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alterations in ulcerative colitis: unveiling 
key metabolic signatures and pathways
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Abstract
Background: Despite numerous metabolomic studies on ulcerative colitis (UC), the results 
have been highly variable, making it challenging to identify key metabolic abnormalities in UC.
Objectives: This study aims to uncover key metabolites and metabolic pathways in UC by 
analyzing existing metabolomics data.
Design: A systematic review.
Data sources and methods: We conducted a comprehensive search in databases (PubMed, 
Cochrane Library, Embase, and Web of Science) and relevant study references for 
metabolomic research on UC up to 28 December 2022. Significant metabolite differences 
between UC patients and controls were identified, followed by an analysis of relevant 
metabolic pathways.
Results: This review incorporated 78 studies, identifying 2868 differentially expressed 
metabolites between UC patients and controls. The metabolites were predominantly from 
‘lipids and lipid-like molecules’ and ‘organic acids and derivatives’ superclasses. We found 
101 metabolites consistently altered in multiple datasets within the same sample type and 
78 metabolites common across different sample types. Of these, 62 metabolites exhibited 
consistent regulatory trends across various datasets or sample types. Pathway analysis 
revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently 
enriched across different sample types.
Conclusion: This study elucidates key metabolic characteristics in UC, offering insights into 
molecular mechanisms and biomarker discovery for the disease. Future research could focus 
on validating these findings and exploring their clinical applications.
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Systematic Review

Introduction
Ulcerative colitis (UC) is a chronic inflammatory 
bowel disease characterized by episodic occur-
rences of bloody diarrhea, which can lead to con-
siderable disability and a diminished quality of 
life.1 Although various theories have been pro-
posed, the exact pathophysiology of UC remains 
unclear.2–4 Moreover, there is a paucity of reliable 
diagnostic biomarkers for this disease.

Metabolites, as the end products of gene and pro-
tein regulatory networks, participate in diverse 

physiological and pathological processes. 
Metabolomics, the comprehensive analysis of 
small-molecule metabolites, offers a snapshot of 
an individual’s current physiological state and 
holds promise for identifying disease-associated 
metabolic signatures.5 Over the past two decades, 
metabolomics has been employed in various dis-
ease investigations, including UC.6–8 As early as 
2004, Ehehalt et al.9 reported significant differ-
ences in the ratios of phosphatidylcholine species 
between UC patients and controls in rectal mucus 
samples. Subsequently, dozens of metabolomics 
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studies have been conducted and revealed meta-
bolic abnormalities in multiple types of samples 
from UC patients.6,10–12 However, the types and 
regulatory trends of metabolites associated with 
UC varied substantially across these studies, 
which are potentially attributable to variations in 
sample preparation, analytical techniques, data 
analysis, and disease states. These inconsistent 
findings have hindered the clinical application of 
metabolomics discoveries in UC. Integration of 
existing metabolomics datasets would facilitate 
the identification of key metabolic features, 
thereby providing more robust biological insights 
into UC than individual studies.

In this study, we conducted a systematic analysis 
of metabolomics studies related to UC. Initially, 
we compiled a curated list of metabolites that 
were significantly differentially expressed between 
UC patients and controls in prior studies. Then, 
we investigated the key perturbed metabolites 

and their associated metabolic pathways in UC. 
Our objective is to provide a comprehensive over-
view of the metabolic signatures of UC, thereby 
advancing both molecular mechanisms and bio-
marker research for this condition.

Methods

Data collection and curation
The study was conducted and reported in accord-
ance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines.13 The screening process of 
relevant studies followed these guidelines, as 
illustrated in Figure 1. Prior to each phase of the 
screening process, reviewers underwent training 
through pilot tests. Subsequently, two reviewers 
independently performed data collection and 
curation, with discrepancies resolved through dis-
cussion or by consulting a third reviewer.

Figure 1.  Flowchart illustrating the screening process for relevant studies.
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Search strategy and study selection
Metabolomics studies related to UC were col-
lected from four academic literature databases 
(PubMed, Cochrane Library, Embase, and Web 
of Science) using the search terms delineated in 
Supplemental Table S1, spanning from the incep-
tion of these databases to 28 December 2022. To 
broaden our spectrum, additional pertinent stud-
ies were acquired by scrutinizing the reference 
lists of pertinent studies and reviews. By 28 
December 2022, 14,692 citations were identified. 
The retrieved literature citations were imported 
into Endnote X9 software (Clarivate Analytics, 
Philadelphia, PA, USA) to exclude duplicate 
records, followed by a manual review of the 
remaining titles and abstracts.

Studies were included if they were original 
research comparing metabolic alterations between 
UC patients and controls, employing nuclear 
magnetic resonance (NMR) or mass spectrome-
try (MS) metabolomics approaches. The control 
group consisted of either healthy individuals or 
non-inflammatory bowel disease (non-IBD) con-
trols. Studies were excluded if they were dupli-
cate reports, focused on animal or cell research, 
were in preprint status, utilized technologies other 
than those aforementioned, were other types of 
reports (e.g. reviews, case reports, or conference 
abstracts), involved metabolites that did not reach 
significance, or were not written in English. In 
addition, studies using non-IBD populations as 
control groups were excluded if all members of 
the non-IBD group had a specific disease, such as 
irritable bowel syndrome, celiac disease, etc.

Applying the aforementioned selection criteria, 
1997 potentially eligible articles were identified 
after reviewing titles and abstracts. From these, 
1919 articles were excluded after a full-text 
review, leaving 78 studies. The reasons for article 
exclusion are documented in Supplemental 
Table S2.

Quality assessment of included studies
We evaluated the quality of the studies included 
in our review using the Agency for Healthcare 
Research and Quality (AHRQ) checklist, which 
consists of 11 items.14 Each item was assessed 
with ‘Yes’, ‘No’, or ‘Unclear’ responses. We 
assigned scores of 0 for ‘No’ or ‘Unclear’ 
responses, and 1 for ‘Yes’ responses. Based on 
the total scores, we categorized the studies into 

three quality levels: high (8–11 points), moderate 
(4–7 points), or low (0–3 points).

Data extraction
Data of interest were manually extracted and 
entered into a Microsoft Excel spreadsheet from 
the eligible studies. The recorded information 
included the study title, first author, date of pub-
lication, recruitment area, demographic details, 
disease activity, sample source, metabolomic 
platforms, and the respective analytical method-
ologies. Furthermore, metabolites with signifi-
cant alterations between UC patients and controls 
in each study were recorded, along with the direc-
tion of metabolite alterations and the statistical 
methodologies used. Every metabolite exhibiting 
significant differences between UC patients and 
controls was exhaustively recorded, regardless of 
the specific statistical methodologies used in dif-
ferent studies. Such standards for metabolite 
extraction were adopted due to the considerable 
variation in statistical methods across various 
metabolomic studies. To standardize the syno-
nyms of analyzed metabolites, we consulted the 
Human Metabolome Database (HMDB), 
PubChem, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) databases.

Biological function analysis
To derive deeper insights into the biological func-
tions of the differential metabolites, we executed 
metabolic pathway enrichment analysis using 
MetaboAnalyst 5.0. Differentially expressed 
metabolites were uploaded to MetaboAnalyst, 
and enrichment analysis was performed following 
the operational procedures. A pathway was 
deemed significantly enriched with a false discov-
ery rate (FDR) p value <0.05. Here, the p value 
indicates the probability that the association 
between the uploaded molecules and a prede-
fined biological pathway occurred by chance.

Results

Characteristics of the included studies
Based on the data selection criteria, 78 metabo-
lomics studies were included in the final analysis 
(delineated in Supplemental Table S3). These 
studies encompassed 4223 UC patients and 4181 
controls and were predominantly conducted in 
Europe over the past 8 years [Figure 2(a) and 
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(b)]. The majority of studies (n = 61) utilized MS 
platforms, 16 adopted NMR, and one study uti-
lized both platforms. Notably, there has been an 
increasing trend in the utilization of MS platforms 
over the past decade (Figure 2(b)). With regard 
to analytical methodologies, 44 studies employed 
untargeted metabolomic analysis, 30 adopted tar-
geted analysis, and 4 studies utilized both tar-
geted and untargeted methods. According to the 
AHRQ checklist, out of these 78 studies, 13 were 
categorized as high quality, 64 as moderate qual-
ity, and 1 as low quality, as detailed in Supplemental 
Table S4.

A total of 2868 differential metabolite entries were 
collected from the selected studies. The detailed 
information on these metabolites is summarized in 
Supplemental Table S5. These metabolites were 
extracted from nine different biological sample 
types (Figure 3). Blood and fecal samples were the 
most commonly utilized, followed by colonic 
mucosa and urine. Only a limited number of 
metabolites (n = 26) was detected in the remaining 
five sample types, which include breast milk, 
exhaled breath, luminal washes from the duode-
num, luminal washes from the terminal ileum, and 
rectal mucus. Notably, two studies employed two 
sample types: one used both blood and urine, while 
another utilized both blood and fecal samples.

Colon metabolomic studies in UC
A total of 11 colon metabolomic studies  
were included in this analysis, comprising  
341 patients with UC and 218 controls. These 

studies identified 322 metabolite entries exhibit-
ing significant differences in colonic mucosa 
between the two groups. After the removal of 
duplicates, 258 unique metabolites were retained. 
Of these, 242 (93.8%) were reported in a single 
study, 15 (5.8%) appeared in two studies, and 1 
metabolite (0.4%) was cited across three 
studies.

Figure 2.  Distribution and trend of the included studies. (a) Pie chart illustrating the regional distribution of 
the included studies. The segments represent the percentage of studies from various regions. (b) Line graph 
depicting the number of studies conducted over different time periods. The blue line represents all studies, 
the yellow line represents MS-based studies, and the orange line represents NMR-based studies. The x-axis 
represents years grouped in intervals, while the y-axis represents the number of studies.
MS, mass spectrometry; NMR, nuclear magnetic resonance.

Figure 3.  Distribution of metabolite entries across 
various sample types.
N, number of studies; ntotal, number of differential 
metabolite entries; nunique, number of unique metabolites 
after eliminating duplicate entries; VOCs, volatile organic 
compounds.

https://journals.sagepub.com/home/tag


M Liu, S Guo et al.

journals.sagepub.com/home/tag	 5

These unique metabolites were categorized by 
superclasses according to HMDB [Figure 4(a); 
Supplemental Table S6]. The majority belonged 
to four superclasses: lipids and lipid-like mole-
cules, organic acids and derivatives, organic 
oxygen compounds, and organoheterocyclic 
compounds.

To extract meaningful insights from the data, 
metabolic pathway analysis was conducted using 
MetaboAnalyst 5.0. Six metabolic pathways were 
found to be significantly altered (FDR p < 0.05), 
namely ‘aminoacyl-tRNA biosynthesis’, ‘arginine 
biosynthesis’, ‘alanine, aspartate, and glutamate 
metabolism’, ‘biosynthesis of unsaturated fatty 
acids’, ‘valine, leucine, and isoleucine biosynthe-
sis’, and ‘pantothenate and CoA biosynthesis’ 
[Figure 4(b); Supplemental Table S7].

Fecal metabolomic studies in UC
The analysis encompassed 26 fecal metabolomic 
studies, involving 1225 UC patients and 958 con-
trols. A total of 1331 fecal metabolites exhibited 
significant differences between UC and control 
groups. After eliminating duplicate entries, 995 
unique metabolites remained. Of these, 819 
(82.3%) were reported in a single study, 118 
(11.9%) in two studies, and 58 metabolites 
(5.8%) in three or more studies.

These unique metabolites were classified into 
13 superclasses based on HMDB taxonomy 

[Figure 5(a); Supplemental Table S6]. The pre-
dominant subclasses were lipids and lipid-like 
molecules, organic acids and derivatives, 
organoheterocyclic compounds, and organic 
oxygen compounds.

Subsequently, metabolic pathway analysis identi-
fied 11 significantly altered pathways [FDR 
p < 0.05; Figure 5(b); Supplemental Table S7]. 
The top-ranking pathways were ‘aminoacyl-
tRNA biosynthesis’, ‘histidine metabolism’, ‘ala-
nine, aspartate, and glutamate metabolism’, and 
‘arginine biosynthesis’.

Blood metabolomic studies in UC
In all, 31 blood metabolomic studies were inves-
tigated, encompassing 1913 patients with UC 
and 2265 controls. A total of 1131 blood metabo-
lites displayed significant differences between UC 
patients and control groups. Following dedupli-
cation, 693 unique metabolites remained. 
Specifically, 575 (82.9%) were mentioned solely 
in one study, 78 (11.3%) in two studies, and 40 
(5.8%) in three or more studies.

These unique metabolites belonged to 13 
superclasses according to HMDB taxonomy 
[Figure 6(a); Supplemental Table S6]. The top 
four subclasses were lipids and lipid-like mole-
cules, organic acids and derivatives, organohet-
erocyclic compounds, and organic oxygen 
compounds.

Figure 4.  Metabolite classification and metabolic pathway enrichment in colonic mucosa. (a) Superclass 
distribution of metabolites in colonic mucosa. Each segment represents the percentage of metabolites 
classified into different superclasses. (b) Overview of the top 25 enriched metabolite sets in colonic mucosa. 
Each dot corresponds to a specific metabolic pathway. The color of each dot indicates its p value, while the size 
represents the enrichment ratio.
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Metabolic pathway analysis unveiled 15 signifi-
cantly altered pathways (FDR p < 0.05), with the 
top-ranked pathways being ‘arginine biosynthe-
sis’, ‘aminoacyl-tRNA biosynthesis’, ‘alanine, 
aspartate, and glutamate metabolism’, and ‘argi-
nine and proline metabolism’ [Figure 6(b); 
Supplemental Table S7].

Urinary metabolomic studies in UC
In urinary metabolomic studies focusing on UC, 
our analysis included five studies, collectively 
encompassing 527 patients with UC and 446 

controls. A total of 58 urinary metabolites dem-
onstrated statistically significant differences 
between UC and control groups. After eliminat-
ing duplicate entries, 41 unique metabolites were 
identified. Among these, 32 (78.0%) were docu-
mented in a single study, 7 (17.1%) in two stud-
ies, and 2 metabolites (4.9%) in three or more 
studies.

These unique metabolites were categorized into 
seven superclasses according to the HMDB taxon-
omy [Figure 7(a); Supplemental Table S6]. The 
four most prevalent superclasses were organic acids 

Figure 6.  Metabolite classification and metabolic pathway enrichment in blood. (a) Superclass distribution 
of metabolites in blood. Each segment represents the percentage of metabolites classified into different 
superclasses. (b) Overview of the top 25 enriched metabolite sets in blood. Each dot corresponds to a specific 
metabolic pathway. The color of each dot indicates its p value, while the size represents the enrichment ratio.

Figure 5.  Metabolite classification and metabolic pathway enrichment in feces. (a) Superclass distribution 
of metabolites in feces. Each segment represents the percentage of metabolites classified into different 
superclasses. (b) Overview of the top 25 enriched metabolite sets in feces. Each dot corresponds to a specific 
metabolic pathway. The color of each dot indicates its p value, while the size represents the enrichment ratio.
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Figure 7.  Metabolite classification and metabolic pathway enrichment in urine. (a) Superclass distribution 
of metabolites in urine. Each segment represents the percentage of metabolites classified into different 
superclasses. (b) Overview of the top 25 enriched metabolite sets in urine. Each dot corresponds to a specific 
metabolic pathway. The color of each dot indicates its p value, while the size represents the enrichment ratio.

and derivatives, lipids and lipid-like molecules, 
benzenoids, and organic oxygen compounds.

Subsequent metabolic pathway analysis identi-
fied eight pathways as significantly altered (FDR 
p < 0.05), with the highest-ranked pathways 
being ‘glyoxylate and dicarboxylate metabolism’, 
‘glycine, serine, and threonine metabolism’, 
‘aminoacyl-tRNA biosynthesis’, and ‘valine, leu-
cine, and isoleucine biosynthesis’ [Figure 7(b); 
Supplemental Table S7].

Other metabolomic studies at UC
Seven metabolomic studies were conducted on 
other five biological sample types, involving 217 
patients with UC and 294 controls. In these stud-
ies, 26 metabolite entries demonstrated signifi-
cant differences between the two groups. After 
duplicate removal, 25 unique metabolites were 
retained. Of these, 24 (96.0%) were reported in a 
single study, while 1 (4.0%) was observed in two 
studies.

According to the HMDB taxonomy, these 
unique metabolites belonged to six superclasses 
[Figure 8(a); Supplemental Table S6]. The most 
frequently occurring superclasses were organic 
acids and derivatives, lipids and lipid-like mole-
cules, organic oxygen compounds, and homoge-
neous non-metal compounds.

Metabolic pathway analysis identified six meta-
bolic pathways with significant alterations [FDR 

p < 0.05; Figure 8(b); Supplemental Table S7]. 
The most prominent metabolic pathways 
included ‘arginine biosynthesis’, ‘aminoacyl-
tRNA biosynthesis’, ‘alanine, aspartate, and glu-
tamate metabolism’, and ‘histidine metabolism’.

Variation and correlation of metabolites among 
different sample types
In metabolomics studies, thousands of metabo-
lites were differentially expressed between UC 
patients and controls. The type and quantity of 
these differential metabolites varied considerably 
across different sample types [Figure 9(a)]. 
Despite this heterogeneity, patterns of metabolite 
alterations exhibited partial consistency across 
these sample types.

First, according to the HMDB superclass classifi-
cation, the majority of metabolites were classified 
into two predominant superclasses in each sam-
ple type: lipids and lipid-like molecules, and 
organic acids and derivatives. These superclasses 
collectively constituted between 58.1% and 
89.5% of the total metabolites across various 
sample types, suggesting their potential signifi-
cance in UC pathogenesis.

Second, our study revealed a notable overlap of 
differential metabolites across multiple sample 
types. For instance, 83 of 258 (32.2%) differen-
tial metabolites in colonic mucosa were also sig-
nificantly altered in fecal samples [Figure 9(b)]. 
Likewise, 250 of 693 (36.1%) metabolites in 
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blood, 24 of 41 (58.5%) metabolites in urine, and 
16 of 25 (64.0%) metabolites in other sample 
types exhibited significant changes in fecal sam-
ples [Figure 9(c)–(e)]. These data highlight the 
inherent interrelationships among metabolites 
across various samples.

In total, 1601 unique metabolites were identified 
across all samples after eliminating duplicate 

entries (Supplemental Table S6). Of these, 101 
metabolites (6.3%) showed significant alterations 
in three or more datasets within a given sample 
type, and 78 metabolites (4.9%) were present in 
at least three different sample types (Supplemental 
Tables S8 and S9). These metabolites with sig-
nificant alterations across multiple independent 
datasets may serve as key indicators in UC 
pathology.

Figure 9.  Variation and correlation of metabolites among different sample types. (a) Heat map of differential 
metabolites across various sample types. Columns represent different sample types: colonic mucosa, 
feces, blood, urine, and others. Rows correspond to specific differential metabolites, with colors indicating 
their superclasses. The same color represents a specific superclass. The color scale on the right indicates 
metabolite report frequency in metabolomic studies. (b–e) Distribution of differential metabolites across 
different sample types: colonic mucosa (b), blood (c), urine (d), and other samples (e). The pie charts depict the 
proportions of metabolites: those exclusive to a specific sample (represented by light shade) and those also 
found in feces (represented by dark shade).

Figure 8.  Metabolite classification and metabolic pathway enrichment in other samples. (a) Superclass 
distribution of metabolites in other samples. Each segment represents the percentage of metabolites 
classified into different superclasses. (b) Overview of the top 25 enriched metabolite sets in other samples. 
Each dot corresponds to a specific metabolic pathway. The color of each dot indicates its p value, while the size 
represents the enrichment ratio.
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Figure 10.  Variation and correlation of metabolic pathways among different sample types. (a–d) Distribution 
of enriched metabolic pathways across different sample types: colonic mucosa (a), blood (b), urine (c), and 
other samples (d). The pie charts describe the proportions of metabolic pathways that are enriched exclusively 
in a specific sample type (light shade) versus those enriched in both the sample type and feces (dark shade). 
(e) Heatmap illustrating various metabolic pathways and their enrichment in different sample types: colonic 
mucosa, feces, blood, urine, and others. Colors, blue for ‘1’ and gray for ‘0’, indicate the presence or absence of 
pathway enrichment in the respective samples.

Notably, our study found that 62 metabolites 
exhibited consistent regulatory trends across mul-
tiple datasets. Specifically, of the metabolites 
showing significant alterations in at least three 
different datasets within a given sample type, 25 
were consistently upregulated and 30 were con-
sistently downregulated in UC compared to con-
trols (Supplemental Table S8). Among 
metabolites with significant changes in three or 
more different sample types, three were consist-
ently upregulated, while four were consistently 
downregulated in UC compared to controls 
(Supplemental Table S9). These metabolites may 
be promising diagnostic biomarker candidates for 
UC.

Variation and correlation of metabolic pathways 
among different sample types
In this study, we observed a significant enrich-
ment of multiple metabolic pathways in UC 
across various sample types. Although the catego-
ries of enriched metabolic pathways varied among 
the sample types, considerable overlap existed. 
Specifically, 5 of 6 (83.3%) enriched pathways in 
colonic mucosa, 7 of 15 (46.7%) pathways in 
blood, 5 of 8 (62.5%) pathways in urine, and 4 of 
6 (66.7%) pathways in other sample types also 
exhibited significant alterations in fecal samples 
[Figure 10(a)–(d)]. These findings highlight the 
intrinsic interconnectedness of metabolic path-
ways across different sample types.

Finally, 22 unique metabolic pathways were 
enriched across these sample types [Figure 10(e)]. 
Of these, 10 pathways (45.5%) were specifically 
enriched in a single sample type, while 6 path-
ways (27.3%) were enriched in two sample types. 
Noteworthily, another six pathways (27.3%), 
including ‘alanine, aspartate, and glutamate 
metabolism’, ‘aminoacyl-tRNA biosynthesis’, 
‘arginine biosynthesis’, ‘valine, leucine, and iso-
leucine biosynthesis’, ‘arginine and proline 
metabolism’, and ‘glyoxylate and dicarboxylate 
metabolism’, were enriched in at least three dif-
ferent sample types (Supplemental Table S10). 
This suggests their potential significance in the 
pathogenesis of UC. To elucidate the interrela-
tionships among the differential metabolites 
implicated in these six pivotal pathways, we inte-
grated them into a simplified pathway diagram 
(Figure 11).

Discussion
In this study, we comprehensively reviewed 
metabolomic studies on UC and extracted 2868 
differential metabolite entries. The results of 
these studies varied widely; however, 179 metab-
olites exhibited consistent differential changes in 
UC compared to controls across multiple inde-
pendent datasets. These pivotal metabolites 
potentially play a crucial role in UC pathogenesis 
and could serve as promising diagnostic biomark-
ers. Furthermore, we discerned several general 
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characteristics in these metabolomic studies. The 
differential metabolites predominantly belonged 
to the superclasses ‘lipids and lipid-like mole-
cules’ and ‘organic acids and derivatives’. In addi-
tion, specific metabolic features, such as 
differential metabolites and enriched metabolic 
pathways, partially overlapped among different 
sample types. Importantly, six metabolic path-
ways were disrupted across multiple sample types, 
indicating their potential importance in UC 
pathogenesis.

In our study, arginine biosynthesis and metabo-
lism were the primary enriched metabolic path-
ways across all sample types. Most metabolites 
within these pathways also demonstrated notable 
differences between UC patients and controls in 
multiple independent datasets. This underscores 
the potentially critical role of arginine biosynthesis 

and metabolism in UC, corroborated by numer-
ous prior studies. Previous metabolomic studies 
have found that l-arginine levels were significantly 
reduced in both UC patients and dextran sodium 
sulfate (DSS)-induced colitis mouse models.15–17 
However, dietary supplementation with l- 
arginine alleviated the symptoms of DSS-induced 
colitis, possibly due to its immunoregulatory 
properties.18 Specifically, l-arginine could restore 
Th17 and Treg balance, inhibit intestinal mac-
rophage infiltration, elevate innate lymphoid cell 
levels, reduce pro-inflammatory factor expres-
sion, and thereby inhibit intestinal inflamma-
tion.19–23 In addition, l-arginine stimulates 
enterocytes to produce endogenous nitric oxide, 
which aids in reducing intestinal permeability, 
maintaining intestinal barrier integrity, and con-
sequently preventing the activation of intestinal 
inflammation.23 Supplementation with arginine 

Figure 11.  A schematic diagram depicts six metabolic pathways enriched in at least three sample types. 
Metabolites in black font exhibit significant differences between UC and control groups in previous 
metabolomics studies, while those in gray font have not been reported to exhibit such differences in prior 
metabolomics articles. The connecting lines between different pathways link the important metabolites 
between them.
UC, ulcerative colitis.
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precursors, including glutamine and citrulline, 
similarly alleviates DSS-induced colitis.22,24 
Downstream metabolites of arginine, such as 
putrescine, spermidine, creatine, and gamma-
aminobutyric acid, were also disrupted in UC and 
were pivotal in regulating intestinal inflamma-
tion.20,25–27 Furthermore, several arginine-catabo-
lizing enzymes, including protein arginine 
methyltransferase 5, protein arginine deiminase 4, 
arginase, and protein arginine methyltransferase 
2, have been associated with intestinal inflamma-
tion modulation.28–31 Such findings highlight the 
arginine metabolic pathway as a potential thera-
peutic target for UC.

Leucine, isoleucine, and valine, known as 
branched-chain amino acids (BCAAs), are pri-
marily obtained from the diet. Previous metabo-
lomic studies frequently reported significant 
differences in the levels of these BCAAs between 
UC patients and controls, potentially attributable 
to malnutrition, altered gut microbiota, or increased 
metabolic demands during inflammation.32,33 
Furthermore, the levels of leucine, isoleucine, and 
valine correlated with disease severity in UC 
patients.6,34–36 Animal model studies also unveiled 
the capability of BCAAs to modulate intestinal 
inflammation. For instance, leucine can trigger 
immune responses and exacerbate experimental 
colitis, potentially due to its ability to promote Th1/
Th17 cell differentiation, M1 macrophage polariza-
tion, increase pro-inflammatory cytokine produc-
tion, and elevate oxidative stress.37–39 Conversely, 
leucine also stimulates cell proliferation and migra-
tion, strengthens the intestinal barrier, prevents the 
translocation of bacterial products, and thereby 
exhibits anti-inflammatory properties.40 Isoleucine, 
another BCAA, has been shown to ameliorate 
symptoms of colitis and intestinal inflammation.41 
Specifically, isoleucine induces the expression of 
antimicrobial peptides, downregulates the ratio of 
dendritic cells, monocytes, and macrophages, and 
reduces pro-inflammatory cytokine expression, 
modulating both intestinal innate and adaptive 
immune functions.42,43 Moreover, isoleucine can 
inhibit enterocyte apoptosis, regulate gene expres-
sion associated with enterocyte tight junctions, 
and preserve intestinal barrier integrity.41,43 These 
findings suggest that BCAAs may play a pivotal 
role in UC pathogenesis and offer potential thera-
peutic avenues.

In our study, alanine, aspartate, and glutamate 
metabolism pathways were found to be disrupted 

in UC across multiple sample types. Alanine, 
aspartate, and glutamate play pivotal roles in vari-
ous metabolic processes, especially energy metab-
olism.44–46 They can be converted into pyruvic 
acid, oxalacetic acid, and oxoglutaric acid, which 
subsequently enter the tricarboxylic acid cycle to 
produce adenosine triphosphate (ATP), the pri-
mary energy source for the human body. An ade-
quate energy supply is vital for functions such as 
colonic epithelial cell proliferation and differenti-
ation, maintenance of the intestinal barrier, 
immune homeostasis, and overall intestinal 
health.47–50 Past metabolomic studies have shown 
notable differences in alanine, aspartate, gluta-
mate, and intermediate metabolites of the tricar-
boxylic acid cycle (including citric acid, 
oxoglutaric acid, succinic acid, fumaric acid, and 
oxalacetic acid) between UC patients and healthy 
controls.6,51–53 This suggests potential abnormali-
ties in energy metabolism among UC patients. 
Moreover, the levels of oxoglutaric acid, succinic 
acid, fumaric acid, and oxalacetic acid were often 
lower in UC patients than in healthy controls, 
indicating an energy deficiency in UC.12,51–54 
Consistent with our findings, previous literature 
has reported that ATP levels were diminished in 
chemically induced colitis models, but they were 
restored upon recovery.55 Besides, 13 genes regu-
lating ATP production were found to be signifi-
cantly reduced in the rectum of UC patients.56 
Indicators of ATP production capacity, such as 
mitochondrial electron transport chain complex I 
activity, mitochondrial membrane potential, and 
the pyridine nucleotide adenosine diphosphate/
nicotinamide ratio, also declined in UC 
patients.55–58 Elevated l-lactate levels in blood 
and increased colonic phosphorylated adenosine 
monophosphate-activated protein kinase levels in 
UC patients further indicate enhanced glycolysis 
and energy deficits.59 Compounding the problem, 
energy demands increase significantly in UC 
patients, exacerbating their energy deficit.60 
Overall, energy deficiency may play a significant 
role in the pathogenesis of UC.

While there have been several systematic reviews 
published on UC metabolomics, most have con-
centrated on specific aspects such as particular 
sample types, metabolite classes, or patient  
groups.61–71 Only a handful of these reviews have 
aimed to provide a broader overview of metabo-
lomic studies in UC, with the most recent data 
extending up to October 2022.72–75 These stud-
ies have offered valuable insights into the 
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metabolomic profiles associated with UC. 
Building on these foundational works, our study 
extends this knowledge base with several distinct 
advantages. First, our analysis is more compre-
hensive, covering a broader spectrum of studies 
up to 28 December 2022. This allows for a more 
current understanding of the metabolomic land-
scape in UC, ensuring that our insights are 
grounded in the latest research. Second, unlike 
previous reviews which may have focused on spe-
cific sample types or metabolite classes, our 
review encompasses all study types, metabolite 
categories, and patient groups. This inclusive 
approach has enabled us to identify and analyze a 
wider range of differential metabolites, providing 
a more holistic view of the metabolic alterations 
in UC. Third, our systematic review goes beyond 
merely listing differential metabolites by also 
examining their frequency of occurrence and 
trends across multiple datasets and sample types. 
This comprehensive analysis has revealed core 
metabolites consistently associated with UC, 
enhancing our understanding of the disease’s 
metabolic signature. Finally, our in-depth meta-
bolic pathway analysis, facilitated by advanced 
tools like MetaboAnalyst, has allowed us to iden-
tify key disrupted pathways across various sample 
types, shedding light on the underlying patho-
physiological mechanisms of UC. These strengths 
highlight the unique contributions of our system-
atic review to the existing literature, providing 
valuable insights for future research and potential 
clinical applications in UC.

This study has several limitations. First, we did 
not analyze the relationship between metabo-
lites and specific clinical variables such as gen-
der, age, disease activity index, disease location, 
and medication status. This was primarily 
because many studies did not provide raw 
metabolite data or comprehensive clinical 
details of the participants. Future clinical stud-
ies should investigate the effects of these clinical 
variables on metabolites associated with UC. 
Second, we only included studies that utilized 
MS-based or NMR-based techniques due to 
their superior sensitivity, accuracy, and broader 
detection spectrum compared to other tech-
niques. However, such a selection criterion 
might result in the omission of some important 
information relevant to UC. Broadening the 
inclusion criteria to encompass all metabo-
lomics techniques could provide novel insights 
into UC research. Third, this study is an 

integration of prior research findings. Future 
investigations should validate the causative 
associations between key metabolites or meta-
bolic pathways and UC. Lastly, this study was 
not registered with PROSPERO. In our future 
research, we are committed to taking this impor-
tant step to enhance transparency and 
traceability.

Conclusion
In conclusion, we conducted a comprehensive 
analysis of metabolomics studies focused on UC. 
Although there were distinct variations in the 
results of individual studies, consistent metabolic 
patterns were discernible. Specifically, 179 
metabolites were differentially expressed in UC 
compared to controls across multiple independ-
ent datasets. Of these, 62 metabolites exhibited 
consistent regulatory trends. Moreover, six meta-
bolic pathways were recurrently disrupted across 
various sample types. These key metabolites and 
metabolic pathways could further elucidate the 
molecular mechanisms of UC and aid in bio-
marker research.
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