 to 356 nm) was observed.
The significant change in the emission maximum implies that the polarity of the environment around
the R,S-BNDHP molecules decreased. That is to say, R,S-BNDHP molecules were preferentially trapped
in the interior of NaDC micelles. The emission spectra of R,S-BNDHP in the mixed micelles of 3-KHC
and NaDC (the total concentration was 12 mM) are shown in Figure 7c and d. The emission maximum
of R,S-BNDHP in the mixed micelles was similar to that in the 12 mM NaDC solution (appearing at
~373 nm). With an increase in the molar fraction of 3-KHC in the mixed micelles, the intensity of the
emission at ~375 nm decreased gradually. From the results of CD spectra, it is known that the presence
of 3-KHC in the micelles facilitated the binding of the R,S-BNDHP (Figure 6e). The hydrophobic pocket
within the micelles formed by 3-KHC and NaDC could accommodate more than one R,S-BNDHP
molecule, thus causing the quenching of their fluorescence.

Figure 7. (a) Emission spectra of R-BNDHP in different concentrations of the NaDC solutions at
excitation wavelength of 317 nm. (b) Emission spectra of S-BNDHP in different concentrations of
the NaDC solutions at excitation wavelength of 317 nm. (c) Emission spectra of R-BNDHP in mixed
solutions of NaDC and 3-KHC with a different molar fraction of 3-KHC at excitation wavelength of
305 nm. (d) Emission spectra of S-BNDHP in mixed solutions of NaDC and 3-KHC with a different
molar fraction of 3-KHC at excitation wavelength of 305 nm.
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3. Materials and Methods

3.1. Materials

Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O), sodium deoxycholate (NaDC),
deoxycholic acid (HDC), and sodium citrate (SC) were obtained from Sigma-Aldrich (Shanghai,
China) and used without further purification. (R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate
(R-BNDHP) and (S)-(+)-1,1′-Binaphthyl-2,2′-diyl hydrogenphosphate (S-BNDHP) were purchased
from Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). NaOH was purchased from Nanjing
Chemical Reagent Co., Ltd. (Nanjing, China). Millipore-Q water was obtained from a Milli-Q device
(18.2 MΩ).

3.2. Preparation of Au NPs in the Presence of NaDC

The synthesis of Au NPs was achieved by photochemical reduction of HAuCl4 in the presence of
NaDC. In a typical synthesis, 237 µL of HAuCl4 solution (25.4 mM) was added to 10 mL of sodium
deoxycholate (24 mM). Then, 200 µL of NaOH solution (1 M) was added into the mixed solution of
HAuCl4 and NaDC. The reduction reaction was initiated by UV light irradiation at 254 nm at room
temperature. The color of the reaction solution gradually changed from colorless to purple, which
indicated the formation of Au NPs. After UV irradiation for different times (0.5, 1, 1.5, 2, 2.5, and 3 h),
the reaction solution was aged at room temperature. The samples with other concentrations of NaDC
were prepared in a similar way.

3.3. Chiral Recognition of R,S-BNDHP

Au NPs were removed by centrifugation from the reaction solution after aging for different times.
Then, 35 µL of 2.5 mM R,S-BNDHP was added to 1.8 mL of the supernatant collected, and the mixture
was vortex-mixed thoroughly and sonicated for 20 minutes. After overnight aging, the CD spectra of
the samples obtained were measured.

3.4. Characterization

UV-vis absorption spectra of the prepared gold NPs were recorded using a U-3010
spectrophotometer (Hitachi Ltd., Tokyo, Japan) at room temperature. The CD spectra of the samples as
well as R,S-BNDHP in aqueous solution and different concentrations of NaDC were measured with
a JASCO J-1500 CD (Japan Spectroscopic Co., Ltd., Tokyo, Japan) spectropolarimeter using a quartz
cell of 1 cm optical path length. Transmission electron microscopy (TEM) images were acquired on a
JEM-200CX (Japan Electron Optics Laboratory Co., Ltd., Tokyo, Japan) electron microscope operating
at an accelerating voltage of 200 kV. High resolution TEM (HRTEM) images were acquired on a Tecnai
G2 F30 S-Twin (FEI Company, Hillsboro, OR, USA) operating at 300 kV. The sample was dropped
onto a carbon-coated copper grid and allowed to dry at room temperature before being analyzed.
The particle size analysis was performed using Nano Measurer 1.2 software. The statistics were done
over ~300 nanoparticles. Fluorescence measurements were carried out by using a FS5 fluorescence
spectrophotometer (Edinburgh instruments Ltd., Livingston, UK). For MS detection, the reaction
solution after removal of the Au NPs was acidified with 1 M HCl. After overnight aging, the solution
obtained was centrifuged. The collected precipitates were dissolved in dilute NaOH solution and
then centrifuged at 12,000 rpm for 30 min. The supernatant was collected and acidified with 1 M
HCl. After overnight aging, the solution was centrifuged, and the precipitates were dried at 45 ◦C.
The measurement of MS spectrum was performed on an Agilent 6100 LC-MS spectrometer (Agilent
Technologies Inc., Santa Clara, CA, USA) with an electrospray ionization (ESI) source operating in
negative ion mode. The nuclear magnetic resonance (NMR) measurements were performed on a
Bruker AVANCE II 400 MHz spectrometer (Bruker Corporation, Billerica, MA, USA). NMR spectra
were recorded at 25 ◦C in CD3OD with tetramethylsilane (TMS) as an internal standard for 1H NMR
and CD3OD signal (49.00 ppm) for 13C NMR.
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4. Conclusions

Au NPs were prepared by photochemical reduction of HAuCl4 in the presence of biosurfactant
NaDC. The results of CD spectra showed that the generated Au NPs exhibited excellent catalytic
performance in the oxidation of NaDC to its oxidation product sodium 3-keto-12-hydroxy-cholanate
(3-KHC). The size of the Au NPs had an effect on the catalytic oxidation efficiency. It was observed that
Au NPs with the smaller size showed higher catalytic activity over the large ones. The chiral recognition
abilities of the micelles formed by NaDC and its oxidation product 3-KHC were investigated by using
R,S-BNDHP as model molecules. Compared with NaDC, the micelles of the oxidation product 3-KHC
exhibited stronger binding ability to the model molecules. It was found that the 3-KHC micelles
showed a preference for the S-enantiomer over the R-enantiomer of BNDHP.

Supplementary Materials: Supplementary Materials can be found online. Figure S1: CD spectra of the oxidation
products obtained at different temperatures. Figure S2: Comparison in the CD signals of the oxidation products
obtained by using Au NPs prepared with 3 mM NaDC as catalyst before and after the addition of the NaDC
powders and by using Au NPs prepared with 12 mM NaDC. Figure S3: (a) CD spectra of the oxidation products
obtained by using SC-capped Au NPs as catalyst. (b) Absorption spectra of the SC-capped Au NPs after the
addition of NaDC powders. Figure S4: Mass spectra of (a) the oxidation products and (b) deoxycholic acid.
Figure S5: 13C (a) and 1H (b) NMR spectra of the oxidation products. The signals of the starting material were
marked by asterisks.

Author Contributions: J.W. designed the experiments; X.X., H.C. and S.-S.Z. assisted with the experiments;
J.W. and Y.-X.P. analyzed and interpreted the data; J.W. wrote the paper; Y.-X.P. helped review and editing
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 21203079
and the Social Development Fund of Zhenjiang City, grant number SH2018011.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci. 2004, 87, 1666–1683.
2. Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology.

World J. Gastroenterol 2009, 15, 804–816. [CrossRef] [PubMed]
3. Barnadas-Rodríguez, R.; Cladera, J. Steroidal surfactants: Detection of premicellar aggregation, secondary

aggregation changes in micelles, and hosting of a highly charged negative substance. Langmuir 2015,
31, 8980–8988. [CrossRef] [PubMed]

4. Gomez-Mendoza, M.; Marin, M.L.; Miranda, M.A. Dansyl-labeled cholic acid as a tool to build speciation
diagrams for the aggregation of bile acids. J. Phys. Chem. B 2012, 116, 14776–14780. [CrossRef] [PubMed]

5. Posa, M.; Pilipovic, A.; Lali, M. The influence of NaCl on hydrophobicity of selected, pharmacologically
active bile acids expressed with chromatographic retention index and critical micellar concentration.
Colloids Surface. B 2010, 81, 336–343. [CrossRef] [PubMed]

6. Zhuang, S.T.; Li, Q.; Cai, L.R.; Wang, C.; Lei, X.G. Chemoproteomic profiling of bile acid interacting proteins.
Acs Cent. Sci. 2017, 3, 501–509. [CrossRef] [PubMed]

7. Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J.
Org. Chem. 2004, 16, 3385–3399. [CrossRef]

8. Maity, B.; Ahmed, S.A.; Seth, D. Interaction of biologically active flavins inside bile salt aggregates: Molecular
level investigation. J. Phys. Chem. B 2016, 120, 9854–9866. [CrossRef]

9. Zhang, M.; Strandman, S.; Waldron, K.C.; Zhu, X.X. Supramolecular hydrogelation with bile acid derivatives:
Structures, properties and applications. J. Mater. Chem. B 2016, 4, 7506–7520. [CrossRef]

10. Dharanivasan, G.; Jesse, D.M.I.; Chandirasekar, S.; Rajendiran, N.; Kathiravan, K. Label free fluorometric
characterization of DNA interaction with cholate capped gold nanoparticles using ethidium bromide as a
fluorescent probe. J. Fluoresc. 2014, 24, 1397–1406. [CrossRef]

11. Katona, B.W.; Cummins, C.L.; Ferguson, A.D.; Li, T.T.; Schmidt, D.R.; Mangelsdorf, D.J.; Covey, D.F.
Synthesis, characterization, and receptor interaction profiles of enantiomeric bile acids. J. Med. Chem. 2007,
50, 6048–6058. [CrossRef] [PubMed]

http://dx.doi.org/10.3748/wjg.15.804
http://www.ncbi.nlm.nih.gov/pubmed/19230041
http://dx.doi.org/10.1021/acs.langmuir.5b01352
http://www.ncbi.nlm.nih.gov/pubmed/26244704
http://dx.doi.org/10.1021/jp308624h
http://www.ncbi.nlm.nih.gov/pubmed/23206209
http://dx.doi.org/10.1016/j.colsurfb.2010.07.031
http://www.ncbi.nlm.nih.gov/pubmed/20702073
http://dx.doi.org/10.1021/acscentsci.7b00134
http://www.ncbi.nlm.nih.gov/pubmed/28573213
http://dx.doi.org/10.1002/ejoc.200300699
http://dx.doi.org/10.1021/acs.jpcb.6b04870
http://dx.doi.org/10.1039/C6TB02270G
http://dx.doi.org/10.1007/s10895-014-1417-9
http://dx.doi.org/10.1021/jm0707931
http://www.ncbi.nlm.nih.gov/pubmed/17963371


Molecules 2019, 24, 4508 12 of 13

12. Houten, S.M.; Watanabe, M.; Auwerx, J. Endocrine functions of bile acids. EMBO J. 2006, 25, 1419–1425.
[CrossRef] [PubMed]

13. Bortolini, O.; Fantin, G.; Fogagnolo, M. Bile acids in asymmetric synthesis and chiral discrimination. Chirality
2010, 22, 486–494. [CrossRef] [PubMed]

14. Zhang, S.Z.; Xie, J.W.; Liu, C.S. Microenvironmental properties and chiral discrimination abilities of bile salt
micelles by fluorescence probe technique. Anal. Chem. 2003, 75, 91–97. [CrossRef]

15. Tyszka, A.; Pikus, G.; Dabrowa, K.; Jurczak, J. Late-stage functionalization of (R)-BINOL-based
diazacoronands and their chiral recognition of a-phenylethylamine hydrochlorides. J. Org. Chem. 2019,
84, 6502–6507. [CrossRef]

16. Meier, A.R.; Yehl, J.B.; Eckenroad, K.W.; Manley, G.A.; Strein, T.G.; Rovnyak, D. Stepwise aggregation of
cholate and deoxycholate dictates the formation and loss of surface-available chirally selective binding sites.
Langmuir 2018, 34, 6489–6501. [CrossRef]

17. Aumatell, A.; Wells, R.J. Enantiomeric differentiation of a wide range of pharmacologically active substances
by cyclodextrin-modified micellar electrokinetic capillary chromatography using a bile salt. J. Fluoresc. A
1994, 688, 329–337. [CrossRef]

18. Strei, T.G.; Morris, D.; Palmer, J.; Landers, J.P. Discontinuous electrophoretic stacking system for
cholate-based electrokinetic chromatographic separation of 8-hydroxy-2 ‘-deoxyguanosine from unmodified
deoxynucleosides Journal of chromatography. B, Biomedical sciences and applications. J. Fluoresc. A 2001,
763, 71–78.

19. Shedania, Z.; Kakava, R.; Volonterio, A.; Farkas, T.; Chankvetadze, B. Separation of enantiomers of chiral
sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using methanol
and methanol-water mixtures as mobile phases. J. Chromatogr. A 2018, 1557, 62–74. [CrossRef]

20. Matarashvili, I.; Ghughunishvili, D.; Chankvetadze, L.; Takaishvili, N.; Khatiashvili, T.; Tsintsadze, M.;
Farkas, T.; Chankvetadze, B. Separation of enantiomers of chiral weak acids with polysaccharide-based
chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: Typical
reversed-phase behavior? J. Chromatogr. A 2017, 1483, 86–92. [CrossRef]

21. Zhang, M.; Ye, B.C. Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver
nanoparticles. Anal. Chem. 2011, 83, 1504–1509. [CrossRef] [PubMed]

22. Yang, F.L.; Kong, N.; Conlan, X.A.; Wang, H.B.; Barrow, C.J.; Yan, F.H.; Guo, J.M.; Yang, W.R. Electrochemical
evidences of chiral molecule recognition using L/D cysteine modified gold electrodes. Electrochim. Acta 2017,
237, 22–28. [CrossRef]

23. Wang, J.; Zhang, S.S.; Xu, X.; Fei, K.X.; Peng, Y.X. A surface mediated supramolecular chiral phenomenon for
recognition of L- and D-cysteine. Nanomaterials 2018, 8, 1027. [CrossRef] [PubMed]

24. Ben-Moshe, A.; Teitelboim, A.; Oron, D.; Markovich, G. Probing the interaction of quantum dots with chiral
capping molecules using circular dichroism spectroscopy. Nano Lett. 2016, 16, 7467–7473. [CrossRef]

25. Herrera, B.T.; Moor, S.R.; McVeigh, M.; Roesner, E.K.; Marini, F.; Anslyn, E.V. Rapid optical determination
of enantiomeric excess, diastereomeric excess, and total concentration using dynamic-covalent assemblies:
A demonstration using 2-aminocyclohexanol and chemometrics. J. Am. Chem. Soc. 2019, 141, 11151–11160.
[CrossRef]

26. Zhu, Y.Y.; Wu, X.D.; Gu, S.X.; Pu, L. Free amino acid recognition: A Bisbinaphthyl-based fluorescent probe
with high enantioselectivity. J. Am. Chem. Soc. 2019, 141, 175–181. [CrossRef]

27. Wang, J.; Fei, K.-X.; Zhang, S.-S.; Peng, Y.-X. Synthesis and plasmonic chiroptical studies of sodium
deoxycholate modified silver nanoparticles. Materials 2018, 11, 1291. [CrossRef]

28. Wang, J.; Xu, X.; Qiu, X.L.; Zhang, S.S.; Peng, Y.X. Yolk–shell structured Au@Ag@mSiO2 as a probe for
sensing cysteine enantiomers and Cu2+ based on circular dichroism. Analyst 2019, 144, 7489–7497. [CrossRef]

29. Song, H.W.; Li, Z.B.; Peng, Y.X.; Li, X.; Xu, X.C.; Pan, J.M.; Niu, X.H. enzyme-triggered in situ formation of
ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity.
Analyst 2019, 144, 2416–2422. [CrossRef]

30. Qiao, Y.; Chen, H.F.; Lin, Y.Y.; Huang, J.B. Controllable synthesis of water-soluble gold nanoparticles and their
applications in electrocatalysis and Surface-Enhanced Raman Scattering. Langmuir 2011, 27, 11090–11097.
[CrossRef]

http://dx.doi.org/10.1038/sj.emboj.7601049
http://www.ncbi.nlm.nih.gov/pubmed/16541101
http://dx.doi.org/10.1002/chir.20769
http://www.ncbi.nlm.nih.gov/pubmed/19743483
http://dx.doi.org/10.1021/ac020373d
http://dx.doi.org/10.1021/acs.joc.9b00630
http://dx.doi.org/10.1021/acs.langmuir.8b00467
http://dx.doi.org/10.1016/0021-9673(94)00885-X
http://dx.doi.org/10.1016/j.chroma.2018.05.002
http://dx.doi.org/10.1016/j.chroma.2016.12.064
http://dx.doi.org/10.1021/ac102922f
http://www.ncbi.nlm.nih.gov/pubmed/21302899
http://dx.doi.org/10.1016/j.electacta.2017.03.180
http://dx.doi.org/10.3390/nano8121027
http://www.ncbi.nlm.nih.gov/pubmed/30544706
http://dx.doi.org/10.1021/acs.nanolett.6b03143
http://dx.doi.org/10.1021/jacs.9b03844
http://dx.doi.org/10.1021/jacs.8b07803
http://dx.doi.org/10.3390/ma11081291
http://dx.doi.org/10.1039/C9AN01541H
http://dx.doi.org/10.1039/C9AN00105K
http://dx.doi.org/10.1021/la2019154


Molecules 2019, 24, 4508 13 of 13

31. Chandirasekar, S.; Chandrasekaran, C.; Muthukumarasamyvel, T.; Sudhandiran, G.; Rajendiran, N. Sodium
cholate-templated blue light-emitting Ag subnanoclusters: In vivo toxicity and imaging in Zebrafish Embryos.
Acs Appl. Mater. Interfaces 2015, 7, 1422–1430. [CrossRef] [PubMed]

32. Shen, J.S.; Chen, Y.L.; Huang, J.L.; Chen, J.D.; Zhao, C.; Zheng, Y.Q.; Yu, T.; Yang, Y.; Zhang, H.W.
Supramolecular hydrogels for creating gold and silver nanoparticles in situ. Soft Matter 2013, 9, 2017–2023.
[CrossRef]

33. Gu, Q.Y.; Sautet, P.; Michel, C. Unraveling the role of base and catalyst polarization in alcohol oxidation on
Au and Pt in water. ACS Catal. 2018, 8, 11716–11721. [CrossRef]

34. Lei, L.J.; Liu, H.; Wu, Z.W.; Qin, Z.F.; Wang, G.F.; Ma, J.Y.; Luo, L.; Fan, W.B.; Wang, J.G. Aerobic
oxidation of alcohols over isolated single Au atoms supported on CeO2 nanorods: Catalysis of interfacial
[O–Ov–Ce–O–Au] sites. Acs Appl. Nano Mater. 2019, 2, 5214–5223. [CrossRef]

35. Li, H.Y.; Shinde, P.B.; Lee, H.J.; Yoo, E.S.; Lee, C.; Hong, J.K.; Choi, S.H.; Jung, J.H. Bile acid derivatives from
a sponge-associated bacterium psychrobacter sp. Arch. Pharm. Res. 2009, 32, 857–862. [CrossRef]

36. Bettarello, L.; Bortolini, O.; Fantin, G.; Guerrini, A. Mixed oxo-hydroxy bile acids as actual or potential
impurities in ursodeoxycholic acid preparation: A 1H and 13C NMR study. Il Farm. 2000, 55, 51–55.
[CrossRef]

37. Bortolini, O.; Fantin, G.; Fogagnolob, M.; Mari, L. Two-way enantioselective control in the epoxidation of
alkenes with the keto bile acid–Oxone® system. Tetrahedron 2006, 62, 4482–4490. [CrossRef]

38. Bertolasi, V.; Bortolini, O.; Fantin, G.; Fogagnolo, M.; Perrone, D. Preparation and characterization of some
keto-bile acid azines. Steroids 2007, 72, 756–764. [CrossRef]

39. Xiao, D.B.; Yang, W.S.; Yao, J.N.; Xi, L.; Yang, X.; Shuai, Z.G. Size-dependent exciton chirality in
(R)-(+)-1,1′-bi-2-naphthol dimethyl ether nanoparticles. J. Am. Chem. Soc. 2004, 126, 15439–15444.
[CrossRef]

40. Yanli, Z.; Aidong, P.; Jing, W.; Wensheng, Y.; Jiannian, Y. Size-tunable exciton chirality and fluorescence
emission in (R)-(−)-2,2-bis-(p-toluenesulfonyloxy)-1,1-binaphthalene nanoparticles. J. Photoch. Photobio. A
2006, 181, 94–98.

41. Eckenroad, K.W.; Manley, G.A.; Yehl, J.B.; Pirnie, R.T.; Strein, T.G.; Rovnyak, D. An edge selection mechanism
for chirally selective solubilization of binaphthyl atropisomeric guests by cholate and deoxycholate micelles.
Chirality 2016, 28, 525–533. [CrossRef] [PubMed]

42. Anderson, S.L.; Rovnyak, D.; Strein, T.G. Direct measurement of the thermodynamics of chiral recognition in
bile salt micelles. Chirality 2016, 28, 290–298. [CrossRef] [PubMed]

43. Cui, H.; He, G.; Wang, H.Y.; Sun, X.H.; Liu, T.H.; Ding, L.P.; Fang, Y. Fabrication of a novel cholic acid
modified OPE-based fluorescent film and its sensing performances to inorganic acids in acetone. Acs Appl.
Mater. Interfaces 2012, 4, 6935–6941. [CrossRef] [PubMed]

44. Boudiombo, J.S.B.; Su, H.; Ravenscroft, N.; Bourne, S.A.; Nassimbeni, L.R. Separation and resolution of
methylcyclohexanones by enclathration with deoxycholic acid. Cryst. Growth Des. 2019, 19, 3962–3968.
[CrossRef]

45. Miyata, M.; Tohnai, N.; Hisaki, I. Crystalline host-guest assemblies of steroidal and related molecules:
Diversity, hierarchy, and supramolecular chirality. Acc. Chem. Res. 2007, 40, 694–702. [CrossRef] [PubMed]

46. Nonappa; Maitra, U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry
and nanoscience. Org. Biomol. Chem. 2008, 6, 657–669. [CrossRef]

47. Adhikari, A.; Dey, S.; Mandal, U.; Das, D.K.; Ghosh, S.; Bhattacharyya, K. Femtosecond solvation dynamics
in different regions of a bile salt aggregate: Excitation wavelength dependence. Phys. Chem. B 2008,
112, 3575–3580. [CrossRef]

Sample Availability: Sample of the compound 3-KHC is available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/am507291t
http://www.ncbi.nlm.nih.gov/pubmed/25552345
http://dx.doi.org/10.1039/c2sm26878g
http://dx.doi.org/10.1021/acscatal.8b03494
http://dx.doi.org/10.1021/acsanm.9b01091
http://dx.doi.org/10.1007/s12272-009-1607-1
http://dx.doi.org/10.1016/S0014-827X(99)00121-4
http://dx.doi.org/10.1016/j.tet.2006.02.052
http://dx.doi.org/10.1016/j.steroids.2007.06.005
http://dx.doi.org/10.1021/ja047309t
http://dx.doi.org/10.1002/chir.22609
http://www.ncbi.nlm.nih.gov/pubmed/27300496
http://dx.doi.org/10.1002/chir.22580
http://www.ncbi.nlm.nih.gov/pubmed/26901282
http://dx.doi.org/10.1021/am302069p
http://www.ncbi.nlm.nih.gov/pubmed/23148745
http://dx.doi.org/10.1021/acs.cgd.9b00369
http://dx.doi.org/10.1021/ar700017a
http://www.ncbi.nlm.nih.gov/pubmed/17559188
http://dx.doi.org/10.1039/b714475j
http://dx.doi.org/10.1021/jp7106445
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Chemical Oxidation of NaDC to 3-KHC Catalyzed by Au NPs 
	Chiral Recognition of R,S-BNDHP in Bile Salt Micelles 

	Materials and Methods 
	Materials 
	Preparation of Au NPs in the Presence of NaDC 
	Chiral Recognition of R,S-BNDHP 
	Characterization 

	Conclusions 
	References

