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Recent advancement in microarray technologies has led to a collection of an enormous number of genetic markers in disease
association studies, and yet scientists are interested in selecting a smaller set of genes to explore the relation between genes and
disease. Current approaches either adopt a single marker test which ignores the possible interaction among genes or consider a
multistage procedure that reduces the large size of genes before evaluation of the association. Among the latter, Bayesian analysis
can further accommodate the correlation between genes through the specification of a multivariate prior distribution and estimate
the probabilities of association through latent variables.The covariancematrix, however, depends on an unknown parameter. In this
research, we suggested a reference hyperprior distribution for such uncertainty, outlined the implementation of its computation,
and illustrated this fully Bayesian approach with a colon and leukemia cancer study. Comparison with other existing methods was
also conducted. The classification accuracy of our proposed model is higher with a smaller set of selected genes. The results not
only replicated findings in several earlier studies, but also provided the strength of association with posterior probabilities.

1. Introduction

Recent advancement in oligonucleotide microarray tech-
nologies has resulted in production of thousands of gene
expression levels in a single experiment. With such vast
amount of data, one major task for researchers is to develop
classification rules for prediction of cancers or cancer sub-
types based on gene expression levels of tissue samples.
The accuracy of such classification rules may be crucial
for diagnosis and treatment, since different cancer subtypes
may require different target-specific therapies. However,
the development of good and efficient classification rules
has not been straightforward, either because of the huge
number of genes collected from a relatively small num-
ber of tissue samples or because of the model complexity
associated with the biological mechanism. The identification
of a smaller set of relevant genes to characterize differ-
ent disease classes, therefore, has been a challenging task.

Procedures which are efficient in gene selection as well
as in classification do play an important role in cancer
research.

Many approaches have been proposed for classes clas-
sification. For example, several analyses identified a sub-
set of classifying genes with 𝑡-statistics, regression model
approach, mixture model, Wilcoxon score test, or the
between-within classes sum of squares (BSS/WSS) [1–
7]. These methods are univariate in the sense that each
gene is tested individually. Others started with an initial
step of dimension reduction before classification proce-
dures, such as the principle components analysis (PCA)
[8–10] and the partial least squares algorithm (PLS algo-
rithm) [11–15]. These methods may reduce dimension
(the number of genes) effectively but may not be bio-
logically interpretable. To capture the gene-gene correla-
tions, researchers proposed the pair-based method [16],
correlation-based feature selection [17], and the Markov
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random field prior [18]. Although these methods can model
the gene-gene interaction, they can be computationally time-
consuming.

Bayesian approach can accommodate naturally the inter-
play between genes via prior distributions, under the set-
ting of regression models. Examples included the Bayesian
hierarchical mixture model [19–21] and a logistic or probit
link with latent variables and stochastic search variable
selection (SSVS) procedure for binary and multicategorical
phenotypes [22–25]. To consider all genes simultaneously,
most Bayesian approaches adopt a multivariate analysis
with a natural conjugate prior 𝑁(0, 𝑐(X𝑇X)

−1
), called 𝑔-

prior, for the regression parameters 𝛽 [26]. This a priori
distribution utilizes the design matrix as the prior covariance
matrix of 𝛽 and can lead to a relatively simple posterior
distribution. However, if the number of genes is much larger
than the number of samples available, the dimension of
X becomes large and a high degree of multicollinearity
may occur. In that case, the covariance matrix of Zellner’s
𝑔-prior becomes nearly singular. Modifications included
the 𝑔𝑠𝑔-prior distribution with the Moore-Penrose gener-
alized inverse matrix [27] and use of a ridge parameter
[28, 29]. Alternatively, other researchers focused on the
scalar 𝑐 in 𝑐(X𝑇X)

−1 which controls the expected size of
the nonzero regression coefficients. For instance, it was
reported that the final results are insensitive to the values
of 𝑐 between 10 and 100, and the value 𝑐 = 100 has
been suggested after extensive examinations [30]. Instead
of fixing 𝑐 at a constant, George and Foster [31] proposed
an empirical Bayes estimate for 𝑐, while Liang and col-
leagues [32] suggested a hyper-𝑔 prior, a special case of
the incomplete inverse-gamma prior in Cui and George
[33].

The main purpose of this research is the application of
fully Bayesian approaches with a hyperprior on 𝑐. Specifically
we adopted an inverse-gamma prior IG(1/2, 𝑛/2) which
was commented earlier that it could lead to computational
difficulty. Therefore, we outlined a MCMC algorithm and
demonstrated its implementation. In this paper, we consid-
ered a probit regression model for classification with SSVS
to identify the influential genes, augmented the response
variables 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
with latent variables 𝑍

1
, 𝑍
2
, . . . , 𝑍

𝑛
,

and converted the probit model to a Gaussian regression
problem with the generalized singular 𝑔-prior (𝑔𝑠𝑔-prior).
For the choice of 𝑐, we assigned a hyperprior for the
uncertainty in 𝑐. This hyperprior is intuitive and differs
from those in [32, 33]. Finally, we defined an indicator
variable 𝛾

𝑗
for the 𝑗th gene and perform MCMC methods

to generate posterior samples for gene selection and class
classification. The rest of the paper is arranged as follows.
In Section 2, we briefly described the model specification
including the data augmentation approach and SSVS meth-
ods. Under this hyperprior on 𝑐, we also demonstrated
the implementation of the Bayesian inference. Applica-
tions of three cancer studies, acute leukemia, colon can-
cer, and large B-cell lymphoma (DLBCL), were presented
in Section 3. Conclusion and discussion were given in
Section 4.

2. Model and Notation

Let (X,Y) indicate the observed data,

X = (

𝑥
11

𝑥
12

⋅ ⋅ ⋅ 𝑥
1𝑝

𝑥
21

𝑥
22

⋅ ⋅ ⋅ 𝑥
2𝑝

...
... d

...
𝑥
𝑛1

𝑥
𝑛2

⋅ ⋅ ⋅ 𝑥
𝑛𝑝

), (1)

where 𝑥
𝑖𝑗
denotes the expression level of the 𝑗th gene from

the 𝑖th sample andY = (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
)
𝑇 denotes the response

vector, where 𝑌
𝑖
= 1 indicates that sample 𝑖 is a cancer tissue

and 𝑌
𝑖
= 0 for normal tissue. Assume that 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
are 𝑛

independent random variables with 𝑝
𝑖
= Pr(𝑌

𝑖
= 1).

2.1. Probit Model with Latent Variable. The gene expression
measurements can be linked to the response outcome with a
probit regression model:

𝑝
𝑖
= Pr (𝑌

𝑖
= 1) = Φ (𝛼 + X

𝑖
𝛽) , (2)

where 𝛼 represents the intercept, X
𝑖
is the 𝑖th row in the

𝑛 × 𝑝 design matrix X, 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
)
𝑇 is the vector

of regression coefficients, and Φ is the standard normal
cumulative distribution function.

To perform statistical inference under this probit regres-
sion model, we first adopt 𝑛 independent latent variables
𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑛
, where

𝑍
𝑖
= 𝛼 + X

𝑖
𝛽 + 𝜀
𝑖
, 𝜀
𝑖
∼ 𝑁 (0, 1) , 𝑖 = 1, . . . , 𝑛, (3)

and the 𝑍
𝑖
corresponds to the disease status as

𝑌
𝑖
= {

1, if 𝑍
𝑖
> 0,

0, if 𝑍
𝑖
≤ 0.

(4)

The use of such latent variables helps to determine which cat-
egory the 𝑖th sample is to be classified. Note that multiplying
a constant on both sides in (3) does not change the model;
thus a unit variance is considered for 𝜀

𝑖
.

If a noninformative prior is assumed for 𝛽, then the
posterior covariance matrix of 𝛽 given Z ≡ (𝑍

1
, 𝑍
2
, . . . , 𝑍

𝑛
)

becomes (X𝑇X)
−1. However, due to the enormous size of

microarray data, (X𝑇X)
−1 may be nearly singular, and vari-

able selection for dimension reduction is needed. We define
for variable selection the vector 𝛾 ≡ (𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑝
) whose

elements are all binary, where

𝛾
𝑖
= {

1, if 𝛽
𝑖

̸= 0 (the 𝑖th gene selected) ,
0, if 𝛽

𝑖
= 0 (the 𝑖th gene not selected) .

(5)

Given 𝛾, we denote 𝑝
𝛾 as the number of 1’s in 𝛾 and 𝛽𝛾 a

𝑝
𝛾
× 1 reduced vector containing the regression coefficients

𝛽
𝑗
if its corresponding 𝛾

𝑗
is 1. Accordingly, for all 𝛾

𝑗
= 1,

the corresponding columns in X are collected to build X𝛾, an
𝑛 × 𝑝

𝛾 reduced gene expression matrix. Given 𝛾, the probit
regression model in (3) can be written as

𝑍
𝑖
= 𝛼 + X𝛾

𝑖
𝛽
𝛾
+ 𝜀
𝑖
, 𝜀
𝑖
∼ 𝑁 (0, 1) , 𝑖 = 1, . . . , 𝑛, (6)

where X𝛾
𝑖
is the 𝑖th row in X𝛾.
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2.2. Choice of Prior Distributions. To complete the model
specification, we assign a normal 𝑁(0, ℎ) prior for the
intercept 𝛼 with a large ℎ indicating no a priori information.
For the regression parameters, the commonly applied 𝑔-prior
𝛽𝛾 | 𝛾, 𝑐 ∼ 𝑁(0, 𝑐(X𝛾𝑇X𝛾)−1)may not work if the sample size
𝑛 is less than the number 𝑝𝛾, leading to the results thatX𝛾𝑇X𝛾

is not of full rank and (X𝛾𝑇X𝛾)−1 does not exist. Therefore,
we consider the 𝑔𝑠𝑔-prior distribution with (X𝛾𝑇X𝛾)+ as the
pseudoinverse of X𝛾𝑇X𝛾 for 𝛽𝛾 conditioning on (𝛾, 𝑐), 𝛽𝛾 |

𝛾, 𝑐 ∼ 𝑁(0, 𝑐(X𝛾𝑇X𝛾)+). This would solve the singularity
problem. Next, we assign for 𝛾 and 𝑐 the priors

𝜋 (𝑐) =
(𝑛/2)
1/2

Γ (1/2)
𝑐
−3/2

𝑒
−𝑛/(2𝑐)

,

𝛾
𝑖
∼ Ber (𝜋

𝑖
) , 0 ≤ 𝜋

𝑖
≤ 1, 𝑖 = 1, . . . , 𝑝,

(7)

and assume that 𝛾
𝑖
are independent for 𝑖 = 1, . . . , 𝑝. Note

that here the 𝜋
𝑖
’s are of small values, implying a small set of

influential genes.
We now complete the model specification:

Y = (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
)
𝑇
, where

𝑝
𝑖
= Pr (𝑌

𝑖
= 1) = Φ (𝛼 + X

𝑖
𝛽) ,

𝑍
𝑖
= 𝛼 + X𝛾

𝑖
𝛽
𝛾
+ 𝜀
𝑖
, where

𝑌
𝑖
= 1 if 𝑍

𝑖
> 0, and 0 otherwise

𝛽
𝛾
| 𝛾, 𝑐 ∼ 𝑁(0, 𝑐(X𝛾𝑇X𝛾)

+

) ,

𝜋 (𝑐) ∼ IG(
1

2
,
𝑛

2
) ,

𝛾
𝑖
∼ Ber (𝜋

𝑖
) .

(8)

Note that 𝑌
𝑖
= 1 if the 𝑖th sample is a cancer tissue, 𝛼

is the intercept, 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
)
𝑇 is the vector of regression

coefficients,Φ is the standard normal cumulative distribution
function, and X is the design matrix:

X = (

𝑥
11

𝑥
12

⋅ ⋅ ⋅ 𝑥
1𝑝

𝑥
21

𝑥
22

⋅ ⋅ ⋅ 𝑥
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...
... d

...
𝑥
𝑛1

𝑥
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). (9)

And 𝛾 ≡ (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑝
) contains the binary 𝛾

𝑖
, where 𝛾

𝑖
=

1 if the 𝑖th gene is selected (𝛽
𝑖

̸= 0),𝛽𝛾 is a𝑝𝛾×1 reduced vector
containing the regression coefficients 𝛽

𝑗
if its corresponding

𝛾
𝑗
is 1, 𝑝𝛾 is the number of 1’s in 𝛾, andX𝛾

𝑖
is the 𝑖th row inX𝛾.

2.3. Computation and Posterior Inference. Based on the prior
distributions specified in previous sections, the joint poste-
rior distribution can be derived as

𝑃 (Z, 𝛼,𝛽𝛾, 𝛾, 𝑐 | Y,X)

∝ [exp{−
∑
𝑛

𝑖=1
(𝑍
𝑖
− 𝛼 − X𝛾

𝑖
𝛽𝛾)
2

2
}

𝑛

∏

𝑖=1

𝐼 (𝐴
𝑖
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𝛼
2

2ℎ
)
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𝛽𝛾
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2𝑐
)
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∏
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𝜆
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𝑖
]
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𝑝
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𝜋
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𝑖
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𝑖
)
1−𝛾𝑖

]

⋅ [𝑐
−3/2 exp (−

𝑛

2𝑐
)] ,

(10)

where

𝐴
𝑖
= {

{𝑍
𝑖
: 𝑍
𝑖
> 0} if 𝑌

𝑖
= 1,

{𝑍
𝑖
: 𝑍
𝑖
≤ 0} if 𝑌

𝑖
= 0,

(11)

and 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚𝛾
(𝑚𝛾 ≤ 𝑝𝛾) are the nonzero eigenval-

ues of (X𝛾𝑇X𝛾)+. From (10), 𝛽𝛾 given (Z, 𝛼, 𝛾, 𝑐,Y,X) is a
multivariate normal distribution with a covariance matrix
𝑐(X𝛾𝑇X𝛾)+/(𝑐 + 1). In the case where X𝛾 is not of full
column rank, the problem of convergence may occur in
the MCMC algorithm because the covariance matrix is not
positive definite and the multivariate normal distribution
becomes degenerated. To avoid this problem and speed up
the computations, we integrate out 𝛼 and 𝛽𝛾 in (10) following
Yang and Song’s [27] suggestion and derive

𝑝 (Z, 𝛾, 𝑐 | Y,X)

∝
1


Σ𝛾



1/2
exp(−

Z𝑇Σ−1
𝛾
Z

2
)

𝑛

∏

𝑖=1

𝐼 (𝐴
𝑖
)

⋅

𝑝

∏

𝑖=1

𝜋
𝛾𝑖

𝑖
(1 − 𝜋

𝑖
)
1−𝛾𝑖

𝑐
−3/2

𝑒
−𝑛/2𝑐

,

(12)

where Σ
𝛾
= I
𝑛
+ ℎ11𝑇 + 𝑐X𝛾(X𝛾𝑇X𝛾)+X𝛾𝑇. As the posterior

distribution is not available in an explicit form, we use the
MCMC technique to obtain posterior sample observations.
The computational sampling scheme is as follows.

(1) Draw Z from 𝑝(Z | Y,X, 𝛾, 𝑐), where

𝑝 (Z | Y,X, 𝛾, 𝑐) ∝ 𝑁(0, Σ𝛾)
𝑛

∏

𝑖=1

𝐼 (𝐴
𝑖
) . (13)

The conditional distribution of Z given (Y,X, 𝛾, 𝑐) is
a multivariate truncated normal. Since it is difficult
to directly sample Z from this distribution, we draw
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samples 𝑍
𝑖
, 𝑖 = 1, . . . , 𝑛, from 𝑝(𝑍

𝑖
| Z
(−𝑖)

,Y,X, 𝛾, 𝑐),
where Z

(−𝑖)
is the vector of Z without the 𝑖th element

[34].

(2) Draw 𝛾 from 𝑝(𝛾 | Y,X,Z, 𝑐), where

𝑝 (𝛾 | Y,X,Z, 𝑐)

∝
1


Σ𝛾



1/2
exp(−

Z𝑇Σ−1
𝛾
Z

2
)

𝑝

∏

𝑖=1

𝜋
𝛾𝑖

𝑖
(1 − 𝜋

𝑖
)
1−𝛾𝑖

.

(14)

Similar to the above procedure, we draw samples 𝛾
𝑖
,

𝑖 = 1, . . . , 𝑛, from 𝑝(𝛾
𝑖
| 𝛾
(−𝑖)

,Y,X,Z, 𝑐). It can be
shown that

𝑝 (𝛾
𝑖
| 𝛾
(−𝑖)

,Y,X,Z, 𝑐)

=

𝑝 (𝛾
𝑖
= 1 | 𝛾

(−𝑖)
,Y,X,Z, 𝑐)

𝑝 (𝛾
𝑖
= 1 | 𝛾

(−𝑖)
,Y,X,Z, 𝑐) + 𝑝 (𝛾

𝑖
= 0 | 𝛾

(−𝑖)
,Y,X,Z, 𝑐)

= (1 +
1 − 𝜋
𝑖

𝜋
𝑖

𝜌)

−1

,

(15)

where

𝜌 =

Σ𝛾1Σ
−1

𝛾
0



1/2

exp
{

{

{

Z𝑇 (Σ−1
𝛾
1 − Σ
−1

𝛾
0 )Z

2

}

}

}

,

𝛾
1
= (𝛾
1
, . . . , 𝛾

𝑖−1
, 𝛾
𝑖
= 1, 𝛾
𝑖+1

, . . . , 𝛾
𝑝
) ,

𝛾
0
= (𝛾
1
, . . . , 𝛾

𝑖−1
, 𝛾
𝑖
= 0, 𝛾
𝑖+1

, . . . , 𝛾
𝑝
) ,

(16)

Σ
1

𝛾
and Σ

0

𝛾
are similar to Σ𝛾 with 𝛾 replaced by 𝛾1 and

𝛾0, respectively.

(3) Draw 𝑐 from 𝑝(𝑐 | Y,X,Z, 𝛾), where

𝑝 (𝑐 | Y,X,Z, 𝛾)

∝ 𝑝 (Z, 𝛾, 𝑐 | Y,X)

∝
1


Σ𝛾



1/2
exp(−

ZΣ−1
𝛾
Z

2
) ⋅ 𝑐
−3/2

𝑒
−𝑛/2𝑐

.

(17)

The above distribution does not belong to any stan-
dard distribution, so we will use Metropolis-Hastings
algorithm to sample 𝑐.

The iteration therefore starts with initial values of Z(0),
𝛾(0), and 𝑐

(0), and our MCMC procedures at the 𝑡th iteration
are as follows.

Step 1. Draw 𝑍
(𝑡)

𝑖
from 𝑝(𝑍

𝑖
| Z(𝑡−1)
(−𝑖)

,Y,X, 𝛾(𝑡−1), 𝑐(𝑡−1)), 𝑖 =

1, . . . , 𝑛.

Step 2. For 𝑖 = 1, . . . , 𝑝, calculate 𝑝
(𝑡)

𝑖
≡ 𝑝(𝛾

(𝑡)

𝑖
= 1 |

𝛾(𝑡−1)
(−𝑖)

,Y,X,Z(𝑡), 𝑐(𝑡−1)), generate a random number 𝑢
𝑖
from

𝑈(0, 1), and let

𝛾
(𝑡)

𝑖
= {

1, 𝑢
𝑖
< 𝑝
(𝑡)

𝑖
,

0, otherwise.
(18)

Step 3. Draw 𝑐 from (17) by the following steps:

(i) maximize (17) to obtain 𝑐opt;

(ii) generate the proposal value

𝑐
(𝑡)

= 𝑐opt + 𝜀
(𝑡)
, (19)

where 𝜀
(𝑡) follows a normal 𝑁(𝜇, 𝜎

2
) truncated in a

positive region (a,b) with a density 𝑞;

(iii) accept 𝑐(𝑡) with the acceptance probability:

𝑅 = min{1,

𝑝 (𝑐
(𝑡)

| Y,X,Z, 𝛾)
𝑝 (𝑐
(𝑡−1)

|

Y,X,Z, 𝛾 )

⋅

𝑞 (𝑐
(𝑡−1)

− 𝑐opt)

𝑞 (𝑐
(𝑡)

− 𝑐opt)
} .

(20)

After the initial burn-in period, we obtain the MCMC
samples {(Z(𝑡), 𝛾(𝑡), 𝑐(𝑡)), 𝑡 = 1, . . . ,𝑀} which are next used
to estimate the posterior gene inclusion probability by

𝑝 (𝛾
𝑖
= 1 | Y,X) =

1

𝑀

𝑀

∑

𝑡=1

𝐼 (𝛾
(𝑡)

𝑖
= 1) , (21)

and genes with higher posterior inclusion probabilities are
considered more relevant to classification.

2.4. Classification. To assess the performance of our proce-
dures, testing data sets are considered. For example, a testing
set (𝑋new, 𝑌new) is available, and the predictive probability of
𝑌new given𝑋new is

𝑝 (𝑌new | Y,X, 𝑋new)

= ∫𝑝 (𝑌new |Y,X, 𝑋new,Z, 𝛾, 𝑐) 𝑝 (Z, 𝛾, 𝑐 |Y,X) 𝑑 (Z, 𝛾, 𝑐).
(22)

Based on theMCMC samples, we estimate the probability
with

𝑝 (𝑌new | Y,X, 𝑋new)

=
1

𝑀

𝑀

∑

𝑡=1

𝑝 (𝑌new | Y,X, 𝑋new,Z
(𝑡)
, 𝛾
(𝑡)
, 𝑐
(𝑡)
) .

(23)

When there are no testing sets available, we adopt the
leave-one-out cross-validation (LOOCV)method to evaluate
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Table 1: The posterior inclusion probability and description of the leading 20 genes for the colon cancer study. Genes identified in other
studies were also noted.

Gene Probability Description
Z50753 0.1519 H. sapiensmRNA for GCAP-II/uroguanylin precursorabc

D14812 0.1303 Human mRNA for ORF, complete cdsbc

H06524 0.1163 Gelsolin precursor, plasma (Homo sapiens)ac

R87126 0.1081 Myosin heavy chain, nonmuscle (Gallus gallus)abc

H08393 0.1012 Collagen alpha-2(XI) chain (Homo sapiens)abc

T62947 0.0987 60S ribosomal protein L24 (Arabidopsis thaliana)abc

T57882 0.0881 Myosin heavy chain, nonmuscle type A (Homo sapiens)b

R88740 0.0594 Atp synthase coupling factor 6, mitochondrial precursor (Homo sapiens)bc

J02854 0.0527 Myosin regulatory light chain 2, smooth muscle isoform (Homo sapiens); contains TAR1 repetitive elementab

T94579 0.0494 Human chitotriosidase precursor mRNA, complete cdsb

H64807 0.0490 Placental folate transporter (Homo sapiens)bc

M59040 0.0439 Human cell adhesion molecule (CD44) mRNA, complete cdsc

R55310 0.0437 S36390 mitochondrial processing peptidasec

M82919 0.0333 Human gamma aminobutyric acid (GABAA) receptor beta-3 subunit mRNA, complete cdsbc

H20709 0.0330 Myosin light chain alkali, smooth-muscle isoform (Homo sapiens)bc

T92451 0.0319 Tropomyosin, fibroblast, and epithelial muscle-type (Homo sapiens)a

R33481 0.0312 Transcription factors ATF-A and ATF-A-DELTA (Homo sapiens)b

L06175 0.0309 Homo sapiens P5-1 mRNA, complete cds
T64012 0.0309 Acetylcholine receptor protein, delta chain precursor (xenopus laevis)
H09719 0.0300 Tubulin alpha-6 chain (Mus musculus)
aGene also identified in Ben-Dor et al. [38].
bGene also identified in Furlanello et al. [39].
cGene also identified in Chu et al. [40].

the performance with the training data. Because the predic-
tive probability for 𝑌

𝑖
is

𝑝 (𝑌
𝑖
| Y
(−𝑖)

,X)

= (∭𝑝(𝑌
𝑖
| Y
(−𝑖)

,X,Z, 𝛾, 𝑐)−1

×𝑝 (Z, 𝛾, 𝑐 | Y,X) 𝑑Z𝑑𝛾𝑑𝑐)
−1

,

(24)

where Y
(−𝑖)

denotes the vector of Y without the 𝑖th element.
We estimate this probability based on the generated MCMC
samples,

𝑝 (𝑌
𝑖
| Y
(−𝑖)

,X) =
𝑀

∑
𝑀

𝑡=1
𝑝(𝑌
𝑖
| Y
(−𝑖)

,X,Z(𝑡), 𝛾(𝑡), 𝑐(𝑡))−1
.

(25)

3. Applications

In this section, we applied the fully Bayesian approach and
the reference prior to three cancer studies: colon cancer,
leukemia, and a large B-cell lymphoma (DLBCL) study [35–
37]. We also compared the performance of this approach
with other existing gene selection and classificationmethods.
These data have been extensively studied with various meth-
ods but we only included a limited set of them. Others can be
found in the reference lists of the work cited here.

3.1. Colon Cancer Study. The data of the colon cancer study
contained 2000 expression levels from 40 tumor and 22
normal colon tissues. These expression levels were first
transformed with a base 10 logarithmic function and then
standardized to zero mean and unit variance for each gene.
We then performed the MCMC sampler fixing the ℎ in Σ

𝛾
at

100 and𝜋
𝑖
= Pr(𝛾

𝑖
= 1) = 0.005 for all 𝑖 = 1, . . . , 𝑝.We burned

in the first 12000 iterations, collected every 30th sample, and
obtained 6700 posterior points in total for further analysis.
The leading 20 genes with the largest posterior inclusion
probabilities were presented in Table 1.This list was compared
with the findings in three other studies [38–40] and similar
findings were denoted in Table 1. The first 19 genes were
identified in at least one of the three studies. For reference,
Figure 1 displays the 100 largest posterior probabilities of the
100 corresponding genes.

For classification, we adopted the external leave-one-
out cross-validation (LOOCV) procedure to evaluate the
performance of classification with the selected genes. The
procedures were the following: (i) removing one sample from
the training set; (ii) ranking the genes in terms of 𝑡-statistics
using the remaining samples and retaining the top 50 genes as
the starting set to reduce computational burden; (iii) selecting
the 𝑝∗ most influential genes from the 50 genes based on our
Bayesianmethod; and (iv) using these 𝑝∗ genes to classify the
previously removed sample. The procedures were repeated
for each sample in the dataset. With different choices of 𝑝∗
like 𝑝∗ = 6, 𝑝∗ = 10, and 𝑝

∗
= 14, the error rates were 0.1452,

0.1452, and 0.1129, respectively. The performance of other
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Table 2: Performance comparison of different procedures with LOOCV for the colon cancer study.

Methods No. of genes LOOCV error rate LOOCV accuracy
Bayesian 𝑔-prior 6 0.1452 (9/62) 0.8548 (53/62)
Bayesian 𝑔-prior 10 0.1452 (9/62) 0.8548 (53/62)
Bayesian 𝑔-prior 14 0.1129 (7/62) 0.8871 (55/62)
SVMa 1000 0.0968 (6/62) 0.9032 (56/62)
Classification treeb 200 0.1452 (9/62) 0.8548 (53/62)
1-Nearest-neighborb 25 0.1452 (9/62) 0.8548 (53/62)
LogitBoost, estimatedb 25 0.1935 (12/62) 0.8065 (50/62)
LogitBoost, 100 iterationsb 10 0.1452 (9/62) 0.8548 (53/62)
AdaBoost, 100 iterationsb 10 0.1613 (10/62) 0.8387 (52/62)
MAVE-LDc 50 0.1613 (10/62) 0.8387 (52/62)
IRWPLSd 20 0.1129 (7/62) 0.8871 (55/62)
SGLassoe 19 0.1290 (8/62) 0.8710 (54/62)
MRMS + SVM + D1f 5 0.1290 (8/62) 0.8710 (54/62)
MRMS + SVM + D2f 33 0.1452 (9/62) 0.8548 (53/62)
𝑡-test + probit regression 6 0.1452 (9/62) 0.8548 (53/62)
𝑡-test + probit regression 10 0.1774 (11/62) 0.8226 (51/62)
𝑡-test + probit regression 14 0.2258 (14/62) 0.7742 (48/62)
aProposed by Furey et al. [41].
bProposed by Dettling and Bühlmann [42].
cProposed by Antoniadis et al. [43].
dProposed by Ding and Gentleman [44].
eProposed by Ma et al. [45].
fProposed by Maji and Paul [46].
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Figure 1: The largest 100 posterior probabilities of the genes for
colon cancer study.

methods, including SVM [41]; classification tree followed
by 1-Nearest-neighbor and LogitBoost with 100 iterations
[42]; MAVE-LD [43]; IRWPLS [44]; supervised group Lasso
(SGLasso, [45]) andMRMS [46]; and 𝑡-test for singlemarkers
in probit regression was summarized in Table 2. SVM had
the smallest error rate, but it apparently included too many
genes (1000 in this set). One other methodMRMS+SVM+D1

performed better, with one more correct classification, than
our proposed procedure when 6 or 10 genes were selected.

3.2. Leukemia Study. Next we considered the leukemia study
with gene expression levels from 72 tissues including 47
acute lymphoblastic leukemia (ALL) patients and 25 acute
myeloid leukemia (AML) subjects. These data contained 38
training and 34 testing samples. The training data contained
27 ALL cases and 11 AML cases, whereas the testing data were
with 20 ALL cases and 14 AML cases. As described in other
studies [2], the preprocessing steps such as thresholding and
filtering were applied first and then followed by a base 10
logarithmic transformation. A total of 3571 genes were left
for analysis. Next, we standardized the data across samples,
and we ranked these genes by the same MCMC procedures
described earlier. The top 20 genes with the largest posterior
inclusion probabilities were presented in Table 3, and genes
identified by other studies [36, 41, 47, 48] were also noted.
For reference, Figure 2 displays the 100 largest posterior
probabilities of the 100 corresponding genes.

For the classification procedure, similar to the procedures
for colon cancer study, we selected 𝑝

∗ most influential genes
from a starting set of 50 genes and next used them to examine
the testing data. With 𝑝

∗
= 6, 10, or 14 genes, only the 61st

and 66th observations were misclassified by our procedure.
We also compared the results with weighted voting machine
[36], MAVE-LD [43], two-step EBM [47], KIGP + PK [48],
and 𝑡-test for single markers with probit regression, as
summarized in Table 4. Note that although MAVE-LD and
two-step EBMmethods performed better than our proposed
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Table 3: The posterior inclusion probability and description of the leading 20 genes for the leukemia study. Genes identified in other studies
were also noted.

Gene Probability Description
X95735 0.0691 Zyxinabc

M27891 0.0519 CST3 cystatin C (amyloid angiopathy and cerebral hemorrhage)abc

M23197 0.0302 CD33 cD33 antigen (differentiation antigen)abc

Y12670 0.0251 LEPR leptin receptora

X85116 0.0226 Epb72 gene exon 1ab

D88422 0.0196 CYSTATIN Abc

X62654 0.0196 ME491 gene extracted from H. sapiens gene for Me491/CD63 antigenb

X04085 0.0195 Catalase (EC 1.11.1.6) 5ank and exon 1 mapping to chromosome 11, band p13 (and joined CDS)a

L09209 0.0195 APLP2 amyloid beta (A4) precursor-like protein 2bc

HG1612-HT1612 0.0186 Macmarcksbc

M16038 0.0186 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homologabc

U50136 0.0181 Leukotriene C4 synthase (LTC4S) geneab

M55150 0.0172 FAH fumarylacetoacetateab

M92287 0.0172 CCND3 cyclin D3bc

M22960 0.0168 PPGB protective protein for beta-galactosidase (galactosialidosis)bc

X70297 0.0168 CHRNA7 cholinergic receptor, nicotinic, and alpha polypeptide 7b

X51521 0.0163 VIL2 Villin 2 (ezrin)b

M63138 0.0154 CTSD cathepsin D (lysosomal aspartyl protease)ab

M27783 0.0154 ELA2 elastase 2, neutrophilc

U81554 0.0137 CaM kinase II isoform mRNA
aGene also identified in Golub et al. [36].
bGene also identified in Ben-Dor et al. [38].
cGene also identified in in Lee et al. [22].
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Figure 2: The largest 100 posterior probabilities of the genes for
leukemia study.

procedure, both methods used more genes (50 and 512) and
yet achieved only one less misclassification. Among this list,
our procedure apparently considered a smaller set of genes
with a satisfactory performance.

3.3. Diffuse Large B-Cell Lymphoma (DLBCL) Study. This
study collected 58 samples from DLBCL patients and 19
samples from follicular lymphoma [37]. The original dataset
contained 7129 genes. After the preprocessing steps such
as thresholding and filtering were applied and a base 10
logarithmic transformation was conducted, a total of 6285
genes were left for analysis. Next, we standardized the data
across samples and ranked these genes by the same MCMC
procedures described in earlier sections. The error rates for
𝑝
∗

= 6, 10, or 14 under LOOCV were 0.0519, 0.0649, and
0.0779, and the accuracy was between 0.92 and 0.95, as listed
in Table 5. To achieve a smaller error rate, we considered𝑝

∗
=

5 and obtained a smaller rate 0.0390, the same rate achieved
by the hyperbox enclosure (HBE) method [49]. Similar to
the discussion in the previous two applications, our proposed
model can achieve the same or smaller error rate with a
smaller set of genes.

4. Conclusion and Discussion

In this Bayesian framework, we considered a mixture of 𝑔-
prior to complete a fully Bayesian analysis for gene selec-
tion and cancer classification. Different from other existing
methods that treated the 𝑐 as a fixed value, we incorporated
its uncertainty by assuming a reference inverse-gamma prior
distribution. Earlier studies mentioned this prior, but consid-
ered it difficult to derive posterior inference. We therefore
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Table 4: Performance comparison of different procedures for the leukemia study.

Methods No. of genes Testing error rate Testing accuracy
Bayesian 𝑔-prior 6 0.0588 (2/34) 0.9412 (32/34)
Bayesian 𝑔-prior 10 0.0588 (2/34) 0.9412 (32/34)
Bayesian 𝑔-prior 14 0.0588 (2/34) 0.9412 (32/34)
Weighted voting machinea 50 0.1471 (5/34) 0.8529 (29/34)
MAVE-LDb 50 0.0294 (1/34) 0.9706 (33/34)
Two-step EBMc 32 0.1471 (5/34) 0.8529 (29/34)
Two-step EBMc 256 0.0588 (2/34) 0.9412 (32/34)
Two-step EBMc 512 0.0294 (1/34) 0.9706 (33/34)
KIGP + PKd 20 0.0588 (2/34) 0.9412 (32/34)
𝑡-test + probit regression 6 0.1765 (6/34) 0.8235 (28/34)
𝑡-test + probit regression 10 0.0882 (3/34) 0.9118 (31/34)
𝑡-test + probit regression 14 0.1176 (4/34) 0.8824 (30/34)
aProposed by Gloub et al. [36].
bProposed by Antoniadis et al. [43].
cProposed by Ji et al. [47].
dProposed by Zhao and Cheung [48].

Table 5: Performance comparison of different procedures with LOOCV for the colon cancer study.

Methods No. of genes LOOCV error rate LOOCV accuracy
Bayesian 𝑔-prior 5 0.0390 (3/77) 0.9610 (74/77)
Bayesian 𝑔-prior 6 0.0519 (4/77) 0.9481 (73/77)
Bayesian 𝑔-prior 10 0.0649 (5/77) 0.9351 (72/77)
Bayesian 𝑔-prior 14 0.0779 (6/77) 0.9221 (71/77)
Bayesian 𝑔-prior 20 0.0779 (6/77) 0.9221 (71/77)
HBE 6 0.0390 (3/77) 0.9610 (74/77)
𝑡-test + probit regression 6 0.1169 (9/77) 0.8831 (68/77)
𝑡-test + probit regression 10 0.1558 (12/77) 0.8442 (65/77)
𝑡-test + probit regression 14 0.2208 (17/77) 0.7792 (60/77)

outlined the implementation for computation under this
model setting for future applications. This approach is more
flexible in the process of model building. This model is able
to evaluate how influential a gene can be with posterior
probabilities that can be used next for variable selection.
Such an approach is useful in biomedical interpretations
for the selection of relevant genes for disease of interest.
When compared with other existing methods, our proposed
procedure achieves a better or comparable accurate rate
in classification with fewer genes. In the analyses of colon
cancer and leukemia studies, we replicate several relevant
genes identified by other research groups. The findings have
accumulated evidence for further laboratory research.

In the application section, we listed only the results from
𝑝
∗

= 6, 10, and 14 selected genes. Other values for 𝑝
∗ have

been tried and the performance remains good. For instance,
the pink line in Figures 3 and 4 displays the accuracy of the
proposed procedure when the number of selected genes 𝑝

∗

varies between 5 and 20 for the colon cancer and leukemia
study, respectively. For the colon cancer study, the largest
accuracy 0.8871 occurs at 𝑝

∗
= 14, while other values of

𝑝
∗ lead to the accuracy between 0.8387 and 0.8871. These
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Figure 3: The accuracy of the proposed procedure at different
numbers (𝑝∗ = 5, . . . , 20) of selected genes with 𝑐 following the
generalized 𝑔-prior (pink line) or fixed at constant 5 (red line), 10
(blue), or 20 (black) for the colon cancer study.
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Figure 4: The accuracy of the proposed procedure at different
numbers (𝑝∗ = 5, . . . , 20) of selected genes with 𝑐 following the
generalized 𝑔-prior (pink line) or fixed at constant 5 (red line), 10
(blue), or 20 (black) for the leukemia study.

correspond to at least 52 correctly identified subjects out
of 62. For the leukemia study, the largest accuracy 0.9706
occurs at 𝑝

∗
= 15. Other values of 𝑝

∗ all lead to an
accuracy larger than 90% except when 𝑝

∗
= 20 (accuracy is

0.8824 = 30/34). In addition, we compared the results under
the proposed generalized 𝑔-prior with 𝑐 fixed at a constant.
The colored lines in Figures 3 and 4 are for 𝑐 fixed at 5
(red line), 10 (blue), or 20 (black), respectively. Again, results
under the prior distribution assumption lead to a higher
accuracy with a less number of selected genes. Another issue
is related to the choice of the number of genes in the starting
set. We have considered 50 in all three applications. This
value can certainly be changed. However, the computational
complexity increased as the value becomes larger.This cost in
computation remains a research topic for future research.

To compare the performance of a stochastic 𝑐 and a
constant 𝑐, we also conducted a small simulation study
to investigate the effect of assigning a prior on 𝑐 versus
fixing 𝑐 at different constant values. We used the R package
penalizedSVM [50, 51] to simulate three data sets; each
contains 500 genes with 15 genes associated with the disease.
The numbers of training and testing sample were 200 and
40, respectively. We then conducted the gene selection pro-
cedures with a prior on 𝑐, 𝑐 = 5, 𝑐 = 50, and 𝑐 = 500

at 𝑝∗ = 1, 2, . . . , 15 and recorded the accuracy under each
setting. Figure 5 plots the average accuracy with the pink line
standing for the accuracy under the mixtures of 𝑔-priors on
𝑐, the black line for 𝑐 = 5, the red line for 𝑐 = 50, and the
blue line for 𝑐 = 500. It can be observed that only when 𝑐 is
assignedwith a very large number like 500, the corresponding
accuracy can be slightly better than that under a prior for the
uncertainty in 𝑐. This again supports the use of the mixtures
of 𝑔-priors for a better and robust result.
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Figure 5: Average accuracy when the number of genes ranges from
1 to 15 under the mixtures of 𝑔-priors on 𝑐 (pink line), 𝑐 fixed at 5
(black), 𝑐 at 50 (red), and 𝑐 at 500 (blue).

Here in this paper we have focused on the analysis of
binary data. However, the probit regression model can be
extended to a multinomial probit model to solve the multi-
class problems, and the Bayesian inference can be carried out
similarly. Such analysis will involve a larger computational
load and further research in this direction is needed. Another
point worth mentioning is the inclusion of interactions
between genes. Further research can incorporate a power
prior into the prior of 𝛾 [52] or include information on gene-
gene network structure [18] to complete the procedure for
variable selection.
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