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Beyond inducing epithelial-to-mesenchymal transcription (EMT), transcrip-

tional factors of the Snail, ZEB and Twist families (EMT-TFs) control glo-

bal plasticity programmes affecting cell stemness and fate. Literature

addressing the reactivation of these factors in adult tumour cells is very

extensive, as they enable cancer cell plasticity and fuel both tumour initia-

tion and metastatic spread. Incipient data reveal that EMT-TFs are also

expressed in fibroblasts, providing these with additional properties. Here, I

will review recent reports on the expression of EMT-TFs in cancer-

associated fibroblasts (CAFs). The new model suggests that EMT-TFs can

be envisioned as essential metastasis and chemoresistance-promoting mole-

cules, thereby enabling coordinated plasticity programmes in parenchyma

and stroma–tumour compartments.

1. Introduction

Ordinary fibroblasts orchestrate the organization and

activities of the extracellular milieu, maintaining adult

tissue homeostasis and contributing to proper cell

communication and function. Their activity is exacer-

bated in restricted tissue areas by increased remod-

elling requirements, for instance in fibrotic tissues and

in granulation tissues generated to heal epithelial

wounds (Hinz, 2010). In agreement with their contrac-

tile ability, activated fibroblasts are named myofibrob-

lasts. Similar fibroblasts, named cancer-associated

fibroblast or CAFs, are found around tumours,

where they support biomechanical and biochemical

remodelling of the stromal extracellular matrix that

favours tumour malignance (Kuzet and Gaggioli,

2016; Malik et al., 2015).

In granulation and fibrotic tissues, TGF-b and

inflammatory molecules secreted by injured cells, or

cells responding to their signals, promote a fibroblast–
myofibroblast transition (Desmouli�ere et al., 1993).

Similarly, molecules secreted by tumour cells support

the emergence of CAFs (Rybinski et al., 2014; Webber

et al., 2015) from resident fibroblasts and other host

mesenchymal cells (Kuzet and Gaggioli, 2016; Polan-

ska and Orimo, 2013). TGF-b signalling is a key path-

way for inducing CAF activity, tumour metastasis and

malignance (Calon et al., 2014). Thus, in breast
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(Richardsen et al., 2012), colorectal (Calon et al.,

2012; Tsushima et al., 1996) and prostate cancers

(Steiner and Barrack, 1992), elevated expression of

TGF-b in the tumour area is associated with poor

prognosis and locally advanced disease.

The Snail, ZEB and Twist proteins were initially

described as EMT-TFs. All of these factors are

expressed in embryogenesis and regulate developmen-

tal programmes (Shook and Keller, 2003). Beyond

EMT, we currently know that they are also involved

in controlling global plasticity programmes affecting

cell stemness and fate (Nieto and Cano, 2012), and

aberrant reactivation of EMT-TFs in adult tumour

epithelial cells can promote cancer cell plasticity and

trigger both tumour initiation and metastatic spread

(Puisieux et al., 2014). In adult healthy tissues, EMT-

TFs are not expressed by the bulk of adult epithelial

cells and fibroblasts. In contrast, a subset of mesoder-

mal-derived cells, mainly activated fibroblasts (Franc�ı

et al., 2006; Isenmann et al., 2009; Wang et al., 1997)

(see below), were found to clearly express EMT-TFs.

This restricted expression suggests that EMT-TFs pro-

vide fibroblasts with additional properties.

In contrast to the abundant information about the

action of EMT-TFs on epithelial cells, information

about their actions in fibroblasts is just emerging.

Here, I will review the incipient literature describing

increased expression of EMT-TF in CAFs. Available

data suggest that EMT-TFs are required for the action

of CAF on extracellular paracrine and mechanical sig-

nalling that stimulate the expression of EMT-TFs in

adjacent tumour cells. Thus, EMT-TFs promote coor-

dinated cell plasticity changes in tumour parenchyma

and stroma, supporting metastasis and chemoresis-

tance.

2. Role of Snail proteins in fibroblasts

2.1. Snail1 expression in CAFs and other

activated fibroblasts

Analysis of Snail1 expression in tissues has been hin-

dered by the fact that the expression of Snail1 is

tightly controlled at the post-transcriptional level and

usually cannot be correctly estimated by RNA analy-

ses (Côme et al., 2006; D�ıaz and de Herreros, 2016;

D�ıaz et al., 2014), and by the limitation of specific

antibodies available. While commercial antibodies are

not fully specific and give rise to abundant back-

ground, other antibodies require severe antigen retrie-

val conditions and intensive blocking and washing to

obtain weak but specific staining. Franc�ı et al. detected

negligible reactivity in adult tissues and concluded that

Snail1 was not constitutively expressed in most of the

adult mesenchymal cells. In epithelial tumours, Snail1

expression presents a limited distribution restricted to

stromal cells placed in the vicinity of the tumour and

to tumour cells in the same areas (Franc�ı et al., 2006).

In specific types of breast tumours, Snail1 is also

detected in both tumoural compartments (Côme et al.,

2006).

A further analysis showed that expression of Snail1

protein in the stroma is a putative prognosis marker

for colon tumours, as Snail1 immunoreactivity in this

compartment was associated with the presence of

metastasis and with lower specific survival of patients

with cancer (Franc�ı et al., 2009). These correlations

were already detected in early tumour stages. In pha-

ryngeal squamous cell carcinomas, Snail1 expression in

tumour stromal myofibroblasts and endothelial cells

also predicts poor survival (Jouppila-M€att€o et al.,

2011b). Moreover, simultaneous expression of Snail1

and Twist1 in stromal cells is associated with clinical

and histopathological characteristics that indicate dis-

ease progression, and negative expression of these

EMT-TFs predicts a better outcome (Jouppila-M€att€o

et al., 2011a). The value of stromal Snail1 as a prog-

nosis factor was further extended to infiltrating breast

cancers, in which specimens with Snail1(+) CAF tend

to exhibit desmoplastic areas with anisotropic fibres

and are associated with lymph node involvement and

poorer outcomes (Stanisavljevic et al., 2014).

Using a panel of cultured CAF lines established

from colon cancer biopsies, Snail1 levels were shown

to correlate with myofibroblast markers and activity

on extracellular matrix (Stanisavljevic et al., 2014) and

with their ability to promote tumour cell invasion in a

paracrine manner (Herrera et al., 2013, 2014). Loss-

of-function experiments in cell culture and mice

demonstrated that Snail1 activity is indeed required

for CAF activity. Inducible Snail1 depletion in estab-

lished CAF lines decreases their paracrine activity on

collective invasion of breast and colon tumour cells.

Accordingly, epithelial tumour cells co-xenografted

with Snail1-depleted fibroblasts originated tumours

with lower invasion than those transplanted with con-

trol fibroblasts (Alba-Castell�on et al., 2016). Alto-

gether, these data (summarized in Table 1)

demonstrate that Snail1 activity is required for the

activity of CAFs in promoting tumour progression.

As mentioned, Snail1 is expressed in myofibroblast

implicated in wound healing (Franc�ı et al., 2006).

Indeed, induced depletion of Snail1 prevents the aniso-

tropic organization of granulation tissue and delays

wound healing (Stanisavljevic et al., 2014). Moreover,

the factor is detected in conditions causing
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hyperstimulation of fibroblasts, such as fibromatosis,

as well as in sarcomas and fibrosarcomas (Franc�ı

et al., 2006). Alba-Castell�on et al. showed that genetic

depletion of Snail1 in mesenchymal stem cells (MSCs)

deficient for the p53 tumour suppressor downregulates

MSC markers and prevents these cells from producing

sarcomas in immunodeficient SCID mice. Moreover,

human sarcomas display high Snail1 expression, par-

ticularly in undifferentiated tumours, and this is asso-

ciated with poor outcome (Alba-Castell�on et al.,

2014).

Actions of Snail1 are also linked to cardiac myofi-

broblasts. First, it was found upregulated in the

infarcted heart (Liu et al., 2012), and recently, Snail1

expression in cardiac fibroblasts has been confirmed to

be required for deposition of collagen I, expression of

fibrosis-related genes and adoption of a myofibroblast

fate. Published data suggest that Snail1 expression is

induced in the cardiac fibroblasts after hypoxic injury

and that it contributes to myofibroblast phenotype

and fibrotic scar formation (Biswas and Longmore,

2016).

Following a hepatic injury that produces fibrosis,

Snail1 was found to be a critical mediator of hepatic

stellate cell activation to produce myofibroblasts

(Scarpa et al., 2011). Goyal et al. correlated Snail1

expression with cutaneous fibrotic disorders. They

found that Snail1 expression was low in normal skin

but high in all fibrotic conditions studied, including

skin biopsy specimens of keloid, hypertrophic scar,

scleroderma, and nephrogenic systemic fibrosis (Goyal

et al., 2016).

Therefore, collectively, all these data indicate that

Snail1 expression controls the activity of most of the

physiologically and pathologically activated fibrob-

lasts, including CAFs.

Table 1. Summary of reported EMT-TFs expressed in CAFs and their effects.

Factors Tumour type/Cells Observations Reference

Snail1 Cervical squamous cell carcinoma

Colon carcinoma

Expression in tumour–stroma interface Franc�ı et al. (2006)

Snail1 Breast tumour Expression in stroma Côme et al. (2006)

Snail1 Colon carcinoma Prognostic marker for stage I and II tumours. Franc�ı et al. (2009)

Snail1 Pharyngeal squamous

cell carcinoma

Expression in stroma and endothelial cells

predicts poor survival

Jouppila-M€att€o et al. (2011b)

Snail1-Twist1 Pharyngeal squamous

cell carcinoma

Expression in stroma predicts

disease progression, while absence

predicts better outcome

Jouppila-M€att€o et al. (2011a)

Snail1 Breast cancer

Cultured colorectal CAFs

Prognostic marker in early-infiltrating tumours

Extracellular architecture control

Stanisavljevic et al. (2014)

Snail1 Colon carcinoma

Cultured colorectal CAFs

Association with a-SMA and FAP expression

Specific cytokine profile

Herrera et al. (2014)

Snail1 Cultured colorectal CAFs

Genetic breast cancer in mice

Secretion of diffusible signalling molecules

promoting tumour invasion

Alba-Castell�on et al. (2016)

Twist1 Gastric carcinoma

Cultured lung and skin fibroblasts

Coexpression with CAF markers

Association with poor prognosis

(diffuse-type tumours)

Sung et al. (2011)

Twist1 Cultured human gastric

fibroblasts and CAFs

Gastric carcinoma

Activation by tumoral IL6 via p-STAT3

Necessary for CAF activation

CXCL12 Twist1 target that is associated

with the presence of CAFs

Lee et al. (2015)

Twist1 Mammary xenografts Downstream effector of CD44 activated CAFs Spaeth et al. (2013)

Twist1/2 Colorectal cancer Stromal Twist1/2 expression in

budding colorectal tumours

Twist1 associates with adverse features

Galv�an et al. (2015)

Twist1 Colorectal cancer

Human fibroblast

Expression in tumour-stroma

Matrix stiffness control via paladin and ColA1

Garc�ıa-Palmero et al. (2016)

ZEB1 Pancreatic ductal adenocarcinoma Independent predictor of survival after resection Bronsert et al. (2014)

ZEB1/2-Snail1 Pancreatic ductal adenocarcinoma Expression in tumour and stromal cells

Only stromal ZEB2 significantly

associated with metastasis

Galv�an et al. (2015)

ZEB2 Pharyngeal squamous cell carcinoma More relapse for stroma-positive tumours

Better disease-specific and overall survival

for negative tumours

Jouppila-M€att€o et al. (2015)
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2.2. Molecular mechanisms up- and downstream

of fibroblastic Snail1

Basal expression of Snail1 in cultures of adult fibrob-

lasts does not reflect its undetectable levels in adult tis-

sue but likely reflects an artefactual expression in

response to the culture conditions; however, even in

these conditions, Snail1 is increased by TGF-b (Batlle

et al., 2013) and PDGF-BB (platelet-derived growth

factor-BB) through the phosphoinositide-3-kinase

pathway (Rowe et al., 2009). Although no direct data

on Snail2 expression or its potential role in CAFs and

other activated fibroblasts have been reported, it is

likely to play a role as, as for Snail1, its RNA levels

increase in mouse embryonic fibroblasts activated with

TGF-b (Liu et al., 2013). TGF-b has been described as

a regulator of CAFs (Calon et al., 2014) and is also

required for fibroblast activation in wound healing

and fibrosis (Rybinski et al., 2014), pointing to TGF-b
as an effective paracrine inducer of Snail1 expression

in adult fibroblasts.

On the other hand, mechanical signals regulate and

activate Snail1 protein in CAFs. Zhang et al. described

a sequence of events initiated by the induction of

ROCK activity in response to ECM stiffness that indi-

rectly stabilizes Snail1 protein by increasing intracellu-

lar tension, integrin clustering, and integrin signalling

to ERK2. Increased ERK2 activity leads to nuclear

accumulation of Snail1, and thus to avoidance of

cytosolic proteasomal degradation (Zhang et al.,

2016). This mechanism, which increases in tumour

fibrosis, can perpetuate activation of CAFs to sustain

tumour fibrosis and to promote tumour metastasis

through the regulation of Snail1 protein level and

activity (Baulida and Garc�ıa de Herreros, 2015; Zhang

et al., 2016).

In contrast to the abundant literature characterizing

Snail1-dependent molecular mechanisms in EMT, only

a few reports have addressed these mechanisms in

fibroblast activation. Using cultured fibroblast acti-

vated with serum within a tissue-like three-dimensional

extracellular matrix, Snail1 was suggested to have

functions following terminal differentiation of mes-

enchymal cells. Specifically, Snail1-deficient fibroblasts

exhibit global alterations in gene expression, which

include defects in invasive activity that depend on

membrane-type 1 matrix metalloproteinase (Rowe

et al., 2009).

Snail1 was described to be required for the rapid

TGF-b-induced RhoA activity upregulation that con-

trols cytoskeletal rearrangements in fibroblasts

(Stanisavljevic et al., 2014), although the detailed

mechanism is still unaddressed. Two other reports

indicate that Snail1 is required for driving a CAF-spe-

cific secretome, including for MCP-3 expression

(Herrera et al., 2014) or for prostaglandin E2 (PGE2)

secretion, likely through transcriptional control of

PGE2 metabolism regulatory molecules (Alba-

Castell�on et al., 2016). Snail1 also influences the level

and activity of the mechanotransductor YAP1 in

CAFs exposed to a stiff matrix (Zhang et al., 2016).

Under such condition, Snail1/2 can form complexes

with YAP/TAZ that control skeletal stem/stromal cell

homeostasis and osteogenesis (Tang et al., 2016).

3. Twist protein expression in CAFs

During mouse embryogenesis, Twist1 is expressed in

various mesodermal tissues (F€uchtbauer, 1995; Stoetzel

et al., 1995), but after birth, it is barely detectable in

normal mesenchymal cells of adult tissues and limited

to mesenchymal stem cells (Isenmann et al., 2009;

Wang et al., 1997) and human white adipocytes

(Pettersson et al., 2010). Twist1 overexpression has

been reported in a variety of epithelial cancer cells

with clinical correlations with poor prognosis, an event

associated with its capacity to promote EMT (Ansieau

et al., 2010). Recently, Twist1-expressing stromal

fibroblasts within cancer tissue have been observed

(Table 1), but elucidating the clinical significance of

this and the underlying regulating mechanism require

more investigation (see below).

Using a Twist1 monoclonal antibody to analyse gas-

tric cancer fibroblasts, researchers in Kim0s laboratory

observed Twist1 expression in CAFs more frequently

than in other cancer cells but rarely observed Twist1

to be expressed in noncancerous tissue (Sung et al.,

2011). By laser capture microdissection, they detected

that the Twist1 immunopositive stromal fibroblasts

express significantly increased CAF markers, such as

for the fibroblast-specific protein 1 and CXCL14.

Twist1 mRNA expression showed a significant linear

correlation with that of PDGF receptors b and a.
Conditioned media from Twist1-expressing skin and

lung fibroblasts significantly promote invasion of gas-

tric cancer cells in vitro (Sung et al., 2011). In 195 gas-

tric cancer samples, Twist1 expression in CAFs was

associated with tumour size, invasion depth and lymph

node metastasis. Twist1 was also associated with poor

prognosis in patients with gastric cancer, particularly

in those with the diffuse type (Sung et al., 2011).

Later, they further demonstrated that Twist1 is a key

regulator of CAFs. They show that proinflammatory

cytokine IL6 that is commonly expressed in tumours

was sufficient to induce Twist1 expression in normal

cultured fibroblasts and to transdifferentiate them into
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CAFs through STAT3 phosphorylation. Twist1

expression was necessary and sufficient for CAF acti-

vation, and silencing its expression in CAFs inhibited

their tumour-promoting properties. Finally, the

authors defined the chemokine CXCL12 as a Twist1

transcriptional target, and expression of both proteins

correlated with the presence of CAFs in gastric

tumour specimens (Lee et al., 2015).

Studies carried out in other laboratories also sup-

port a role for Twist1 in CAFs. In the tumour

microenvironment of mammary xenografts, mesenchy-

mal CD44 expression contributes to the acquisition of

an activated fibroblast phenotype via Twist1 activation

(Spaeth et al., 2013). Laser capture microdissection of

epithelium and stroma from low- and high-grade bud-

ding colorectal tumours shows Twist1 and Twist2

expression to be essentially restricted to stromal cells.

Twist1, but not Twist2, staining was associated with

adverse features, including a worse overall survival

time (Galv�an et al., 2015). Similarly, in colorectal can-

cers, Twist1 expression was found to be mainly

restricted to tumour–stroma. In this study, the authors

show that Twist1-induced activation of human fibrob-

lasts promotes matrix stiffness by upregulating pal-

ladin and collagen a1(VI) (Garc�ıa-Palmero et al.,

2016).

More recently, an increased expression of fibroblas-

tic Twist1 has been reported in fibrotic human and

murine skin, which is dependent on TGF-b/SMAD3.

Twist1, in turn, enhances TGF-b-induced fibroblast

activation in a p38 MAP kinase-dependent manner.

The stimulatory effects of Twist1 on resident fibrob-

lasts were mediated by Twist1 homodimers. This is

because TGF-b upregulates the expression not only of

Twist1 but also of Twist1 competitors for E12/E47

and, as a consequence, the formation of Twist1

homodimers is favoured that of Twist1-E12/E47 het-

erodimers. Mice with selective depletion of Twist1 in

fibroblasts are therefore protected from experimental

skin fibrosis in different murine models to a compara-

ble degree as mice with a ubiquitous depletion of

Twist1 (Palumbo-Zerr et al., 2017). Thus, Twist1 can

be considered as a profibrotic factor in systemic sclero-

sis and a key regulator of CAFs.

4. ZEB protein expression in CAFs

Bronsert et al. (2014) identified stromal ZEB1 expres-

sion as an independent predictor of survival after

resection of pancreatic ductal adenocarcinoma. In 117

cases included in the study, they found that high

ZEB1 expression in cancer cells and CAFs was associ-

ated with poor prognosis. While there was also a trend

for poor prognosis with a lymph node ratio, multivari-

ate analyses showed stromal ZEB1 expression grade to

be the only independent factor of survival after resec-

tion. In a different report, ZEB1, ZEB2 and Snail1

were also detected in tumour and stromal cells of pan-

creatic ductal adenocarcinoma; however, when the

authors analysed the association between stromal

expression and lymph node metastasis, only ZEB2

expression was significantly associated with metastasis

(Galv�an et al., 2015). In pharyngeal squamous cell car-

cinoma, tumours with positive stromal ZEB2 staining

relapsed more often than those with negative tumours,

and negative stromal ZEB2 immunoreactivity corre-

lated significantly with better disease-specific survival

and overall survival (Jouppila-M€att€o et al., 2015)

(Table 1).

Further reports show ZEB1 and ZEB2 functions in

nontumorigenic activated fibroblasts. Data from

Chang et al. (2014) suggest that ZEB1 may participate

in the pathogenesis of oral submucous fibrosis by acti-

vating the a-SMA promoter and inducing myofibrob-

last transdifferentiation from buccal mucosal

fibroblasts: silencing ZEB1 in fibrotic fibroblasts iso-

lated from a patient suppressed the expression of a-
SMA and myofibroblast activity and inhibition of

insulin-like growth factor receptor-1 could suppress

ZEB1 activation in fibrosis. Zhou et al. (2015) studied

post-traumatic hypertrophic scars, a fibrotic disease

with excessive ECM production by fibroblasts in

response to tissue injury, and they demonstrated that

the TGF-b/miR200b/ZEB1 pathway might participate

in this pathogenesis. Cunnington et al. found ZEB2 to

be related to the myofibroblast phenotype. Specifically,

they showed that ZEB2 protein expression increases in

the infarct scar and propose that the Ski-ZEB2-Meox2

pathway provides a novel mechanism for regulation of

the cardiac myofibroblast phenotype (Cunnington

et al., 2014).

5. CAFs expressing EMT-TFs prime
EMT-TF expression in tumour cells

As described above, EMT-TF expression in CAF has

been associated with stromal signatures and tumour

malignance. In addition, some reports link the pres-

ence of a malignant stromal signature to the expres-

sion of EMT-TFs in tumour epithelial cells. Thus, in

ER-positive and hormone-treated breast cancer

patients, Roman-P�erez et al. describe an active subtype

of breast microenvironment (with high expression of

fibrosis and cell motility genes) strongly associated not

only with lower overall survival and a TGF-b-induced
fibroblast signature, but also with an epithelial Twist1
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overexpression signature. The tumour tissue exhibited

a higher density of Twist1 nuclear staining

predominantly in epithelium (Rom�an-P�erez et al.,

2012). In colon tumours, comparative RNA analyses

in stromahigh (aggressive) and stromalow tumours show

that the neoplastic cells from stromahigh tumours

express specific EMT drivers (ZEB2 and Twist1-2) and

that 98% of differentially expressed genes in these

tumour types are strongly correlated with these two

EMT-TFs (Vellinga et al., 2016).

Immunohistochemical analyses suggest that CAFs

expressing EMT-TFs promote expression of these fac-

tors in adjacent tumour cells. In a cohort of 162 col-

orectal tumours, 128 specimens expressed Snail1; of

these 128, 96 were positive simultaneously for stroma

and tumour cell, 24 were only stroma positive, and 4

expressed Snail1 exclusively in tumour cells (Franc�ı

et al., 2009). These data, together with the observation

that stromal and epithelial Snail1 staining were in the

same tumour area, suggest that the expression of

Snail1 in the two compartments is somehow linked

and that stromal expansion precedes tumour expres-

sion (Fig. 1). Similar observations were reported for

the ZEB1 protein in a study of 117 pancreatic ductal

adenocarcinomas. While all specimens displayed some

degree of ZEB1 expression in the stroma, 63 did not

express ZEB1 in the epithelial tumour cells, and high

levels of stromal ZEB1 correlated with positive stain-

ing in the tumour (Bronsert et al., 2014).

A cascade of paracrine secreted factors regulated by

EMT-TFs might drive sequential expression of EMT-

TFs in stromal and parenchymal tumour cells but

experimental evidence is still missing. In gastric

cancers, IL6 activates fibroblastic Twist1, and the

resulting CAFs secrete the chemokine CXCL12 in a

Twist1-dependent manner (Lee et al., 2015). Although

CXCL12 promotes the expression of Snail1 (Liao

et al., 2016; Lv et al., 2015) and Twist1 (Yao et al.,

2016) in glioblastoma cancer cells, and of Snail1 in

human oral squamous cell carcinomas (Taki et al.,

2008), no reports show CXCL12-induced expression of

Snail1 or Twist1 in tumour cells of gastric cancers.

However, CAFs expressing EMT-TFs can also pro-

mote the expression of EMT-TFs in adjacent epithelial

cells by increasing the stroma rigidity (Fig. 1B). In

breast tumours, the presence of dense clusters of colla-

gen fibrils indicates increased matrix stiffness and cor-

relates with poor survival (Conklin et al., 2011;

Provenzano et al., 2008). It has been reported that

Snail1-expressing CAFs regulate ECM stiffness and

that the presence of CAFs expressing Snail1 in early-

infiltrating breast tumours correlates with a tumour

perpendicular fibre organization within the tumour

and bad prognosis (Stanisavljevic et al., 2014). As

mentioned above, rigid substrates stabilize nuclear

Snail1 in breast tumour cells but also can drive EMT

and tumour metastasis, through a Twist1-G3BP2

mechanotransduction pathway. Specifically, high

matrix stiffness promotes nuclear translocation of

Twist1 by releasing it from its cytoplasmic binding

partner G3BP2. In human breast tumours, collagen

fibre alignment and reduced expression of G3BP2

together predict poor survival (Wei et al., 2015). Thus,

by increasing stromal rigidity, CAFs can condition

cancer cells to express EMT-TFs even when tumour

cells accumulate loss-of-function mutations in the sig-

nalling pathways that promote the EMT, such as the

TGF-b pathway, as described in some colorectal can-

cers (Fearon, 2011).

Based on these considerations, sequential EMT-TF

expression in tumour–stroma and parenchyma cells is

envisioned to support tumour malignance (Fig. 1).

Oncogenic mutations in epithelial cells initiate uncon-

trolled growth that generates primary tumour foci.

Then, specific paracrine signalling secreted by tumour

cells or cells activated by these tumour cells switch on

the expression of EMT-TFs in adjacent fibroblasts,

which drives CAF activation (Fig. 1A). EMT-TF-

dependent CAF activity on extracellular architecture

and secretome promotes tumour malignance because

microenvironmental changes stimulate EMT-TFs

expression in tumour cells that sustains stemness,

increased tumour cell motility, and chemoresistance

(Fig. 1B). Therefore, EMT-TFs detection in parench-

yma and stroma is indicative of coordinated changes

in cell behaviour and poor cancer prognosis.

6. How does the activity of EMT-TFs
trigger and establish a CAF
phenotype?

The above-summarized data point to signalling path-

ways regulated by EMT-TFs that promote the CAF

phenotype. However, detailed expression and cross-

regulation of the EMT-TFs during the activation and

stabilization of CAFs have yet to be characterized,

and other yet-undescribed EMT-TF activities could be

also required (i.e. pertaining to the stability or subcel-

lular localization of regulatory proteins). To overcome

these limitations, and to envision a sequence of events

that could induce the CAF phenotype (Fig. 2), we can

use reported EMT-TF-activities from other cell types

to complement the known EMT-TF actions in CAFs.

An initial expression of EMT-TFs in fibroblasts can

modulate the contractile actomyosin cytoskeleton at

different regulatory points, thereby switching on the
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myofibroblast transition: (a) Snail1 triggers RhoA and

the downstream effectors that assemble and activate

the highly contractile a-SMA actin fibres; (b) ZEB1

affects these fibres and induces myofibroblast transdif-

ferentiation by controlling the a-SMA promoter in

oral submucous fibrosis; (c) Twist1 upregulates the

cytoskeletal protein palladin; and (d) because Snail1/2

(Tang et al., 2016) and ZEB1 (Selth et al., 2017) influ-

ence the activity of YAP1 in several contexts, they

could also modulate the YAP1 pathway in CAFs, thus

modulating the extracellular matrix by increasing the

expression of several cytoskeletal regulators (including

ANLN and DIAPH3) and by controlling the protein

levels of MYL9 (Calvo et al., 2013). In this way,

EMT-TFs can both directly and indirectly affect

polymerization and remodelling of the extracellular

fibres through focal adhesion-transmitted tension

(Fig. 2A,C).

As reviewed above, EMT-TFs also affect the extra-

cellular environment by increasing the expression of

structural and soluble ECM molecules and the activity

of remodelling enzymes. In activated fibroblasts, Snail1

induces the expression of fibronectin, collagen and the

collagen-crosslinking enzyme LOX1, which promote

matrix rigidity. Similarly, Twist1 promotes collagen a1
expression. These data can be complemented by obser-

vations in cancer cells, in which ZEB1 induces

LOXL2-mediated collagen stabilization and deposition

in the extracellular matrix (Peng et al., 2017), and

Snail1 and Twist1 expression affects the activity of

Fig. 1. Paracrine signalling and mechanical signalling generated by CAFs in an EMT-TF-dependent manner promote the expression of EMT-

TFs in cancer epithelial cells. (A) Tissue homeostasis in mammary glands is maintained by a coordinated signalling between epithelial cells

(yellow) and stromal cells (orange). Oncogenic mutations in epithelial cells fuel uncontrolled epithelial growth, generating primary tumour

foci (purple cells). Paracrine signalling from tumour cells (orange arrow in the magnified box) promotes the expression of nuclear EMT-TFs in

adjacent fibroblasts (red nuclei). Additional colour coding: luminal cells, yellow nuclei; basal epithelial cells, green nuclei; normal fibroblasts,

orange nuclei; basal lamina; red lines; extracellular fibres, blue lines. (B) In metastatic tumours, basal lamina is hampered and tumour cells

escape from primary foci (dark purple cells). These events are facilitated by desmoplasia, microenvironmental changes promoted by CAFs

expressing EMT-TFs (orange cells with red nuclei), including fibrillar architecture and secretome remodelling (orange arrows and text in the

amplified box). Signalling generated by local extracellular changes (black arrows) induces the expression of EMT-TFs in adjacent tumour cells

(dark violet cells with red nuclei), providing them with properties related to cancer malignance, such as stemness, increased tumour cell

motility and chemoresistance. Therefore, EMT-TFs induce changes in cell behaviour in both parenchymal and stromal tumour cells that

support poor cancer prognosis.
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metalloproteases on the extracellular compartment

(Ota et al., 2009; Weiss et al., 2012; Zhao et al., 2011)

(Fig. 2A,C).

After its initial induction, the CAF phenotype can

be stabilized by feed-forward loops on EMT-TFs. In

fact, expression of Twist1 (Palumbo-Zerr et al., 2017)
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and Snail1 (Baulida and Garc�ıa de Herreros, 2015;

Zhang et al., 2016) in CAFs has been shown to induce

autoactivatory loops on TGF-b and mechanical sig-

nalling, respectively. Snail1 influences the level and

activity of YAP1 in CAFs exposed to a stiff matrix

generated by CAFs (Zhang et al., 2016), and YAP1

also mediates a feed-forward regulation to fix the CAF

phenotype. Reciprocally, YAP1 could modulate EMT-

TF activity, as described for endothelial cells in which

YAP1 interacts with SMAD complexes and modulates

TGF-b-induced upregulation of Snail1, Snail2 and

Twist1 (Zhang et al., 2014a), and in breast cancers, in

which ZEB1 turns into a transcriptional activator by

interacting with YAP1 (Lehmann et al., 2016)

(Fig. 2B,C).

In the multistep process of CAF activation, down-

regulation of p53 has been described to be relevant for

downregulating the failsafe mechanism required for

CAF hyperproliferation, causing the tumour-asso-

ciated fibrosis that is observed surrounding malignant

epithelial tumours (Procopio et al., 2015). EMT-TFs

have been shown to modulate the p53 pathway in can-

cer cells: a Snail1/HDAC1/p53 trimolecular complex

deacetylates active p53 and promotes its proteasomal

degradation (Ni et al., 2016), and a Twist1/p53 com-

plex destabilizes the oncosuppressive protein by alter-

ing specific post-translational modifications (Piccinin

et al., 2012). Therefore, modulating the p53 pathway

could be one way that EMT-TFs support CAF differ-

entiation. Moreover, Twist1 and ZEB1 could promote

CAF hyperproliferation by blocking cell cycle control

through repression of cyclin-dependent kinase inhibi-

tors, as described for tumour cells (Ansieau et al.,

2008; Burns et al., 2013; Ohashi et al., 2010).

Besides hyperproliferation, the action of EMT-TFs

on the p53 pathway can provide chemoresistance to

CAFs, an event that likely promotes CAF survival

and subsequent CAF-facilitated tumour resistance dur-

ing anticancer therapies. This could be the case for

CAFs from pancreatic cancers, which have been

shown to be intrinsically resistant to the chemothera-

peutic gemcitabine (Richards et al., 2017). EMT-TFs

may also confer resistance to CAFs through other

pathways described in cancer cells, as reviewed in

detail elsewhere (Ansieau et al., 2014); such

mechanisms include the action of ZEB1 on recombina-

tion-dependent DNA repair through ubiquitin-specific

peptidase 7 (USP7) interaction and checkpoint kinase1

(CHK1) stabilization (Zhang et al., 2014b), Twist1

modulation of pro- and antiapoptotic members of the

BCL-2 family through AKT2 expression (Ansieau

et al., 2010), and the action of Snail1 and Snail2 on

radiation-induced apoptosis by repressing PTEN phos-

phatase (Escriva et al., 2008) and Puma (Wu et al.,

2005).

Although we cannot discard that some functional

populations of CAFs – likely devoid of myofibroblastic

and chemoprotective abilities – do not express EMT-

TFs, the levels of EMT-TFs sustained by feedback

mechanisms is a source of CAF heterogeneity. Anti-

cancer therapies thus inadvertently are likely to select

the antiapoptotic population of CAFs expressing EMT-

TFs over a threshold amount. These CAFs provide can-

cers with therapy resistance by mechanisms including

the induction of EMT-TF expression in tumour cells.

Therefore, the exhaustive characterization of the EMT-

TF activity in CAFs is a promising research objective

for discovering new targetable pathways that allow the

current anticancer therapies to be improved.
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