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Abstract: The increasing cyanobacterial blooms have recently been considered a severe environmental
problem. Microcystin-leucine arginine (MC-LR) is one of the secondary products of cyanobacteria
metabolism and most harmful cyanotoxins found in water bodies. Studies show MC-LR negatively affects
various human organs when exposed to it. The phenotype of the jejunal chronic toxicity induced by
MC-LR has not been well described. The aim of this paper was to investigate the effects of MC-LR on
the jejunal microstructure and expression level of inflammatory-related factors in jejunum. Mice were
treated with different doses (1, 30, 60, 90 and 120 µg/L) of MC-LR for six months. The microstructure and
mRNA expression levels of inflammation-related factors in jejunum were analyzed. Results showed that
the microstructure of the jejunum was destroyed and expression levels of inflammation-related factors
interleukin (IL)-1β, interleukin (IL)-8, tumor necrosis factor alpha, transforming growth factor-β1 and
interleukin (IL)-10 were altered at different MC-LR concentrations. To the best of our knowledge, this is the
first study that mice were exposed to a high dose of MC-LR for six months. Our data demonstrated MC-LR
had the potential to cause intestinal toxicity by destroying the microstructure of the jejunum and inducing
an inflammatory response in mice, which provided new insight into understanding the prevention and
diagnosis of the intestinal diseases caused by MC-LR.

Keywords: MC-LR; mice; jejunum; inflammatory factor; chronic exposure

Key Contribution: For the first time, we found that a long-term chronic high-dose oral exposure to
MC-LR could cause intestinal toxicity by destroying the microstructure of the jejunum and induce
inflammatory reaction in mice.

1. Introduction

The rapid development of industries and agriculture has led to the increasing discharge of
wastewater containing nitrogen and phosphorus into water bodies. These activities may result
in eutrophication and development of cyanobacterial blooms [1,2]. The monocyclic heptapeptide
microcystins (MCs) are the secondary products of cyanobacteria metabolism and most harmful
cyanotoxin found in water bodies [3–5]. More than 200 isomers of MCs have been identified from
cyanobacterial blooms, with MC-LR being the most widely distributed, abundant and toxic [1,6,7].

The health issues including diseases and deaths of animals and humans caused by MC-LR occur
from time to time worldwide. Previous studies showed that animals and humans are mainly exposed
to MC-LR through drinking polluted water, body contact, hemodialysis, consumption of contaminated
food and algal dietary supplements [8–10]. When MC-LR is ingested, it first enters the intestine where
most of these toxins are absorbed through the intestinal mucosal barrier (mucosal epithelial cells and
mucosal lamina propria), and the absorbed MC-LR are transported through the bloodstream and
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distributed to the liver and other organs [11]. This may lead to the development of tumor and various
acute liver diseases, nervous system damage, gastroenteritis problems and death [4,9,12–15].

The most serious human health issue associated with MC-LR exposure occurred in February 1996,
where water used for hemodialysis at a hemodialysis center in Caruaru, Brazil was contaminated
with MC-LR in the hospital's water supply leading to the death of over 50 patients following the
development of acute liver failure, visual disturbances, nausea, and vomiting [16]. To combat MC-LR
health-related problems, the World Health Organization stipulated that the concentration of MC-LR
in drinking water should not exceed 1 µg/L [17].

The small intestine, consisting of duodenum, jejunum and ileum, is the most important part for food
absorption and digestion [18]. While the duodenum mainly takes in minerals, the jejunum assimilates
water-soluble vitamins, enzymes and proteins. The ileum absorbs fat, cholesterol and bile salts [19,20].
The digestive enzyme in the brush edge of intestinal villous epithelial cells also plays a key role in the
final digestion stage, and its activity is closely related to the structural integrity of intestinal mucosa [21].
If inflammation or pathological changes occur in the small intestine, the digestion and absorption dysfunction
of the small intestine may lead to the dysfunction of the human body [22]. It is reported that inflammation
usually causes ulcerative colitis [23], Crohn's disease [24], and other related diseases [25]. The small intestine
plays an irreplaceable role in the digestion, absorption and immune function of the human body, thus it’s
important to investigate whether intestinal toxicity can be induced by MC-LR.

Immune response is often accompanied by inflammation [26,27], and inflammation is usually regulated
by cytokines and chemokines [28,29]. Cytokines, which participate in immunomodulation, anti-tumor,
hematopoiesis, inflammatory response, neuroendocrine effect and many other biological functions, are small
peptides or glycoproteins produced by lymphocytes, monocytes, macrophages, stroma, endothelial cells
and fibroblasts [30]. Chemokines are chemotactic cytokines originally identified as factors regulating
immune cell migration to sites of inflammation and have an involvement in numerous physiological and
pathological processes including immunity, inflammation, and neuroinflammation [31]. Cytokines such as
tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β, and chemokines including interleukin (IL)-8,
capable of driving inflammatory processes and accelerating additional inflammatory processes by inducing
inflammatory molecules, were described as pro-inflammatory factors [31,32]. Cytokines such as interleukin
(IL)-10 possessing the main function of reducing damage to an organism by inhibiting the production of
pro-inflammatory factors were addressed as anti-inflammatory factors [33]. TNF-α, secreted by immune
cells, is a key regulator of inflammation, and regulates leukocyte migration, proliferation, differentiation and
apoptosis [34]. The IL-8, IL-1β and IL-10, members of the interleukin (IL) family, produced by lymphocytes,
monocytes, or other non-monocytes, play an important part in immunomodulation, hematopoiesis and
inflammation [35]. Cytokine transforming growth factor-β1 (TGF-β1) known to have many biological effects
participates in inflammatory response, as well as inhibits the proliferation and differentiation of immune
cells and the production of cytokines in the immune response [36]. Moreover, TGF-β1 has a dual role of pro-
and anti-inflammatory effects however its dominant role is depended on the local microenvironment [37].

Though a number of population investigations have been conducted on the toxicity of MC-LR on
humans [38,39], there are few studies regarding intestinal toxicity, pathological changes in jejunum
and the expression level of inflammatory-related factors in jejunum under the induction of MC-LR.
In this study, jejunal chronic toxicity induced by MC-LR was investigated. Here, a mice model
was used to examine the effects of MC-LR on the jejunal microstructure and expression levels of
inflammatory-related factors. The study aims to provide new evidence for understanding intestinal
discomfort, inflammation and immunity caused by MC-LR.

2. Results

2.1. Appearance and Length of Small Intestine of Mice

No death or symptoms in MC-LR treated mice were recorded during the six-month experiment.
Compared to the control group, no significant differences were observed in the MC-LR treated groups
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in terms of weight gain, diet, water consumption and activity, nor did the intestinal length/mice height
ratio (Table 1).

Table 1. Physical index.

Groups Weight Gains
(g)

Intestinal Length /
mice heights (cm)

Water Consumption
(mL)

Control (0 µg/L) 7.24 ± 0.89 4.34 ± 0.22 4074.5 ± 126.50
1 µg/L 7.66 ± 0.51 4.23 ± 0.16 3651.5 ± 202.07

30 µg/L 6.32 ± 0.48 4.05 ± 0.20 4178 ± 99.70
60 µg/L 6.65 ± 0.43 4.30 ± 0.22 3732 ± 166.45
90 µg/L 5.91 ± 0.70 4.20 ± 0.15 4110 ± 107.38

120 µg/L 6.03 ± 0.69 4.33 ± 0.17 4008 ± 77.92

2.2. Microstructure of Jejunum

To evaluate the influence of MC-LR on the microstructure of the jejunum, hematoxylin and eosin
staining (HE staining) were conducted as depicted in the method and photographed by using the Invitrogen
EVOS FL Auto 2.0 Image System. The effects of different doses of MC-LR on the histopathology of
mice jejunum are shown in Figure 1. In the control group, the intestinal villi were well-structured and
coherent, and the crypts were neatly arranged. The surface of villi was covered with columnar cells,
with a large number of cells arranged in the interphase with goblet cells, and the size of each cell was
uniform. The mucosal lamina propria was intact and had no symptoms of separation and hyperemia
(Figure 1A). In the 1 µg/L dose group, the jejunal microstructure showed that the goblet cells increased by
38%, and the arrangement of intestinal epithelial cells was disarrayed (Figure 1B). In the 30 µg/L dose group,
the intestinal villi were invaginated and serrated (Figure 1C). In the 60 µg/L dose group, the arrangement of
intestinal epithelial cells was also disarrayed and lymphocyte infiltration was observed (Figure 1D). In the
90 µg/L dose group, obvious lymphocyte infiltration and disorder crypts were observed (Figure 1E). In the
120 µg/L dose group, the intestinal villi were found to be invaginated and serrated (Figure 1F).
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Figure 1. The effects of different doses of MC-LR on the histopathology of the jejunum in mice.
A–F illustrates the microstructure of the jejunum in mice. Bar = 100 µm means original magnification
×400. Microstructure of the jejunum of mice in different groups (A, B, C, D, E and F represents the control
group, 1 µg/L dose group, 30 µg/L dose group, 60 µg/L dose group, 90 µg/L dose group and 120 µg/L
dose group, respectively). (A) The intestinal villi were well-structured and coherent, and the crypts were
neatly arranged; (B) the jejunal microstructure showed that the goblet cells increased by 38%, and the
arrangement of intestinal epithelial cells were disordered; (C) the intestinal villi were invaginated and
serrated; (D) the arrangement of intestinal epithelial cells was disordered and lymphocyte infiltration
was observed; (E) obvious lymphocyte infiltration and disorder crypts were observed; (F) the intestinal
villi were found to be invaginated and serrated. The red five-pointed star indicates the intestinal villi
were invaginated and serrated. The black arrow indicates an arrangement disorder of the intestinal
epithelial cells, and the blue arrow shows the infiltration of lymphocytes. The blue asterisk indicates
an increase in goblet cells. The red triangle indicates a disordered arrangement of crypts.
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2.3. Effect of MC-LR on the Expression of Jejunum Inflammation-Related Factors in Mice

In order to determine whether MC-LR has an effect on the expression levels of inflammation-related
factors in jejunum, the jejunum was isolated as described in the method. Total RNA was extracted
and qRT-PCR was carried out as presented in the method. The changes in transcriptional levels
of inflammatory-related factors including pro-inflammatory factors (IL-1β, IL-8, and TNF-α) and
anti-inflammatory factors (IL-10 and TGF-β1) in the jejunum of mice are shown in Figures 2 and 3,
respectively. Data demonstrated that the pro-inflammatory factor TNF-α was up-regulated in the
1 µg/L and 30 µg/L dose groups, but down-regulated in the 60 µg/L, 90 µg/L and 120 µg/L dose groups
(Figure 2A). IL-1β was up-regulated in the 1 µg/L, 30 µg/L and 60 µg/L dose groups, but down-regulated
in the 90 µg/L and 120 µg/L dose groups (Figure 2B). IL-8 was also up-regulated in the 1µg/L and
30 µg/L dose groups, but down-regulated in the 60µg/L and 90 µg/L dose groups while no significant
alteration was observed in the 120 µg/L dose group (Figure 2C). Although the anti-inflammatory factor
IL-10 did not change significantly in the 1 µg/L dose group, it was notably down-regulated in the
30 µg/L, 60 µg/L, 90 µg/L and 120 µg/L dose groups (Figure 3A). In addition, the expression level of
TGF-β1, also an anti-inflammatory factor was up-regulated in the 1 µg/L and 30 µg/L dose groups,
but down-regulated in the 60 µg/L dose group while other differences were not significant (Figure 3B).
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Figure 2. The effects of MC-LR on the pro-inflammatory factors mRNA expression levels of the jejunum
in mice. (A) mRNA expression levels of pro-inflammatory factor TNF-α in 0, 1, 30, 60, 90 and 120 µg/L
MC-LR treatment groups; (B) mRNA expression levels of pro-inflammatory factor IL-1β in 0, 1, 30, 60,
90 and 120 µg/L MC-LR treatment groups; (C) mRNA expression levels of pro-inflammatory factor
IL-8 in 0, 1, 30, 60, 90 and 120 µg/L MC-LR treatment groups. * indicates p <0.05, ** indicates p <0.01,
*** indicates p <0.001, NS means no significance.
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Figure 3. The effects of MC-LR on the anti-inflammatory factors mRNA expression levels of the jejunum
in mice. (A) mRNA expression levels of anti-inflammatory factor IL-10 in 0, 1, 30, 60, 90 and 120 µg/L
MC-LR treatment groups; (B) mRNA expression levels of anti-inflammatory factor TGF-β1 in 0, 1,
30, 60, 90 and 120 µg/L MC-LR treatment groups. *indicates p <0.05, ** indicates p <0.01, NS means
no significance.

3. Discussion

The eutrophication of water is currently on the increase and has become a worldwide serious
water pollution problem. The outbreak of cyanobacterial blooms and the production of MC-LR
do not only affect the ecological environment but also pose a great health threat to humans and
animals [9]. In this study, the effect of MC-LR on jejunum was investigated by the method of chronic
oral exposure. After six months of oral MC-LR exposure, the physical appearances of mice were
examined, the microstructure of jejunum was observed by HE staining, and the mRNA expression
levels of inflammatory-related factors were evaluated. In the six-month experiment, MC-LR-treated
mice showed no signs of death or other abnormalities. There were no significant differences in weight
gain, diet, water consumption and activity. In addition, no abnormal intestinal length/mice height ratio
between the MC-LR-treated groups and control group was observed. These results were consistent
with what Sedan et al. [40] reported in the toxicity study of mice exposed to a low-dose of MC-LR.
In addition, a sub-acute study carried out by Su et al. [41] also demonstrated no alteration in body
weight. However, Pan et al. [42] explored the toxicity of MC-LR on mice prostate at a concentration
of 10 µg/L and 30 µg/L for 90 and 180 days, and reported a significant decrease in mice body weight
treated with 30 µg/L MC-LR in comparison with the control group while the body weight of mice
markedly increased after exposure to 10 µg/L MC-LR. In view of this, it is speculated that MC-LR
might have an effect on the metabolic enzymatic activity in mice, while the latter was related to the
survival conditions of the mice.

The microstructure experimental results showed that at a low MC-LR concentration of 1 µg/L,
which is the upper limit specified by the WHO in human’s drinking water, can induce pathological
changes in jejunum (Figure 1B) [17]. Further varying degrees of alterations in other higher dose groups,
including disordered intestinal epithelial cells (Figure 1B) and crypts (Figures 1B and 1D), invaginated
and serrated intestinal villi (Figures 1C and 1F), and infiltrated lymphocytes (Figures 1E and 1D)
were apparent. In view of this, we may infer that MC-LR might destroy the intestinal integrity since
Baumgart et al. demonstrated that the complete intestinal barrier includes four parts: Mechanical
barrier, biological barrier, immune barrier and chemical barrier, while the intestinal epithelial cells
and crypts are disorderly arranged, and the serration and invagination of intestinal villi belongs
to the mechanical barrier of intestine [43]. Ren et al. [44] and Peterson et al. [45] indicated that the
mechanical barrier of the intestine is not only key to protecting the intestinal tract against invasion of
the intestinal mucosa by pathogens or harmful substances from the external environment, but also
forms the structural basis for maintaining the selective permeability of the intestinal epithelium and its
barrier function. Moreover, the mechanical barrier of the intestine is a regulator of immune homeostasis.
Our findings were similar to those of Ito et al. [46,47] where villi density, surface erosion and lamina
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propria of the small intestine in mice with different alterations after oral administration of 500 µg
MC-LR/kg were addressed. Evidence thus suggests that MC-LR can destroy the physical structure of
the small intestine when exposed to it.

Studies suggest that MC-LR is capable of inducing modulatory potency on the immune system
in vivo and in vitro. Sedan et al. [40] reported a decrease in intraepithelial lymphocytes in the
mucous of the intestine when mice were orally exposed to 50 µg/kg and 100 µg/kg MC-LR for 48 h.
Chen et al. [48] demonstrated an increase in mRNA levels of IFN-1, IL-1β, IL-8, TGF-β and TNF-α
when zebrafish were exposed to 0 µg/L, 1 µg/L, 5 µg/L and 20 µg/L MC-LR for 30 days. Li et al. [49]
revealed that MC-LR up-regulated the transcription of several genes essential for early lymphoid
development and the production of heat shock proteins, potentially causing changes in the functioning
of the immune system in zebrafish larvae. Rymuszka et al. [50] also reported an increase in the
respiratory burst activity of phagocytic cells at the lowest toxin concentration but it was decreased
at higher concentrations when leucocytes (lymphocytes and phagocytes) were treated with MC-LR
at concentrations of 0.01 µg/mL, 0.1 µg/mL, 0.5 µg/mL and 1µg/mL. A decrease in the proliferation
of B lymphocytes was detected in MC-LR-treated groups. Additionally, MC-LR induced necrosis to
a higher degree than apoptosis in fish leucocytes [50]. Recently Xia et al. found that MC congener
MC-RR can also regulate the immune system aside MC-LR by accumulating in the kidney and spleen,
which are the major immune organ in fish, and cause further damage to these organs [51]. Cytokines
and chemokines are well known to have an involvement in the immune response. For the process of
the immune response, the inflammation response usually occurs first. IL-1β is one of the most sensitive
and potent inflammatory factors reported [52]. When there is an inflammatory stimulus, the expression
level of the IL-1β rapidly increases but decreases over time. This decrease may be due to the synthesis
of the inhibition of the transcription and/or lessen of the half-life of the mRNA [53]. In this study,
the expression level of IL-1β was up-regulated in the 1 µg/L, 30 µg/L, and 60 µg/L dose groups and
down-regulated in the higher dose groups (Figure 2B). These might be attributed to the above reasons.
TNF-α regulates inflammation, mucus secretion, cell survival and death in the small intestine [54].
The current data showed that the expression level of TNF-α was up-regulated in the 1µg/L and
30 µg/L dose groups, but down-regulated in the 60 µg/L, 90 µg/L and 120 µg/L dose groups. IL-8,
involved in anti-infection, immune response regulation and anti-tumor, is a potent chemoattractant
for neutrophils and contributes to inflammation [55]. In this study, IL-8 was also up-regulated in the
1µg/L and 30 µg/L dose groups, but down-regulated in the 60 µg/L and 90 µg/L dose groups while
no significant alteration was observed in the 120 µg/L dose group. (Figures 2A and 2C, respectively).
These noted above indicated that MC-LR can promote the production of inflammatory factors, leading
to the occurrence of the inflammatory response in mice at the lower concentrations. That is, under
the stimulation of a low MC-LR concentration, the pro-inflammatory factors mRNA of TNF-α, IL-1β
and IL-8 were synthesized and released. However, after a high-dose and long-term stress of MC-LR,
the immune system of mice might be seriously damaged (as depicted in Figure 1) and inhibit the
immune response. Pan et al. [42] and Rymuszka et al. [50] reported that a higher concentration of MC-LR
could decrease the viability and increase the apoptosis or necrosis of cells. Further, Freire et al. [56],
Savill et al. [57,58] and Voll et al. [59] demonstrated that apoptotic or necrotic cells can be engulfed and
digested by phagocytes, thus avoiding the leakage of toxic substances or immunogenic substances
in cells, so as to reduce body damage. Phagocytes that engulfed apoptotic and necrotic cells inhibit the
immune response. For example, after phagocytosis of apoptotic granulocytes, macrophages secrete
anti-inflammatory factors such as TGF-β, which inhibit the production and secretion of cytokines and
chemokines MIP-2 (macrophage inflammatory protein 2), IL-1β and TNF-α [57–59]. Consequently,
it is also possible that after a long-term higher dose of MC-LR induction, cells can no longer secrete
inflammatory factors due to its apoptosis or necrosis. As a result, the expression levels of TNF-α, IL-1β
and IL-8 were decreased in the higher dose groups. Nevertheless, the reasons why the expression
levels of inflammation-related factors were altered are worth researching. Further work needs to detect
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the changes in the intestinal cell state (alive or dead), immune cell and immune response under higher
concentrations of MC-LR.

The cytokine TGF-β1, was up-regulated in the 1µg/L and 30µg/L dose groups, but down-regulated
in the 60 µg/L dose group while other groups differences were not significant (Figure 3B). Although
TGF-β1 can be either an anti- or pro-inflammatory factor depending on the circumstances, it is also
temporarily studied as an anti-inflammatory factor in this current study as most articles consider it
as an anti-inflammatory factor [60–62] while fewer articles treat it as a pro-inflammatory factor [63].
Another anti-inflammatory factor IL-10 also possesses the potency of inhibiting the production of
IL-1β, IL-8, and TNF-α, so as to reduce the inflammation of tissue. Our results also demonstrated
that though the IL-10 mRNA expression level did not change significantly in the 1 µg/L dose group,
it was remarkably down-regulated in higher dose groups (Figure 3A). It is therefore speculated that
the anti-inflammatory effects of TGF-β1 and IL-10 may differ at different concentrations.

These results suggested that the up-regulation of pro-inflammatory factors IL-1β, IL-8 and TNF-α
can aggravate the inflammatory reaction and microstructure damage of jejunum after oral exposure
to MC-LR in mice. Anti-inflammatory factors, IL-10, plays a protective role by inhibiting many of
the above factors. TGF-β1, reported as a pro- and anti-inflammatory factor depending on the local
microenvironment [37], was considered as an anti-inflammatory factor in the current study due to
substantial reports on its effect of anti-inflammation. Our data indicated that MC-LR could induce
an inflammatory reaction, which is similar to what Su et al. [41] found in the toxicity study on the
development of pre-existing colitis in mice. In short, the imbalance of pro- and anti-inflammatory
factors resulted in the injury of the jejunal microstructure and the alterations of expression levels of
inflammation factors, thereby affecting the immune response of the whole intestine.

4. Conclusions

To the best of our knowledge, this is the first study that mice were exposed to a high dose of
MC-LR for six months. Findings demonstrated that a long-term chronic high-dose oral exposure to
MC-LR has the potential to cause intestinal toxicity by destroying the microstructure of the jejunum and
inducing an inflammatory reaction in mice. These results provide a new direction for future research
and make contribution to the prevention, diagnosis and treatment of intestinal diseases caused by
MC-LR even though the involvement of the mechanism of toxicity in the damage of the small intestine
should be studied in depth.

5. Materials and Methods

5.1. Mice and Reagents

C57BL/6J mice (age: 6–8 weeks; weight: About 20 g) were used in this study. The mice were
procured from the Experimental Animal Centre of Central South University, China. Standard guidelines
(humidity: 60% ± 5%; temperature: 24 ◦C± 3 ◦C) were used to store the animals for 12 h light and
dark cycle. All experiments were approved by the Animal Care and Use Committee of the Central
South University (identification code: XYGW-2018-41; date of approval: 10 November 2018). In this
study, a total of 60 mice were randomly divided into the following six groups (n = 10): Five test groups,
including MC-LR at the dose of 1, 30, 60, 90, and 120 µg/L in 0.012% (v/v) dimethyl sulfoxide (DMSO)
for drinking water, respectively and one solvent (0.012% DMSO) control group. The mice in each
group were exposed to drinking water containing MC-LR at the corresponding concentrations for six
months. MC-LR was purchased from Taiwan Algal Science Inc. (Taiwan, China). DMSO (purity of
≥99.7%) was obtained from Sigma-Aldrich (St. Louis, MO, USA).
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5.2. Tissue Anatomy

After six months of MC-LR exposure, the mice were weighed and killed. Small intestinal samples
were immediately isolated and measured. The blood stains were washed out with phosphate buffered
solution (PBS), and then fixed with 4% paraformaldehyde (PFA).

5.3. Hematoxylin and Eosin Staining

Fixed intestinal tissues were embedded in the paraffin, continuous slice, and thickness of
4 µm. The intestinal section was dehydrated at a gradient alcohol routinely [64], xylene was used as
a transparent agent, hematoxylin and eosin (HE) staining, dehydration and mounting. Observation and
photography were done under the Invitrogen EVOS FL Auto 2.0 Image System (Thermo Fisher Scientific,
Shanghai, China). Quantification of the histological analysis was conducted as described previously [65].

5.4. Quantitative RT-PCR

Total RNA was isolated from jejunal tissues (including the control and MC-LR-treated groups)
using Trizol (Life Technologies, Shanghai, China), and reverse-transcribed into cDNA with Superscript
III reverse transcriptase (Invitrogen, Shanghai, China). qRT-PCR was performed with a Roche Light
Cycle 96 instrument with the SYBR (TaKaRa, Dalian, China) system and a thermal profile of 40 cycles at
95 ◦C for 10 s and 60 ◦C for 15 s [66]. The primer 3.0 online software was used to design primers involved
in this paper. The suitability of primers was detected by means of the reverse transcription PCR
(RT-PCR). cDNA was used as template and corresponding primers were used to perform PCR (the PCR
program was the same as that of qRT-PCR), and PCR products were detected by gel electrophoresis.
Electrophoresis results indicated that only primers with single target bands (no miscellaneous band)
were considered to be primers that met the needs (as shown in Supplementary Materials Figure S1).
PCR primer sequences are shown in Table 2. Each qRT-PCR was performed with three independent
biological samples and was in triplicate. The results obtained were normalized to the expression level
of the housekeeping gene β-actin, and relative mRNA expression levels were expressed as 2−44CT.
Calculations were performed using Microsoft Excel.

Table 2. Specific primers used for RT-PCR in this study.

Primer Sequence (5’→3’) Annealing temperature (◦C) Product length (bp)

TNF-α Forward: GTGCCTATGTCTCAGCCTCT
Reverse: AGGCTTGTCACTCGAATTTTGA 60 187

IL-8 Forward: TGGGTGAAGGCTACTGTTGG
Reverse: AGGCTTTTCATGCTCAACACT 60 114

IL-10 Forward: ATAACTGCACCCACTTCCCA
Reverse: GGGCATCACTTCTACCAGGT 60 206

TGF-β1 Forward: AGGGCTACCATGCCAACTTC
Reverse: CCACGTAGTAGACGATGGC 60 168

IL-1β Forward: AAGGGCTGCTTCCAAACCTTTGAC
Reverse: ATACTGCCTGCCTGAAGCTCTTGT 60 100

β-actin Forward: CTAAGGCCAACCGTGAAAAG
Reverse: ACCAGAGGCATACAGGGACA 60 104

5.5. Statistics

The student’s test was used to test for statistical differences across groups. The statistical significance
was set at p ≤0.05. * indicates p ≤0.05, ** indicates p ≤0.01 and *** indicates p <0.001. Data are expressed
as the mean ± standard error.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/9/482/s1,
Figure S1: Suitability detection of primers, Figure S2: Quantification of goblet cells in Figure 1B.
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