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SUMMARY

Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary 

cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we 

demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development 

and function, requires a functional primary cilium for complete maturation and that RPE 

maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically 

enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully 

mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with 

a knockdown of ciliary-trafficking protein remain immature, with defective apical processes, 

reduced functionality, and reduced adult-specific gene expression. Proteins of the primary cilium 
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regulate RPE maturation by simultaneously suppressing canonical WNT and activating PKCδ 
pathways. A similar cilium-dependent maturation pathway exists in lung epithelium. Our results 

provide insights into ciliopathy-induced retinal degeneration, demonstrate a developmental role for 

primary cilia in epithelial maturation, and provide a method to mature iPSC epithelial cells for 

clinical applications.

Graphical Abstract

In Brief

May-Simera et al. show that primary cilia regulate the maturation and polarization of human iPSC-

RPE, mouse RPE, and human iPSC-lung epithelium through canonical WNT suppression and 

PKCδ activation. RPE cells derived from ciliopathy patients exhibit defective structure and 

function. These results provide insights into ciliopathy-induced retinal degeneration.

INTRODUCTION

Primary cilia are microtubule-based appendages that extend from the cell membrane and are 

required for a variety of cellular processes. Since their initial discovery in the 18th century 

(Dobell, 1932; Muller, 1786), primary cilia have been identified on most eukaryotic cell 

types during some phase of their development (Gerdes et al., 2009). Primary cilia are 

anchored to the cell via a basal body derived from the mother centriole. In contrast to motile 

cilia, in which the extra central pair of microtubules is required for generation of movement, 

primary cilia are composed only of nine microtubule doublets extending from microtubule 

triplets of the basal body (Reiter et al., 2012). Although the precise composition of ciliary 

membrane proteins and inventory of signaling molecules differsbetween cell type and cell 

stage, primary cilia have been shown to act as a sensory signaling hub, regulating ubiquitous 

developmental pathways such as Sonic Hedgehog (SHH), transforming growth factor β 
(TGF-β), and WNT (May-Simera and Kelley, 2012b; Sasai and Briscoe, 2012). Moreover, 
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ciliogenesis per se is highly regulated by extra-cellular and intracellular signaling (Kim and 

Dynlacht, 2013).

In the vertebrate eye, in addition to the retinal photoreceptors that contain a highly modified 

primary cilium, primary cilia are present in numerous different cell types, including the 

cornea, the trabecular meshwork, the lens, and the retinal pigment epithelium (RPE) 

(Grisanti et al., 2016; Luo et al., 2012; May-Simera et al., 2017; Sugiyama et al., 2010). The 

RPE is a polarized epithelial tissue located in the back of the eye (Bharti et al., 2011), and a 

vast majority of in vitro cilium studies utilize immortalized RPE cell lines such as ARPE19 

and hTERT-RPE-1. However, not much is known about the function of primary cilia in vivo 
in mouse or human RPE. In other epithelial tissues, such as the organ of Corti in the cochlea, 

the primary cilium is associated with the formation of actin-based stereocilia on the apical 

surface, complete tissue maturation, and functionality (Denman-Johnson and Forge, 1999; 

May-Simera and Kelley, 2012a). Similar actin-based apical processes extend from the apical 

surface of RPE cells and are a hallmark of RPE polarization and function (Leh-mann et al., 

2014).

Defects in primary cilium function cause a spectrum of human diseases collectively termed 

ciliopathies (Braun and Hilde-brandt, 2017). Ciliopathies have overlapping clinical 

phenotypes and were originally categorized based on subtle phenotypic differences (Lee and 

Gleeson, 2011). Retinal degeneration is the most frequent phenotype present across most 

ciliopathy patients (Bujakowska et al., 2017; Wheway et al., 2014). Retinal degeneration is 

predominantly thought to be caused by functional and developmental abnormalities in 

retinal photoreceptors such that their outer segments do not fully develop and undergo rapid 

degeneration. However, the contribution of defective cilia from non-photoreceptor ocular 

cell types to the retinal degeneration seen in ciliopathy patients has not been investigated. 

Previous work suggests that photoreceptor outer segment development is dependent on 

complete maturation of the RPE monolayer located adjacent to the retinal photoreceptors 

(Nasonkin et al., 2013). Furthermore, it has also long been established that photoreceptor 

health and functional integrity are critically dependent on functional and metabolic support 

from RPE cells that tightly associate with retinal photoreceptors anatomically (Bharti et al., 

2011). It is not clear whether defective cilia in the RPE may contribute to initiation and/or 

progression of retinal degeneration in patients.

The pleiotropic role of the primary cilium across multiple tissues is principally due to its 

ability to modulate various signaling pathways. One of the first signaling pathways shown to 

be associated with the primary cilium function is the WNT signaling pathway (May-Simera 

and Kelley, 2012b). The canonical branch of WNT signaling leads to the stabilization of 

cytoplasmic β-catenin, which translocates into the nucleus, where it activates transcription of 

target genes. β-catenin activity has been shown to be suppressed by the cilium via 

sequestration of its activator JOUBERIN (Ahi1) to the cilium base (Lancaster et al., 2011). 

Regulation of WNT signaling is critical for RPE development (Westenskow et al., 2009). 

Another key cellular process controlled by the primary cilium in epithelial cells, via the 

regulation of non-canonical WNT signaling, is the planar cell polarity, which results in 

functional polarization across an epithelial plane (May-Simera et al., 2015; Ross et al., 2005 
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Roignot et al., 2013). This is a key step in RPE maturity and functionality, but the role of 

primary cilia in this process is not fully understood.

Based on literature and our current data (Figures 1A–1D) regarding the presence of primary 

cilia in confluent monolayers of human and mouse RPE, we examined the function of this 

organelle in the RPE (Parfitt et al., 2016). Experimentally enhanced ciliogenesis using 

specific drugs led to improved maturation and functionality in human induced pluripotent 

stem cell (hiPSC)-RPE, whereas inhibition of the primary cilium function led to 

incompletely matured induced pluripotent stem cell (iPSC)-RPE cells. Downstream of the 

cilium, this effect is mediated by canonical WNT suppression, leading to cell cycle exit in 

iPSC-RPE and protein kinase Cδ (PKCδ) activation, likely initiated by direct protein-

protein interactions between the cilium trafficking protein BBS8 and canonical WNT 

effectors INVERSIN and JOUBERIN. The effect of enhanced ciliogenesis on epithelial 

maturation can be generalized to at least one more epithelial cell type: the iPSC-proximal 

lung epithelial cells. Furthermore, genetic knockdown of the cilium gene IFT88 confirmed 

that primary cilia regulate complete maturation and apical-basal polarization of the RPE. To 

confirm these findings obtained with pharmacological modulation of primary cilia, we used 

RPE cells derived from a ciliopathy patient and a ciliopathy mouse model. These two 

independent models confirmed a major role for the RPE in the retinal degeneration 

phenotype seen in ciliopathy patients: iPSC-RPE derived from a ciliopathy (Joubert 

syndrome) patient with CEP290 mutations demonstrated a lack of structural and functional 

maturity; Bbs8−/− mice with abnormal cilia revealed that the RPE maturation defect 

precedes photoreceptor maturation. This work has helped to develop mature and polarized 

iPSC-RPE for autologous cell therapy of age-related macular degeneration (AMD) patients 

and also highlights the need for considering the RPE as well when developing treatment 

strategies for retinal degeneration in ciliopathy patients.

RESULTS

Primary Cilium Induction Helps Generate Fully Mature and Functional hiPSC-Derived RPE

The emergence of primary cilia on hiPSC-RPE cells (Figure 1B) and mouse RPE (Figures 

1C and 1D) temporally coincides with the maturation of cells and precedes induction of 

apical processes. iPSC-derived RPE cells formed primary cilia, as confirmed by ARL13B 

and GT335 immunostaining (Figure 1E), but ciliogenesis was not seen in all cells across the 

monolayer. Furthermore, RPE cells derived from iPSCs do not fully mature in vitro (Figures 

1I and 1M). Based on these observations, we hypothesized that primary cilia regulate 

complete maturation of RPE cells and that the lack of iPSC-derived RPE maturation is due 

to inefficient ciliogenesis in these cells.

To uncover the role of the primary cilium in iPSC-RPE, we designed a protocol to 

manipulate primary cilia specifically during the maturation stage of iPSC-RPE 

differentiation. We utilized three previously published ciliogenesis modulators: aphidicolin, 

a tetracyclic antibiotic that increases ciliogenesis by blocking the G1-to-S transition in cells 

(Lancaster et al., 2011); prostaglandin E2 (PGE2), an eicosanoid that enhances ciliogenesis 

by increasing intraflagellar transport (Jin et al., 2014); and HPI-4, an AAA+ ATPase dynein 

motor inhibitor that works in an opposite manner to PGE2 by blocking ciliary protein 
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transport to inhibit function of the cilium, providing a good negative control (Firestone et al., 

2012). Fully confluent iPSC-RPE was treated for 4 weeks in serum-containing medium 

during the maturation phase of differentiation with either aphidicolin or PGE2 to enhance 

ciliogenesis or HPI-4 to suppress the primary cilium function. In comparison with untreated 

or HPI-4-treated cells, aphidicolin and PGE2 enhanced ciliogenesis (ARL13B and GT335) 

and increased the number of cilia in a confluent RPE monolayer (Figures 1E–1H). Although 

HPI-4 treatment did not decrease the number of cilia, it suppressed cilium function by 

inhibiting intraflagellar protein transport. This was confirmed by reduced expression of two 

known ciliary axoneme proteins, IFT88 and GLI2, in HPI-4-treated cells (Figures S1A-S1H; 

Hay-craft et al., 2005; Pazour et al., 2000). It is worth noting that RPE cells derived from 

three different iPSC lines (Table S1) produced comparable data across these treatments and 

other experiments presented throughout this manuscript.

As expected, enhanced ciliogenesis by either aphidicolin or PGE2 significantly improved 

structural maturation of cells with increased pigmentation and extensive apical processes, as 

confirmed by transmission electron microscopy (TEM) (Figures 1I–1L) and scanning 

electron microscopy (Figures S1I–S1L). A readout of epithelial maturity is a homogeneous 

and elevated expression of maturity and polarity markers across the entire epithelial 

monolayer. We examined the expression of EZRIN, a polarity marker, and RPE65, a 

maturity marker, by immunostaining. In both aphidicolin- and PGE2-treated cells, but not in 

untreated or HPI-4-treated cells, the expression of both of these proteins was dramatically 

increased and expressed homogenously throughout all cells in the iPSC-RPE monolayer 

(Figures 1M–1P and Figures S1M–S1P). Consistent with improved structural and molecular 

maturation of individual cells, both aphidicolin and PGE2 treatment improved functional 

maturation of the RPE monolayer (Figures 1Q–1U). Transepithelial potential (TEP), a 

difference in membrane potential of apical and basal membranes, reflects the differential 

expression of ion channels on either membrane. A higher TEP reflects enhanced functional 

polarization and maturation of the RPE monolayer. Compared with the untreated RPE 

monolayer (TEP of 2.66 ± 0.27 mV) or HPI-4-treated monolayer (TEP of 0.14 ± 0.66 mV), 

both aphidicolin- and PGE2-treated cells had significantly increased TEP (4.31 ± 0.33 mV 

and 5.87 ± 0.26 mV, respectively (Figures 1Q–1U; Table S2). Furthermore, treatment with 

aphidicolin or PGE2 improved the hyperpolarization responses of the RPE monolayer in 

response to reduced apical potassium concentration from 5 mM to 1 mM, a physiological 

stimulus that mimics the subretinal space K+ concentration drop upon dark-to-light 

transition and induces RPE apical membrane hyperpolarization (Joseph and Miller, 1991) 

compared with untreated controls or HPI-4-treated cells. Aphidicolin- and PGE2-induced 

changes in RPE monolayer TEP were similar in response to native human RPE (Adijanto et 

al., 2009) and consistent with increased expression of the RPE potassium channel KCNV2, 

as seen on the broader gene expression panel (Figure 1X). To further determine the 

functional maturity of cells, we tested the ability of RPE cells to phagocytose photoreceptor 

outer segments, one of the most critical function of RPE cells (Bharti et al., 2011). 

Treatment of aphidicolin made RPE cells 2–3 times more phagocytic compared with 

untreated cells, confirming the notion that cilio-genesis improves the functional maturity of 

iPSC-RPE cells (Figure 1V)
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To further understand the effect of the primary cilium induction on RPE maturation and 

determine whether cilium modulation shifted iPSC-RPE gene expression to more adult-like 

cells, we performed a comprehensive gene expression analysis of 71 previously identified 

fetal RPE-specific and 88 adult RPE-specific genes (Strunnikova et al., 2010). Compared 

with untreated cells, treatment with aphidicolin and PGE2 shifted the global pattern of RPE-

specific gene expression toward less fetus-specific (aphidicolin, 72%; PGE2, 63%) and more 

adult-specific (aphidicolin, 51%; PGE2, 53%) genes. In contrast, HPI-4 treatment led to a 

significant downregulation of all RPE genes (Figures 1W and 1X; Table S3). This suggests 

that structural and functional changes seen in RPE monolayers treated with cilium-

modulating drugs is likely due to changes in levels of RPE-specific genes. Overall, these 

data confirmed that experimentally enhanced ciliogenesis generates fully mature and 

polarized iPSC-RPE cells, whereas functional inhibition of cilia does not allow iPSCRPE to 

mature.

Primary Cilium-Induced iPSC-RPE Maturation Is Mediated by Canonical WNT Suppression 
and Recruitment of Key Canonical WNT Effectors to the Base of the Cilium

RPE fate commitment requires temporally regulated canonical WNT signaling; WNT over-

activation in mouse RPE leads to patterning defects (Fujimura et al., 2009; Westenskow et 

al., 2009). The primary cilium suppresses canonical WNT signaling by inducing the 

degradation of cytoplasmic β-catenin, resulting in depletion of the transcriptionally active 

nuclear form, and translocation of inactive β-catenin to tight junctions (Lancaster et al., 

2011; MacDonald et al., 2009). Based on this literature evidence, we asked whether primary 

cilium-induced iPSCRPE maturation is caused by canonical WNT suppression. In contrast 

to untreated or HPI-4-treated hiPSC-RPE, both aphidicolin and PGE2 treatment increased 

translocation of cytoplasmic β-catenin to the membrane, suggesting canonical WNT 

suppression (Figures 2A–2D). Consistently, both aphidicolinand PGE2-treated cells showed 

reduced rates of proliferation, as confirmed by Ki67 immunostaining (Figures 2E–2H), and 

significantly enhanced cell cycle exit, as seen by increased p27kip1expression (Figures 2I–

2L). For post-mitotic cells such as RPE cells, cell cycle exit is required for complete 

maturation. Therefore, these results suggest that, downstream of primary cilia, canonical 

WNT suppression-mediated cell cycle exit is one key pathway to induce RPE maturation.

To gain further mechanistic insights into the role of primary cilia in suppressing the 

canonical WNT pathway, we looked at the expression and localization of the canonical 

WNT modulators INVERSIN and JOUBERIN, which have previously been shown to be 

associated with primary cilia (Lancaster et al., 2011; Simons et al., 2005). We determined 

that suppression of β-catenin transcriptional activity in aphidicolin- or PGE2-treated samples 

was likely due to enhanced recruitment of the β-catenin inhibitor INVERSIN and co-

activator JOURBERIN to the cilium compared with HPI-4-treated cells, where the two 

proteins predominantly localized to the membrane or the cytoplasm (Figures 2M–2T). 

Enhanced recruitment of INVERSIN to the ciliary base is likely due to its direct physical 

interactions with the ciliary trafficking protein BBS8 (Figure 2U). In co-

immunoprecipitation as-says, INVERSIN was able to co-immunoprecipitate with BBS8. 

Direct involvement of the primary cilium and its components in suppression of canonical 

WNT signaling is further confirmed in BBS8 knockdown RPE cells, in which increased 
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phosphorylation of transcriptionally active serine 552 on β-catenin is observed (Figure 

S2A). Consistent with the above data, aphidicolin and PGE2 treatments suppressed more 

than 80% of canonical WNT target genes, and HPI-4 lead to their increased activation 

(Figure 2V; Figure S2B). These results strongly support the hypothesis that the complete 

RPE maturation seen with enhanced ciliogenesis in hiPSC-RPE results from a direct 

suppression of canonical WNT signaling by ciliary proteins, forcing cell cycle exit to induce 

RPE maturation.

It is worth noting that our observations in iPSC-RPE are likely not due to cilia affecting 

SHH signaling (Sasai and Briscoe, 2012). HPI-4 inhibition of RPE maturation is 

independent of its effect on SHH suppression because a known SHH inhibitor, cyclopamine 

(Taipale et al., 2000; Tuson et al., 2011), did not affect RPE maturation in this assay (data 

not shown).

Canonical WNT Suppression Alone Is Not Sufficient to Induce iPSC-RPE Maturation

To determine whether canonical WNT suppression alone in the absence of primary cilium 

enhancers was sufficient to induce RPE maturation, we tested several known WNT 

inhibitors for their ability to suppress the canonical WNT pathway in iPSCRPE. From this 

screen (data not shown), we identified two drugs that, when used together, led to a strong 

translocation of β-catenin from the nucleus to the cell membrane, suppressing canonical 

WNT activity. IWP2 renders WNT ligands inactive by blocking their palmitoylation through 

suppression of the acyltransferase enzyme PORCUPINE and also inhibits canonical WNT 

co-receptor LRP6, thus blocking β-catenin nuclear accumulation (Yeh and Peterson, 2009). 

Endo-IWR1 stabilizes the β-catenin destruction complex by interacting with AXIN, thus 

blocking β-catenin accumulation (Chen et al., 2009). For comparison, we used a well-known 

canonical WNT activator, CHIR99201, which works opposite to endo-IWR1, inhibits GSK3, 

and leads to β-catenin stabilization (Leach et al., 2015). As expected and as compared with 

untreated cells, treatment with IWP2+endo-IWR1 led to stronger translocation of β-catenin 

to the plasma membrane, whereas CHIR99201 treatment enhanced β-catenin localization in 

the nucleus (Figures 3A–3C). Treatment with IWP2+endo-IWR1 led all cells in the mono-

layer to exit the cell cycle with high nuclear p27kip1 expression compared with untreated or 

CHIR99201-treated cells (Figures 3D–3F). Consistent with enhanced cell cycle exit, 

IWP2+endo-IWR1-treated cells expressed higher levels of the maturation marker RPE65 

(Figures 3G–3I). Furthermore, TEM analysis confirmed the presence of extensive apical 

processes on cells where canonical WNT signaling was turned off compared with untreated 

or CHIR99201-treated cells (Figures 3J–3L). These structural and molecular changes in 

iPSC-RPE cells were also evident in a functional analysis of IWP2+endo-IWR1-treated cells 

displaying four times higher phagocytosis activity compared with untreated or CHIR99201-

treated cells (Figure 3M). Although canonical WNT suppression in the absence of cilium 

enhancers led to cell cycle exit, increased expression of mature RPE genes, and increased 

rate of phagocytosis in iPSC-RPE, it did not lead to complete maturation and polarization of 

the RPE monolayer. For instance, the hyperpolarization response and changes in RPE TEP 

caused by a 5 mM to 1 mM potassium concentration drop was not evident in IWP2+endo-

IWR1-treated cells (Figure 3N; Table S2). Taken together, our results demonstrate that, 
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although canonical WNT suppression is necessary for RPE maturation, it is not sufficient for 

this effect.

Primary Cilium-Induced iPSC-RPE Functional Polarization Is Mediated through PKCδ 
Activation

The inability of canonical WNT suppression alone to induce complete RPE polarization 

prompted us to investigate other pathways that might be influencing RPE maturation 

downstream of the primary cilium. Apical-basal polarization of epithelial cells is triggered 

by actin-cytoskeleton alignment along the circumferential axis of the cell, isolating apical 

and basolateral membrane domains and their respective channel proteins. This process is 

regulated by a protein kinase, PKCδ (Kinoshita et al., 2003; Kühl et al., 2000). We therefore 

investigated the role of PKCδ in RPE maturation. In iPSC-RPE, aphidicolin enhanced 

ciliogenesis activated PKCδ, translocating it to the cell membrane and to the base of the 

primary cilium (Figures 4A–4C), likely through direct protein-protein interactions with the 

ciliary trafficking protein BBS8, as confirmed by co-immunoprecipitation between BBS8 

and PKCδ (Figure 4D; Figure S3A). Phospho-Myosin Light Chain 2 (pMLC2), a 

downstream effector of PKCδ (Jamison et al., 2013), was increasingly organized along cell 

boundaries in aphidicolin-treated cells (Figures 4E and 4F), suggesting an increased activity 

of PKCδ in cells with enhanced ciliogenesis. Rottlerin, a specific PKC δ inhibitor, 

completely blocked aphidicolin-induced organization of pMLC2 along cell boundaries 

(Figure 4G), suggesting a prominent role of this kinase in inducing RPE polarization 

downstream of primary cilia. Consistent with the blockage of PKCδ activity, rottlerin 

treatment suppressed aphidicolin-induced enhancement of RPE apical processes (Figures 

4H–4J). The most striking phenotype of PKCδ inhibition is seen in iPSC-RPE functional 

polarization responses and the ability of cells to hyperpolarize in response to reduced 

potassium concentration and to depolarize in response to ATP. Rottlerin treatment of control 

cells and cells previously treated with aphidicolin dampened RPE monolayer electrical 

responses in a dose-dependent manner (Figures 4K–4R; Figure S3B). Similar data were 

obtained using another PKCδ inhibitor, GÖ6850 (Table S2). These results suggest that, in 

addition to canonical WNT suppression, primary cilium-induced apical process maturation 

and functional polarization in RPE cells are mediated by PKCδ activation.

Primary Cilium Induction Helps Generate Mature and Polarized Lung Epithelial Cells

Primary cilia are present on several other epithelial cells types (Jain et al., 2010; May-

Simera et al., 2015; Mirzadeh et al., 2010; Mitchell et al., 2009). The effects of enhanced 

ciliogenesis on iPSC-RPE maturation prompted us to investigate a similar role for primary 

cilia on other specialized epithelia derived from different germ layers. We differentiated 

iPSCs into proximal lung epithelial cells (iPSC-PLECs) using modification of a previously 

published protocol (Firth et al., 2014). iPSCs were first differentiated into definitive 

endoderm (FOXA2), followed by anterior endoderm (NKX2.1), and finally into iPSC-

PLECs (CC10/FOXJ1) (Figures S4A–S4D). Similar to iPSC-RPE, treating precursor iPSC-

PLECs with aphidicolin enhanced ciliogenesis, as confirmed by ARL13B immunostaining 

(Figures 5A and 5B; GT335 and acetylated tubulin not shown). Furthermore, treatment with 

aphidicolin improved tight junctions, as seen by increased ZO-1 immunostaining (Figures 

5C and 5D) and enhanced apical process formation, as confirmed by EZRIN 
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immunostaining (Figures 5E and 5F). Similar to iPSC-RPE, cilium-induced iPSC-PLEC 

maturation is likely also mediated by canonical WNT suppression, as confirmed by reduced 

nuclear localization of β-catenin in aphidicolin-treated iPSC-PLECs compared with 

untreated cells (Figures 5G and 5H). Overall, our results confirm a broader role for the 

primary cilium in polarization of iPSC-derived epithelial cells and suggests that 

pharmacological enhancement of ciliogenesis may be a strategy to improve the 

differentiation of other iPSC-derived tissues.

Knockdown of the Cilium Protein IFT88 Severely Compromises iPSC-RPE Monolayer 
Maturity

To genetically confirm our findings obtained with pharmacological manipulation of cilia and 

to further understand the mechanistic basis of primary cilium-mediated RPE maturation, we 

targeted a ciliary trafficking gene, IFT88 (Pazour et al., 2000). Lentivirus-based short hairpin 

RNA (shRNA) reduced IFT88 expression to approximately 40% of wild-type levels in 

mono-layers of wild-type iPSC-RPE (Figure 6A). Consistent with the level of knockdown, 

ARL13B immunostaining confirmed that ciliogenesis was compromised in IFT88-KD-

iPSC-RPE mono-layer (Figures 6B and 6C). Similar to HPI-4- or rottlerin-treated cells, 

IFT88 knockdown RPE showed severe maturation and functional polarization defects. Broad 

gene expression analysis demonstrated reduced expression of a majority of RPE signature 

genes (58% of 160 genes) and adult RPE-specific genes (45% of 70 genes; Figure 6D). 

ZO-1 immunostaining revealed that IFT88 knockdown iPSC-RPE had severe tight junction 

defects and reduced expression of cyclin-dependent kinase inhibitor 1B (p27kip1) (Figures 

6E and 6F), suggesting that, unlike ciliogenesis-enhanced cells, IFT88 knockdown cells are 

not able to fully exit the cell cycle or form mature junctional complexes. Scanning electron 

microscopy confirmed that, just like HPI-4- or rottlerin-treated cells, IFT88 knockdown 

iPSC-RPE has acutely underdeveloped apical processes (Figures 6G and 6H) with 

significantly reduced expression of the apical process and polarization marker EZRIN 

(Figures 6I and 6J). To confirm whether these structural polarization defects also affect 

iPSC-RPE functional polarization, we measured TEP. Compared with scrambled shRNA 

controls (TEP 0.96 ± 0.05 mV), IFT88-KD-iPSC-RPE displayed close to zero TEP (0.06 

± 0.05 mV), suggesting complete loss of functional apical-basal polarity (Figures 6K and 

6L; Table S4). Furthermore, compared with control cells, IFT88-KD-iPSC-RPE barely 

responded to apical extracellular low K+ (IFT88 knockdown [KD], 0.14 ± 0.03 mV; control, 

0.92 ± 0.06 mV; n = 5) and the stimulation of apical P2Y2 receptors by ATP (IFT88 KD, 

0.10 ± 0.04 mV; control, 0.74 ± 0.09 mV; n = 5) that activates intracellular signals needed 

for RPE membrane polarization (Peterson et al., 1997; Figures 6K and 6L; Table S4). 

Treatment of IFT88 KD cells with aphidicolin only partially rescued the TEP responses of 

RPE cells, likely because of slightly improved ciliogenesis in cells where IFT88 knockdown 

was not very effective (note the incomplete IFT88 KD across the RPE monolayer in Figures 

6A–6C). These results suggest that, similar to the defects observed in HPI-4- or rottlerin-

treated cells, reducing IFT88 expression in wild-type (WT) iPSC-RPE severely 

compromises their maturity and functional apical-basal polarity, further underscoring a role 

for primary cilia in this process and providing support for data obtained using 

pharmacological modulators of cilia.
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RPE Cells Derived from Ciliopathy Patients with Joubert Syndrome Show Defective 
Structural and Functional Maturity

Ciliopathy patients have severe retinal and photoreceptor degeneration (Bujakowska et al., 

2017; Wheway et al., 2014), but it is not known whether the RPE of these patients has any 

developmental or functional abnormalities. To address this question, we generated iPSCs 

from a ciliopathy patient (Joubert syndrome) with mutations in the ciliary gene CEP290. 

CEP290 encodes a key cilium transition zone protein involved in the regulation of ciliary 

protein composition (Coppieters et al., 2010; Craige et al., 2010; Rachel et al., 2012). 

CEP290-iPSCs were generated from a 3-year-old patient with biallelic nonsense mutations 

in CEP290 (17-bp deletion c.2495_2512 del/InATCT and c.5668 G > T substitution; Figures 

6M and 6N; Table S1). The patient presented with delayed development, a classic “molar 

tooth sign” in the midbrain, 20/800 binocular acuity, oculomotor apraxia, horizontal 

nystagmus, midperipheral coloboma in the left retina/choroid, and pigmentary changes 

suggesting retinal degeneration. Renal function was normal to date with loss of 

corticomedullary differentiation. CEP290-iPSCs differentiated into RPE with an efficiency 

comparable with control iPSCs (data not shown) (Miyagishima et al., 2016). Although fully 

confluent CEP290-iPSC-RPE formed primary cilia similar to the control, CEP290 

expression in patient iPSC-RPE was reduced compared with control iPSC-RPE with no 

detectable CEP290 protein at the ciliary base (Figures 6O–6Q). It is surprising that, despite 

premature stop codon mutations in both alleles, approximately 10% CEP290 expression was 

still detected (see Discussion for details; this 10% expression is likely due to mutant exon 

skipping that has been observed previously with CEP290 mutants) (Drivas et al., 2015). The 

number of cilia was similar (data not shown), but the cilium size was consistently smaller in 

patient cells compared with control cells, as confirmed by the cilia markers ARL13B and 

GT335 (healthy, 1.57 ± 0.66 μm2; patient, 0.92 ± 0.47 μm2) (Figures 6R–6T). RPE mono-

layer analysis revealed that, similar to IFT88 KD and HPI-4-treated iPSC-RPE, patient cells 

had irregular ZO-1 staining compared with healthy sibling cells (Figures S5A and S5B). 

This suggests that tight junction assembly defects in patient iPSC-RPE likely also resulted 

from incomplete maturation because of defective cilia. As expected, incompletely matured 

patient RPE phagocytosed three times fewer photoreceptor outer segments (Figure 6U). 

These maturation and functional defects prompted us to investigate RPE apical processes. 

Again, similar to IFT88 KD iPSC-RPE and HPI-4-treated iPSC-RPE, scanning electron 

microscopy confirmed abnormal (blebbed instead of typical finger-like) apical processes 

(Figures 6V and 6W; Miyagishima et al., 2016) Furthermore, quantitative gene expression 

analysis of patient cells confirmed incomplete maturation of CEP290-iPSC-RPE and 

revealed downregulation of RPE signature genes (74% of 160 genes; specific examples 

include the gap junction protein CX43, the visual cycle enzyme RDH11, the chloride 

channel CLCN4, and the pigmentation gene TYRP1) and adult RPE-specific genes (67% of 

70 genes; specific examples include the glucose transporter GLUT1, the visual cycle 

enzymes LRAT and ALDH1A3, and the extracellular matrix [ECM] components FBLN1 

and TIMP3) in patient compared with healthy cells (Figures 6X and 6Y; Table S3; 

Strunnikova et al., 2010). However, unlike IFT88 KD, immunostaining did not show 

prominent differences in RPE65 and still retained patchy EZRIN expression in patient cells 

compared with healthy iPSC-RPE (Figures S5C and S5D; Table S3; data not shown). These 

data suggest that, although CEP290-iPSC-RPE initiate normal differentiation, they do not 
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attain complete maturity. Analysis of ciliopathy patient RPE confirmed our data obtained 

using cilium-modulating drugs and IFT88 KD iPSC-RPE, showing that the primary cilium is 

indeed critical for the maturation and functional polarization of RPE cells. It also 

demonstrated that, in addition to photoreceptor degeneration, ciliopathy patients have RPE 

maturation defects that might contribute to the retinal degeneration phenotype.

RPE Maturation Defects in a Ciliopathy Mouse Model Precede Photoreceptor Degeneration

Although the analysis of ciliopathy patient iPSC-RPE confirmed maturation defects in these 

cells, it did not provide information about the temporal sequence of events. We asked which 

of the two cell types, RPE or photoreceptors, first shows changes in maturation and 

functional properties. To address this question, we used a mouse ciliopathy model. 

Photoreceptor outer segment development in mice begins around post-natal day 5 (P5), with 

complete maturation by P21. In contrast, RPE maturation is completed by P0 (Bharti et al., 

2012; Nasonkin et al., 2013). This temporal difference in RPE and photoreceptor maturation 

provided us with the possibility to investigate whether RPE defects precede the 

photoreceptor degeneration seen in mouse models with defective primary cilium.

We chose to work with the TTC8 gene, which encodes for BBS8, a key component of the 

“Bbsome” required for protein trafficking into and out of the primary cilium (Nachury et al., 

2007). Bbs8 knockout mice with dysfunctional primary cilia recapitulate the human 

ciliopathy phenotype, including early-onset retinal degeneration (Tadenev et al., 2011). 

Furthermore, BBS8 is likely directly involved in primary cilium-mediated RPE maturation, 

and it interacts with the WNT inhibitor INVERSIN and with the apical-basal polarity-

inducing kinase PKCδ (Figures 2Q and 4D). Therefore, we investigated whether Bbs8−/− 

mice also present with RPE maturation defects, as seen in Joubert syndrome patient iPSC-

RPE and IFT88 KD iPSC-RPE. We analyzed RPE maturation in Bbs8−/− mice at P0, prior to 

photoreceptor differentiation or degeneration. In contrast to WT littermates, but similar to 

IFT88-KD-iPSC-RPE and CEP290-iPSC-RPE, the RPE in Bbs8−/− mice displayed multiple 

signs of incomplete maturation. This included underdeveloped tight junctions, as confirmed 

by ZO-1 immunostaining and irregular localization of the cilium marker ROOTLETIN 

(Figures 7A and 7B). Scanning electron microscopy revealed apical process defects with 

sparse and underdeveloped processes (Figures 7C and 7D; Figures S6A–S6D). Analysis of 

apical processes in this mouse model revealed another critical feature of primary cilium 

regulation of RPE maturation. Apical process defects were more prominent in peripheral 

RPE compared with central RPE, suggesting a possible gradient of primary cilium activity 

across different RPE areas, a cellular phenotype that is missed in cultured cells. Lower 

expression of the maturation genes Rpe65 and Mertk and higher expression of the 

developmental genes Mitf, Pax6, Tyrp1, Tyrosinase, and E-Cadherin further confirmed the 

notion of incomplete maturation in Bbs8−/− RPE (Figures 7E–7G; Nasonkin et al., 2013). 

Consistent with abnormal RPE maturation, we observed a variable inter-nuclear distance 

between adjacent cells at P16, suggesting non-homogeneous monolayer development, likely 

because of variability in cell cycle exit (Figure S6E). Furthermore, at P16, we also observed 

significantly reduced melanosome transport into apical processes, a sign of defective 

maturation and polarization (Figure 7H). These results further confirmed the hypothesis that, 
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in vivo, primary cilium dysfunction leads to RPE maturation defects that precede the 

development or degeneration of photoreceptors of ciliopathy patients.

The in vitro results using cilium inducers and BBS8 KD in human RPE cells suggested that 

regulation of RPE maturation by the primary cilium via BBS8 is at least in part regulated by 

canonical WNT suppression. Therefore, we asked whether a similar pathway regulation 

exists in mouse RPE. Consistent with the data obtained from human cells, in Bbs8−/− mouse 

RPE with defective cilia, β-catenin expression and nuclear localization were significantly 

increased, resulting in higher expression of several canonical WNT target genes in Bbs8−/− 

RPE/choroid compared with the WT (Figures 7I and 7J; Figure S6F). These developmental 

defects and canonical WNT over-activation in Bbs8−/− RPE further support the notion of a 

critical role for the primary cilium in suppressing canonical WNT activity in mouse RPE 

prior to its complete maturation.

DISCUSSION

Retinal degeneration is the most common phenotype among ciliopathy patients. Over 90 

gene mutations have been linked to various kinds of ciliopathies, and retinal degeneration is 

associated with almost all of them (Braun and Hildebrandt, 2017; Bujakowska et al., 2017; 

Wheway et al., 2014). Most research on the retinal phenotype has focused on retinal 

photoreceptors that contain a highly specialized primary cilium that is found to degenerate in 

ciliopathy animal models and patients (Bujakowska et al., 2017; May-Simera et al., 2017). 

The contribution of other ciliated retinal cell types to retinal degeneration has not been 

investigated so far. The RPE is a ciliated monolayer epithelium that lies at the back of the 

eye and is essential for photoreceptor development and function. Here we provide genetic 

evidence using Jou-bert syndrome iPSC-RPE, IFT88 KD and Bbs8−/− mouse, and 

pharmacology evidence that ciliogenesis enhances RPE maturation and functional 

polarization. Together, patient and mouse model data provide strong evidence that, in 

ciliopathy patients, RPE maturation defects precede photoreceptor degeneration. 

Furthermore, we demonstrate that, mechanistically, RPE maturation is mediated by 

canonical WNT suppression and PKCδ activation, which lead to actin-cytoskeletal 

rearrangements underlying apical-basal polarization. Finally, we show that pharmacological 

enhancement of ciliogenesis can be used to improve the differentiation of iPSC-derived 

epithelial cells and demonstrate fully mature adult-like structural and functional features. 

Such fully mature cells provide effective disease models, drug screening tools, and a 

potential cell therapy for AMD.

Defects in RPE maturation severely compromise RPE function, as confirmed by defective 

phagocytosis and the ability of RPE cells to respond to changes in extracellular potassium 

concentration (Figures 1Q–1T, 3M, 4K–4R; 6K and 6L, and 6U). Considering that all RPE 

functions, including phagocytosis and low potassium response, are fundamentally critical for 

photoreceptor health and survival, one can conclude that the primary cilium defects in the 

RPE also contribute to the retinal degeneration observed in ciliopathy patients and animal 

models. RPE defects temporally precede photoreceptor defects in Bbs8−/− mice, further 

underscoring the importance of the RPE in the retinal degeneration seen in ciliopathy 

patients. Ciliopathy patients receive a “double hit”; the first from incompletely mature RPE 
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and the second from defective function of the cilium in the photoreceptor. In support of this, 

RPE defects are already observed in Bbs8 knockout mice even before photoreceptors start 

maturing or begin to extend their connecting cilium and outer segments (Figures 7A–7F).

Multiple CEP290 mutations with distinct ciliopathy phenotypes have been identified 

(Coppieters et al., 2010). Although the precise function of CEP290 is still unknown, it is 

proposed to function at the ciliary transition zone and regulate ciliary trafficking (Rachel et 

al., 2012). The bi-allelic mutations identified in our patient with severe retinal degeneration 

are predicted to cause premature stop co-dons. However, patient iPSC-RPE continued to 

express ~10% of WT CEP290 protein (Figure 6O). This suggests that one or both exons 

with mutations are partially skipped during RNA splicing, a process reported for some other 

CEP290 mutations (Drivas et al., 2015). A 90% reduction in CEP290 protein levels contrasts 

our results with a recently published CEP290-iPSC manuscript, where the authors did not 

note any changes in RPE CEP290 expression and noticed defective photoreceptor 

maturation but no RPE maturation defects (Parfitt et al., 2016). This suggests a differential 

sensitivity of RPE and photoreceptors to CEP290 mutations and prompts the analysis of 

RPE phenotype in other ciliopathy patients and animal models. In the future, we plan to use 

isogenic iPSC lines with specific mutations to address whether the variability associated 

with CEP290 mutations and the age of retinal degeneration onset is due to certain mutations 

affecting both RPE and photoreceptors and others only affecting the photoreceptors 

(Coppieters et al., 2010).

Regulation of WNT signaling by primary cilia has not been easy to define, possibly because 

of spatial and temporal differences between tissues and cell types (May-Simera et al., 2015). 

Here we demonstrate that the primary cilium suppresses canonical WNT signaling during 

RPE maturation. We provide mechanistic insights into this pathway and show that WNT 

suppression is required for RPE maturation, although WNT suppression alone is not 

sufficient for RPE maturation (Figure 3). We provide additional mechanistic evidence that 

WNT signaling suppression is directly regulated by the primary cilium (Figure 2). The 

cilium protein BBS8 directly recruits the canonical WNT repressor INVERSIN to the ciliary 

base, leading to DISHEVELLED degradation, β-catenin destruction complex activation, and 

β-catenin degradation, causing cell cycle exit (Lienkamp et al., 2012). Gene expression data 

from mouse RPE with defective cilia and hiPSC-RPE with pharmacologically defective cilia 

showed a higher expression of canonical WNT target genes compared with the control. 

Conversely, enhancement of ciliogenesis during RPE maturation lead to suppression of 

WNT target genes.

Canonical WNT suppression in the absence of enhanced ciliogenesis showed that, although 

WNT suppression is required, alone it is not sufficient to cause RPE maturation. Maturation 

and polarization of epithelial cells are triggered by actin-cytoskeleton alignment along the 

circumferential axis of the cell, isolating apical and basolateral membrane domains and their 

respective channel proteins. This process is regulated by a protein kinase, PKCδ (Kinoshita 

et al., 2003; Kühl et al., 2000). We show here that, in RPE cells, PKCδ activation is 

regulated by the primary cilium. The BBS8-PKCδ interaction recruits PKCδ to the base of 

the primary cilium, likely leading to its activation. Activated PKCδ leads to Myosin Light 

Chain 2 phosphorylation and actin cytoskeleton alignment along cell boundaries. This, in 
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turn, reinforces tight junctions and isolates apical and basolateral membranes. Isolated apical 

and basolateral membranes result in distinct ion channel distribution on the two sides, 

leading to functional polarization. One of the best readouts of this process is the 

measurement of TEP, which reflects the differential expression of apical and basal ion 

channels and is an indicator of polarization across the epithelial monolayer. IFT88-KD-

iPSC-RPE and HPI-4-treated cells with dysfunctional cilia lacked apical-basal polarity with 

no detectable TEP, whereas aphidicolin- and PGE2-treated cells with enhanced cilia had 

high TEP, similar to the native tissue (Quinn and Miller, 1992). Inadequate ciliogenesis, 

therefore, leads to incomplete polarization across the entire epithelial monolayer.

The function of PKCδ identified here is likely independent of its known role in the planar 

cell polarity (PCP) pathway but is regulated via a calcium-dependent pathway (Kühl et al., 

2000). BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid), a calcium 

chelator, reduced aphidicolin-induced electrical responses in iPSC-RPE (Table S2). 

Similarly, our observations in iPSC-RPE are likely not due to cilia affecting SHH signaling 

(Sasai and Briscoe, 2012). HPI-4 is known to affect both SHH and the cilium function 

(Firestone et al., 2012), but inhibition of RPE maturation by HPI-4 is independent of its 

effect on SHH suppression. A known SHH inhibitor, cyclopamine (Taipale et al., 2000; 

Tuson et al., 2011), did not change RPE maturation or functional polarization (data not 

shown). Furthermore, similar to aphidicolin, HPI-4 also blocks the cell cycle, but it does so 

by inhibiting dynein motors, not by promoting ciliogenesis (Okayama, 2012). This unnatural 

cell cycle block (confirmed by weak p27kip1 expression) (Figure 2L) fails to mature iPSC-

RPE, suggesting that cell cycle block per se is not sufficient to trigger RPE maturation. 

Activation of ciliogenesis in the RPE causes a natural cell cycle exit that is required for 

complete cell maturation.

Apical processes, a hallmark feature of RPE polarization, are strongly affected by 

ciliogenesis. Furthermore, in the ciliopathy mouse model, we identified possible region-

specific differences in primary cilium regulation of apical process development. Bbs8−/− 

mouse RPE has defective apical processes predominantly in the periphery, less so in the 

center part of the eye. To our knowledge, this is the first identified pathway with differential 

effects on peripheral versus central RPE. Further analysis of this effect may provide more 

insight into the development of the human macula, the central area of the eye with highest 

visual acuity, and retinal degenerative diseases. It is currently not clear how ciliogenesis 

leads to synchronous apical process formation in the RPE. It is possible that it is linked to 

cytoskeleton re-alignment along cell boundaries and/or that cilia proteins directly regulate 

protein trafficking into apical processes. Consistent with the latter idea, a punctate 

distribution of CEP290 was noted throughout the apical cytoplasm in WT iPSC-RPE (Figure 

6P). We are currently further investigating this observation.

Because we were able to improve the maturation and polarization of iPSC-RPE cells via 

modulation of the primary cilium, we tested whether a similar approach could also enhance 

maturation of other iPSC-derived epithelial tissues. Because a similar improvement was seen 

in the maturation of iPSC-derived proximal lung epithelial cells, it strengthened our 

hypothesis that the primary cilium provides a developmental role in at least more than one 
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epithelial cell polarization. We propose that the differentiation of many other tissues may 

benefit from the modulation of primary cilia.

In conclusion, we show that ciliogenesis is a mechanism with which to mature iPSC-derived 

RPE and lung epithelia. This work has helped develop mature and polarized iPSC-RPE for 

autologous cell therapy of AMD patients and also highlights other considerations when 

developing treatment strategies for retinal degeneration in ciliopathy patients—that a 

combined defect in RPE and photoreceptors likely underlies the mechanism for ciliopathy-

induced retinal degeneration—and suggests a cautionary note for gene therapy trials that aim 

to only target photoreceptors because they may only work in select mutations that do not 

affect the RPE.

EXPERIMENTAL PROCEDURES

Mice

The generation and genotyping of Bbs8−/− mutant mice have been described previously 

(Tadenev et al., 2011). For embryonic staging, the morning after mating was considered 

embryonic day (E) 0.5.

Generation, Characterization, and Differentiation of hiPSCs

Cells isolated from donor tissue were reprogrammed using Sendai virus-mediated delivery 

(CytoTune, Life Technologies) of the four Yamanaka factors (c-MYC, KLF4, OCT4, and 

SOX2), following the manufacturer’s recommendations. Three-germ layer differentiation of 

iPSC lines was performed using a published protocol (Takahashi et al., 2009). Antibodies 

against NESTIN, TUJ1, SOX17, AFP, BRACHYURY, and SMA were used for 

characterization of cells of all three germ layers. Karyotyping was performed at Cell Line 

Genetics (Madison, WI). iPSCs were differentiated into RPE using a previously published 

protocol (Ferrer et al., 2014) with modifications (see the Supplemental Experimental 

Procedures). All human work was done under institutional review board-approved protocol 

#11-E1–0245.

Electrophysiological Recordings

Human primary RPE or iPSC-RPE monolayers were mounted on a modified Üssing 

chamber, and electrophysiology recordings were done as described previously (Maminishkis 

et al., 2006; Peterson et al., 1997).

Phagocytosis Assay

Isolation, preparation of photoreceptor outer segments, and the phagocytosis assay were 

performed as described previously (Mao and Finnemann, 2013).

Statistical Analysis

Most data were repeated in RPE cells derived from three iPSC lines. Oneway ANOVA was 

used for dose-dependent inhibition of PKCδ pharmacological blockers. Two-way repeated 

measures ANOVA was used with a Bonferroni correction for multiple comparisons of image 

quantification. Kolmogorov-Smirnov (K-S) test was used to compare the distributions 
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between different treatment conditions of a large set of gene expression. All other data were 

analyzed using unpaired, two-tailed Student’s t test. Data were represented as mean ± SEM 

and considered significantly different at p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Primary cilium-induced RPE maturation is mediated by WNT suppression 

and PKCδ activation

• iPSC-RPE cells derived from ciliopathy patients show defective structure and 

function

• RPE maturation defects in a ciliopathy mouse model precede photoreceptor 

degeneration

• Cilium-dependent maturation pathway also exists in iPSC-derived lung 

epithelium

May-Simera et al. Page 20

Cell Rep. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Experimentally Enhanced Ciliogenesis Promotes iPSC-RPE Monolayer Maturation
(A) Schematic representation of a primary cilium with localization of the ciliary markers 

used in this study.

(B) Presence of primary cilia in human confluent monolayers of iPSC-RPE (ZO-1, red; 

GT335, green).

(C and D) Immunostaining (C) (ARL13B, red; ZO-1, green) and scanning electron 

microscopy (D) show that primary cilia in E14.5 mouse RPE precede apical process 

formation.

(E–H) Improved ciliogenesis (ARL13B, green; GT335, red) in iPSC-RPE treated with 

aphidicolin (89.4% ± 3.4%) (F) or PGE2 (87.5% ± 3.1%) (G) compared with untreated 

(75.5% ± 6.5%) or (E) HPI-4-treated (75.6% ± 10.5%) (H) cells (double cilia or no cilia, 
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respectively; arrowheads). Two-way repeated measures ANOVA with Bonferroni correction 

for multiple comparisons, 5 biological repeats for each group; ***p < 0.001.

(I–P) Treatment of iPSC-RPE with aphidicolin or PGE2 leads to enhanced apical processes 

(J and K) and increased EZRIN expression (red, N and O). In comparison, treatment with 

HPI-4 causes sparse apical processes (L) and low EZRIN expression (P), as compared to 

untreated samples (I and M).

(Q–U) Aphidicolin or PGE2 treatment largely increases the resting-state TEP of iPSC-RPE 

monolayers and dramatically enhances their electrical responses to physiological stimuli. In 

comparison, HPI-4 treatment seriously disrupts monolayer maturation. (Q–T) Representative 

traces. (U) Group data; n = 22 for control and n = 19, 8, and 6 for aphidicolin-, PGE2-, and 

HPI-4-treated samples, respectively; **p < 0.01, ***p < 0.001.

(V) Compared with untreated cells, aphidicolin treatment doubles the ability of iPSC-RPE to 

phagocytose photoreceptor outer segments (POSs). ***p < 0.001, n = 3.

(W and X) Volcano plots of fetal (W) and adult (X) RPE-specific genes, showing that 

aphidicolin or PGE2 treatment decreases fetal-specific gene expression and increases adult-

specific gene expression compared with untreated or HPI-4 treated cells. Genes most 

affected by HPI-4 treatment are highlighted.

3, 2, and 3 biological repeats for aphidicolin-, PGE2-, and HPI-4-treated samples, 

respectively.
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Figure 2. Experimentally Enhanced Ciliogenesis Promotes iPSC-RPE Monolayer Maturation 
through Canonical WNT Suppression and Cell Cycle Exit
(A–D) Aphidicolin (B) or PGE2 (C) treatment reduces cytoplasmic β-catenin (red) and 

improves epithelial morphology (F-actin, green) of iPSC-RPE compared with untreated (A) 

or HPI-4-treated (D) cells.

(E–H) Aphidicolin (F) or PGE2 (G) treatment decreases the number of dividing cells (Ki67, 

green) (two-way repeated measures ANOVA with Bonferroni correction for multiple 

comparisons, 5 biological repeats for all treatments; 2% ± 1% for untreated control (E), 

0.6% ± 0.3% for aphidicolin-treated samples, **p < 0.01; 0.6% ± 0.25% for PGE2-treated 
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samples, **p < 0.01). Dividing cells are not observed after HPI-4 (H) treatment because it 

blocks the dynein motor needed for cell proliferation.

(I–L) Treatment of iPSC-RPE with aphidicolin or PGE2 (J and K) leads to high 

p27kip1expression (red) relative to the untreated control (I). In comparison, treatment of 

HPI-4 causes low p27kip1 expression (L).

(M–P) Localization of the β-catenin inhibitor INVERSIN (red) to the cilium base (GT335, 

green) is stronger upon aphidicolin (N) and PGE2 (O) treatments (arrowheads) compared to 

untreated sample (M) and HPI-4 (P) treatment, where INVERSIN is mostly on the 

membrane (arrowheads).

(Q–T) Aphidicolin (R) and PGE2 (S) treatments recruit β-catenin co-activator JOUBERIN 

(red) to the cilium (GT335, green, arrowheads) stronger as compared to untreated (Q) and 

HPI-4 (T) treated samples.

(U) Physical interactions between BBS8-MYC and INVERSIN-GFP are confirmed by their 

co-immunoprecipitation from HEK293 cells co-expressing the two proteins. Negative 

controls: GFP- and MYC-expressing plasmids and rabbit immunoglobulin G (IgG).

(V) A volcano plot showing downregulation of canonical WNT genes in aphidicolin- and 

PGE2-treated iPSC-RPE compared with untreated cells. In contrast, HPI-4 treatment 

increases the expression of canonical WNT genes.

3 biological repeats for all samples were used.
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Figure 3. Canonical WNT Inhibition in iPSC-RPE Contributes to Its Maturation
(A–L) Treatment of iPSC-RPE with the canonical WNT inhibitors IWP2 and endo-IWR1 

leads to translocalization of β-catenin from the cytosol to the cell membrane (B), increased 

expression of p27kip1 (E) and the RPE maturation marker RPE65 (H), and enhanced apical 

processes (K). In comparison treatment with the canonical WNT activator CHIR99201 

causes β-catenin accumulation in the nucleus (C), low p27kip1 (F) and no RPE65 expression 

(I), and sparse apical processes (L). Similarly, untreated samples have mostly cytoplasmic β-

catenin (A), low p27 (D) and RPE65 expression (G), and sparse apical processes (J).
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(M) IWP2 and endo-IWR1 treatment increases the iPSC-RPE phagocytic ability 4-fold 

compared with untreated or CHIR99201-treated cells. ***p < 0.001, n = 3.

(N) IWP2 and endo-IWR1 co-treatment enhances the resting-state TEP of iPSC-RPE but has 

little effect on their electrical responses to physiological stimuli.

n = 22 for untreated and n = 6 for IWP2+endo-IWR1-treated samples; **p < 0.01; ns, non-

significant.

May-Simera et al. Page 26

Cell Rep. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Primary Cilium-Induced iPSC-RPE Monolayer Maturation Is Mediated by PKCδ 
Activation
(A–C) Aphidicolin (B) treatment activates PKCδ (green) and causes its translocation to the 

base of the primary cilium as compared to HPI-4 treated (C) or untreated samples (A) 

(arrowheads in B and C; GT335, red). Scale bars in A–C, 5 μm.

(D) Physical interactions between BBS8-MYC and PKCδ-HA can only be detected in 

HEK293 cells co-expressing the two proteins. Negative controls: hemagglutinin (HA) and 

MYC expression plasmids and rabbit IgG. WT, catalytic domain (Cat), and dominant-

negative (DN) PKCδ-HA are all able to co-immunoprecipitate with BBS8. Because of low 
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expression of PKCδ-HA Cat and DN, protein expression is only detectable in 100% input 

blots (Figure S3A).

(E–G) Phospho-Myosin Light Chain 2 (green, arrowheads), a downstream target of PKCδ, 

shows stronger staining along cell boundaries co-localized with β-catenin (red) in 

aphidicolin-treated (F) iPSC-RPE compared with untreated (E) cells or aphidicolin- and 

rottlerin-treated (G) samples.

(H–J) Scanning electron microscopy shows enhanced apical processes in aphidicolin-treated 

(I) iPSC-RPE compared with the untreated (H) control and their suppression by rottlerin 

treatment (J).

(K–R) Rottlerin reduces resting-state TEP/trans-epithelial resistance (TER) in a dose-

dependent manner (K–N) and dampens aphidicolin-enhanced electrical responses in a dose-

dependent manner (O–R) in the iPSC-RPE monolayer, suggesting a direct involvement of 

PKCδ in RPE monolayer maturation.
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Figure 5. Experimentally Enhanced Ciliogenesis Induces hiPSC-PLEC Monolayer Maturation
(A–H) Aphidicolin treatment of iPSC-PLEC during maturation enhances ciliogenesis in 

iPSC-PLECs (ARL13B; red, arrowheads; A and B), increases expression of the tight 

junction marker ZO-1 (red, arrowheads; C and D), increases expression of the polarization 

marker EZRIN (E and F), and facilitates β-catenin (red, arrowheads) translocation to the cell 

membrane (G and H).
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Figure 6. Defective Primary Cilia and Functional Abnormality Are Revealed in IFT88 
Knockdown and CEP290-Mutated Patient-Derived iPSC-RPE
(A–L) IFT88 KD prevents primary cilium formation and compromises iPSC-RPE 

maturation.

(A) IFT88 protein KD in iPSC-RPE by a lentiviral IFT88 shRNA. Right: quantification of 

band intensity relative to b-actin; *p < 0.05, n = 3.

(B and C) Primary cilium (ARL13B, green) number is decreased in IFT88-KD-iPSC-RPE 

(C) compared with the scrambled shRNA control (B).
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(D) 58% of RPE-signature genes and 45% of adult RPE-specific genes are downregulated in 

IFT88-KD-iPSC-RPE compared with the scrambled shRNA control.

(E and F) Abnormal cell morphology and dramatically decreased p27 expression in iPSC-

RPE with IFT88 KD (F) compared with the scrambled shRNA control (E) (p27, red; ZO-1, 

green).

(G and H) Underdeveloped apical processes in iPSC-RPE with IFT88-KD (H) as compared 

with the control samples (G).

(I and J) IFT88-KD-iPSC-RPE (J) displays lower EZRIN expression (red) and abnormal cell 

morphology (ZO-1, green), as compared to scrambled shRNA control (I).

(K and L) Electrophysiological recording reveals dramatically reduced resting TEP/TER and 

diminished electrical responses to physiologically relevant stimuli in IFT88-KD-iPSC-RPE 

(L) as compared to scrambled shRNA control (K), indicating impaired RPE monolayer 

maturation.

(M–Y) RPE cells derived from a ciliopathy patient with Joubert syndrome show defective 

structural and functional maturity.

(M and N) Allele discrimination plots for CEP290 in control (green), patient (red), and 

patient’s mother (blue) fibroblasts (circles), iPSCs (squares), and iPSC-RPE (diamonds), 

performed using TaqMan probes to detect (M) c.5668G > T mutation and (N) c.2495–2512 

deletion. Cross, no-template control.

(O–Q) Western blot (O) and immunostaining confirms reduced CEP290 expression in 

patient iPSC-RPE. (P) and (Q) show GT335 (green, arrow) and CEP290 (red).

(R–T) Primary cilia in patient iPSC-RPE (S) are smaller compared with the control (R); 

ARL13B (red), GT335 (green). (T) shows quantification of the cilium area; two-way 

repeated measures ANOVA with Bonferroni correction for multiple comparisons; 5 

biological repeats for both groups, ***p < 0.001.

(U) POS phagocytosis quantified by flow cytometry. POS phagocytic ability is 3-fold 

reduced in patient iPSC-RPE compared with the control; ***p < 0.001, n = 3.

(V and W) Scanning electron microscopy shows abnormal apical processes in patient iPSC-

RPE (W), as compared to control samples (V).

(X and Y) Volcano plots of RPE signature (X) and adult RPE-specific (Y) genes show 

downregulation in the expression of 74% of RPE signature genes and 67% of adult RPE-

specific genes in patient iPSC-RPE relative to the control. Genes most affected in patient 

samples are highlighted.
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Figure 7. Defective Cilium-Induced Maturation Defects in Mouse RPE Are Mediated by 
Canonical WNT Overactivation
(A and B) Disorganized ZO-1 (arrowhead, green) and ciliary rootlet (ROOTLETIN, red) 

staining in P0 Bbs8−/− (B) RPE compared with the WT (A).

(C and D) Scanning electron microscopy shows that RPE apical processes are not fully 

developed in Bbs8−/− (D) mice compared with WT (C) littermates by P0.

(E and F) In WT mouse RPE at P0, expression of the RPE maturation marker RPE65 (red) is 

highest near the optic nerve and decreases from the optic nerve toward the periphery (E). 

RPE65 expression is significantly reduced in Bbs8−/− mouse RPE (F).
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(G) qRT-PCR shows reduced expression of mature RPE markers (Rpe65 and Mertk) and 

high expression of developmental markers (Mitf, Pax6, Tyrp1, E-Cadherin, and Tyrosinase) 

in Bbs8−/− RPE relative to the WT (red line). *p < 0.05, **p < 0.01, ***p < 0.001; n = 5–7.

(H) Quantification of melanosome number in apical processes for WT and Bbs8−/− mice at 

P16. Melanosome translocation into apical processes is reduced in Bbs8−/− mice, suggesting 

underdeveloped apical processes. Two-way repeated measures ANOVA with Bonferroni 

correction for multiple comparisons, 4 eyes for each group.

(I and J) Nuclear β-catenin staining (red) is dramatically increased in Bbs8−/− (J) RPE 

compared with WT (I) littermates (P0); F-actin is shown in green.

(K and L) Schematics summarizing our finding that dysfunctional primary cilia (L) lead to 

defective RPE maturation, which precedes the photoreceptor defects seen in ciliopathy 

mouse models(K).
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