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Abstract
Genomic selection is a promising research area due to its practical application in breeding.

In this study, impact of realized genetic relationship and linkage disequilibrium (LD) on

marker density and training population size required was investigated and their impact on

practical application was further discussed. This study is based on experimental data of two

populations derived from the same two founder lines (B73, Mo17). Two populations were

genotyped with different marker sets at different density: IBM Syn4 and IBM Syn10. A high-

density marker set in Syn10 was imputed into the Syn4 population with low marker density.

Seven different prediction scenarios were carried out with a random regression best linear

unbiased prediction (RR-BLUP) model. The result showed that the closer the real genetic

relationship between training and validation population, the fewer markers were required to

reach a good prediction accuracy. Taken the short-term cost for consideration, relationship

information is more valuable than LD information. Meanwhile, the result indicated that accu-

racies based on high LD between QTL and markers were more stable over generations,

thus LD information would provide more robust prediction capacity in practical applications.

Introduction
With rapid development of high density genotyping technologies, such as SNP (single nucleo-
tide polymorphism) arrays and GBS (genotyping by sequencing) [1–3], markers covering
genomes at high density become available for application in plant and animal breeding. Tradi-
tional marker-assisted selection (MAS) focuses on markers, which are significantly associated
with traits of interest. MAS has been shown to bias breeding value estimates [4,5]. This limita-
tion can be overcome by genomic selection (GS), a promising approach for improving quanti-
tative traits [6], which has been widely used in animal breeding [7]. In GS schemes, marker
effects are estimated in a training population. Ideally, this training population is genetically
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closely related to the breeding population. Using the training population, both marker geno-
types and trait phenotypes are combined in a statistical model. Effects of all markers are simul-
taneously estimated without statistical threshold. Breeding values of individuals related to the
training population can then be predicted based on genomic estimated breeding values
(GEBVs) from genotyping data only, using the marker effects estimated from the training
population.

With high density genotypic data, there are not enough degrees of freedom to fit all marker
effects to a data set of limited trait observations by least squares [5]. To overcome this limita-
tion, several statistical models have been developed, including Bayesian shrinkage regression
[6,8], random regression best linear unbiased prediction RR-BLUP [6,9], kernel regression [10]
and machine learning methods [11,12]. Statistical models have been examined using empirical
data of cattle [13], barley, maize, wheat, and Arabidopsis [14,15]. In most cases, RR-BLUP
showed a robust prediction accuracy for different genetic architectures, especially when marker
density was low to medium.

Accuracy of GS depends on the characteristics of the training population and validation
population, such as heritability of traits [16], extent of linkage disequilibrium (LD), genetic dis-
tance [17], and genetic relationship between two populations [18,19]. Expected accuracy
depends on marker density, effective sample size, and the number of included phenotypes [16].
Marker density greatly affects the costs of genotyping and is, therefore, a key factor in large
scale application of GS [20]. Marker number had very little effect on prediction accuracies
within families from various plant species, if marker densities were not very low (hundreds of
markers with interval of 8~25cM for most traits) [14]. High marker coverage (thousands of
markers or more) was needed, when GS was applied in a more diverse population [21]. In bi-
parental populations, prediction accuracy is mostly due to genetic relationship captured by
markers that contribute most to trait expression. However, if the genetic relationship between
individuals is weak in a diverse population, dense coverage of markers is required to capture
most of the markers in LD with QTL. The effect of these two factors for accuracy of GS were
addressed in a simulation study [22], but empirical data in plants have not yet been reported.

Here, we used empirical data to study the contribution of genetic relationship and LD on
prediction accuracy of GS under different scenarios due to different population structures,
marker densities, and progeny numbers. Our objectives were, to (1) study the impact of LD on
the number of markers and progenies required to obtain acceptable prediction accuracy within
or across populations, and (2) investigate the effect of genetic relationship and LD on predic-
tion accuracy of GS.

Materials and Methods

Genotypic and phenotypic data
Data from two maize (Zea mays L.) populations, IBM Syn10 [23] and IBM Syn4 [24], were
used for this study (hereafter referred to as Syn10 and Syn4). In short, Syn10 is a B73×Mo17
doubled haploid (DH) population obtained after 10 generations of intermating, and Syn4 is a
B73×Mo17 recombinant inbred line population obtained after four generations of intermating.
Both Syn4 and Syn10 populations were planted in separate but adjacent experiments at the
Agronomy Agricultural Engineering Research Center, Ames, Iowa, in 2006 and 2007. Perfor-
mance per se was tested for each line. Growing degree days (GDD) were calculated in °C day
from planting until the date, when at least 50% of the tassels in the plots were shedding pollen.
Plant height (PH) was measured from soil surface to the flag leaf collar on five representative
plants within each plot. For each experiment, both populations were repeated twice in a row
column alpha lattice experimental design of seven columns and 37 rows. The two parents B73
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and Mo17 were planted in a randomized fashion eight times within replications in each experi-
ment, respectively. Each plot size consisted of 5.3 x 1.5 m², at a density of 69,187 plants/ha. 15
days prior to planting in May, 175 kg urea/ha were applied, as well as Metolachlor and Atrazine
herbicides at a rate of 1.86 and 1.12 kg of active ingredient per ha. Neither herbicides nor insec-
ticides were applied on the experiments after planting.

Genotype data for a set of 244 Syn4 recombinant inbred lines (RILs) are available at Mai-
zeGDB [25], with 1339 polymorphic markers covering an approximately 6,240 cM (CentiMor-
gan) linkage map. A set of 194 Syn10 DH lines was genotyped using a genotyping by low
coverage whole genome sequencing procedure [26]. Briefly, the sequencing reads from DH
lines were aligned to the B73 reference genome. The genotype of each genomic region in 100
kb increments was determined by the proportion of reads derived from both parents, and adja-
cent regions with completely identical genotype in each line were integrated as bin-marker. A
high-density genetic map of Syn10 consists of 6611 bin markers, with a genetic distance of
11198.5 cM (unpublished data).

Imputation, LD, and kinship measures
Missing marker genotypes of Syn4 were imputed using a function in the package R/QTL that
uses a hidden Markov model to predict missing marker genotypes, given observed multipoint
marker data [27]. Considering convenience of subsequent comparisons between Syn4 and
Syn10, genotypes from Syn10 were imputed onto Syn4 by first determining the physical posi-
tion of the two markers sets in the B73 reference genome (B73 RefGen_v2) [28]. Then, for each
Syn10 marker, the unknown Syn4 genotype values were imputed based on the nearest flanking
markers in a given Syn4 line, similar to the method used to impute missing marker values in
Syn4. Finally, all 6611 bin markers from Syn10 were imputed into Syn4 and used for further
analyses.

The degree of LD between markers was quantified using the parameter r2 [29], estimated
using GOLD software [30]. LD within populations (Syn4, Syn10) and across populations was
measured. Average LD was calculated in increments of 100 kb, according to marker distances.
The realized relationship (kinship) matrix of two populations was calculated using TASSEL
software [31] with imputed genotype data.

BLUP of marker breeding values
As the aim of our project was to predict breeding values (BV), we used models to fit only the
additive effects at each marker. The method used for BV prediction in this study was RR-BLUP
[6]. The phenotypic values for a set of progenies were modeled as y = μl + Xg +e, where y is an
Np × l vector of phenotypic means of the progenies; l is an Np × l vector of 1s (NP was number
of individuals in training populations); μ is the overall mean; X is an Np × Nm matrix of marker
genotype indicators (NM is number of markers in model), with elements Xij = 0 or 2, if the
genotype of line i at marker j is AA, or BB, respectively; g is an Nm × l vector of marker breeding
value; and e is an Np × l vector of residuals.

Estimates of genetic variance (Vg) and residual variance (Ve) were obtained from an analysis
of variance of phenotype within the two IBM populations, and a “mixed population” after com-
bination of both IBM populations. In the following parts, we used Vg and heritability (h

2) esti-
mates from mixed population data (Table 1). The variance of breeding values at each marker
locus was assumed to be equal to Vg=Nm

, g is assumed to be normally distributed, gi ~ N (0, σg
2).
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Data analyses and validation
We estimated the marker effects and predicted the genomic breeding values for seven different
scenarios (Table 2). We studied the effect of number of markers and also number of progenies
in the training population for estimating marker effects. Therefore, we randomly selected seven
marker sets with different marker-genome coverage (100, 200, 400, 800, 1600, 3200, and 6611;
Table 3) and an even distribution across the genetic map. The number of lines in training pop-
ulations varied from 30 to 180 with an increment of 30 lines.

To obtain training populations within a population, lines were randomly selected from the
original population. Then the remaining lines were classified as validation population by
default. In scenarios 5–7, to obtain training populations from both IBM populations, an equal
number of lines were randomly selected from Syn4 and Syn10, respectively. For each scenario
(Table 2), sampling of training and validation set was repeated 100 times. The correlation
between observed and predicted phenotypes (rMP) was estimated for each repeat. The accuracy
of genomic selection was expressed as rMG ¼ rMP=h [32,33], where h refers to the square root of
heritability. Reported prediction accuracies are the mean rMG values across 100 repeats. Least
significant differences (P = 0.05, adjusted by the Bonferroni procedure for the effect of multiple
comparisons) for rMG were calculated for each scenario, with the combinations of NP and NM

as independent variables. All data analyses were done in R [34].

Results

LD and kinship in two populations
To understand the pattern of LD decay, estimates of pair-wise LD were averaged in increments
of 100 kb distance between markers (Fig 1). The average physical distance between adjacent

Table 1. Genetic variance (σg
2) and heritability (h2) in different populations.

Population Number of progenies Total genetic distance (cM) GDD PH

σg
2 h2 σg

2 h2

Syn10 194 11,198.50 895.96** 0.79 279.18** 0.92

Syn4 244 6,240 1,074.74** 0.81 298.81** 0.90

Mixed population 438 - 1,022.71** 0.80 296.21** 0.90

**Significantly different from zero at the 0.01 level of probability.

doi:10.1371/journal.pone.0132379.t001

Table 2. Scenarios for GS tests.

Scenario Training population Validation population Prediction Type

1 Syn10 Syn10 Within populationb

2 Syn4 Syn4 Within population

3 Syn10 Syn4 Between populationsc

4 Syn4 Syn10 Between populations

5 Mixed populationa Mixed population Across populationsd

6 Mixed population Syn10 Across populations

7 Mixed population Syn4 Across populations

a Mixed population was a combination of the Syn4 and Syn10 populations
b Lines for training and validation came from the same population
c Lines for training and validation came from different populations
d Lines for training came from both populations.

doi:10.1371/journal.pone.0132379.t002
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markers varied in different marker sets (Table 1), and average LD between adjacent markers
(ALAM) in different marker sets was estimated according to the average distance. Results were
listed in Table 3. The ALAM of full marker sets (NM = 6611) was 0.78, 0.87, and 0.81 in Syn10,
Syn4, and mixed population (Table 3), respectively. A high degree of LD was observed even for
extended distances between markers. For example, for the marker set of NM = 800 for Syn10,
the average distance between adjacent markers was 2.57 Mb (which equates to 14 cM), but the
corresponding LD was 0.32. For marker set of NM = 400 for Syn4, the average distance between
adjacent markers was 5.13 Mb (equal to 15.6 cM), but the corresponding LD was 0.27. As

Table 3. Average distance and LD between adjacent markers in different marker sets.

Marker set Physical Distance Genetic Distance b Genetic Distance LD c in Syn10 LD in Mixed LD in Syn4
(NM) (Mb) a in Syn4 (cM) in Syn10 (cM) (r2) Population (r2) (r2)

6,611 0.31 0.94 1.69 0.78 0.81 0.87

3,200 0.64 1.95 3.50 0.66 0.71 0.78

1,600 1.28 3.90 7.00 0.50 0.55 0.63

800 2.57 7.80 14.00 0.32 0.37 0.44

400 5.13 15.60 28.00 0.19 0.22 0.27

200 10.26 31.20 55.99 0.09 0.11 0.15

100 20.53 62.40 111.99 0.05 0.06 0.08

a Average physical distance (in Mb) between adjacent markers.
b Average genetic distance (in cM) between adjacent markers.
c Linkage disequilibrium as estimated by the mean pairwise r2 values between adjacent markers.

doi:10.1371/journal.pone.0132379.t003

Fig 1. LD decaymeasured in different populations.

doi:10.1371/journal.pone.0132379.g001
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expected, the LD in Syn4 was higher than in Syn10 and in the mixed population. The average
realized genetic relationship (kinship) between any progeny pair was 0.63 and 0.44 for Syn4
and Syn10, respectively.

Trend of prediction accuracies across scenarios
A nonlinear increase in prediction accuracies with increasing size of NP and NM was observed
for both traits within both populations (Fig 2, S1 Table). Generally, the highest rMG values were
obtained for the highest NP, and an increase in NM generally led to increased accuracies.
Increase in accuracies was smooth and did not reach an obvious plateau, while increasing NP

using most fixed NM of all scenarios (S1 Fig). However, the effect of increasing NM was differ-
ent under fixed NP in different scenarios.

Fig 2. Prediction accuracies depending onmarker number (NM) and training population size (NP) for
different scenarios and traits.

doi:10.1371/journal.pone.0132379.g002
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Trend of prediction accuracy within populations
Within populations (Scenario 1 and Scenario 2), accuracy increases became negligible, reached
a plateau, or even decreased, when a certain level of NM was reached. In Scenario 1, when using
NP = 180 for predicting GDD, there was no significant difference in rMG for NM from 400–
6611. The prediction accuracy for GDD was higher than that for PH (S1 Table). The highest
rMG was obtained (0.49) when NP = 180 and NM = 800, although it was not significantly differ-
ent from rMG for the highest NP and NM. In Scenario 2, when marker coverage reached NM =
1600 (for GDD) or 800 (for PH), rMG did not significantly increase, if marker density was con-
tinually increased. However, when NP = 180, rMG for the lowest marker density NM = 100
could not be ignored. Using NP = 180, there were no major differences between rMG of NM =
100 and NM = 6611(0.48 vs. 0.67 for GDD, 0.57 vs. 0.64 for PH). However, in Scenario 2 of PH,
rMG of NM = 100 was significantly higher compared to NM = 200, when NP = 150 (0.52 vs. 0.47)
or 180 (0.57 vs. 0.48) (S1 Table).

Trend of prediction accuracies between populations
Both in Scenario 3 and Scenario 4, under the same NP, rMG of NM = 6611 was significantly
higher than for any other marker set, even compared to the next lower marker density NM =
3200, whereas there was no significant difference between most other adjacent marker densi-
ties. However, the average difference between NM = 6611 and NM = 3200 under different NP

was more pronounced in Scenario 3 compared to Scenario 4 (0.13 vs. 0.05 for GDD, 0.12 vs.
0.07 for PH). In Scenario 3, for the highest NM and NP, rMG for GDD was 0.48, and rMG for PH
was 0.55. In Scenario 4, for the highest NM and NP, rMG for GDD was 0.40, and rMG for PH was
0.44. In Scenario 4, rMG was higher than that for Scenario 3 under most different NM, but rMG

of the highest marker sets NM = 6611 was lower than that for Scenario 3.

Trend of prediction accuracies for the combined IBM populations
For mixed population (Scenarios 5, 6, and 7), the increased accuracies did not reach a plateau,
when increasing NM. Similarly, with the trend of prediction accuracies between populations
(Scenarios 3 and 4), rMG of NM = 6611 was higher than for any other marker sets, even for the
adjacent marker density NM = 3200 under the same NP. However, not all comparisons showed
significant differences. The average difference of rMG between NM = 6611 and any other marker
set was higher than differences between any of the marker set pairs. For example, in Scenario 5,
the average difference of rMG between NM = 6611 and 3200 was 0.04 or 0.03, respectively, com-
pared to 0.02 or 0.004 between NM = 3200 and 1600 for GDD or PH. In these three scenarios,
the highest rMG was found for a combination of the highest NP and NM. The value of highest
rMG of Scenario 5 was between those for Scenario 6 and Scenario 7 (Scenarios 5, 6, 7 were 0.56,
0.52, 0.57 for GDD, and 0.53, 0.42, 0.58 for PH).

Discussion
The accuracy of RR-BLUP is due to two main factors, genetic relationship between training
and validation individual, and LD between markers and QTL [19,35]. Traditional pedigree-
BLUP (Henderson 1975) uses pedigree relationship to determine expected genetic relationship,
while RR-BLUP also captures genetic relationships by markers as genomic relationship. Geno-
mic relationships based on genotype data has the capacity to explain actual genetic relation-
ships, deviating from pedigree-based relationships as a consequence of Mendelian sampling
[36,37]. Goddard (2009) [38] showed that RR-BLUP is statistically equivalent to a BLUP
model, without explicit marker effects and markers only being used to estimate the relationship

Impact of Genetic Relationship and LD on Genomic Selection

PLOS ONE | DOI:10.1371/journal.pone.0132379 July 6, 2015 7 / 13



between lines. Through a simulation study, Habier et al. (2007) [19] showed that markers in
LE (linkage equilibrium) with QTL could capture genetic relationships, and therefore, affect
accuracy of prediction. However, this study also showed that LD between markers and QTL
contributed a substantial proportion of the accuracy of RR-BLUP, and accuracy due to LD was
more persistent than accuracy due to genetic relationship over generations. Based on the study,
we will discuss the effect of genetic relationship within the Syn10 or Syn4 population, respec-
tively, and then explore the potential contribution of LD for prediction accuracy between
populations.

Effect of genetic relationship on prediction accuracy
GS with rMG of only 0.5 can still result in a two fold higher gain per year compared to tradi-
tional MAS in a low-investment wheat breeding program (h2 = 0.13) and a three fold increase
in a high-investment maize breeding program (h2 = 0.11) [39]. Lorenzana and Bernardo [14]
proposed that 100 markers for bi-parental populations and 200–800 markers for random-
mated maize populations are sufficient for genome-wide prediction of genotypic values. Using
a panel of 788 individuals obtained from a half-diallel cross between four dent inbreeds, [40]
showed that marker density is not a major limitation for the accuracy of GS. In scenarios
within the two IBM populations (Scenarios 1 and 2), different combinations of NP and NM

were validated to seek for the lowest marker density to obtain a rMG comparable to 0.5. In Sce-
nario 2, there was no rMG in any marker set significantly lower than 0.5, when NP = 180. One
abnormal decrease of rMG for PH was observed, when the marker density increased from
100 (ALAM = 0.08) to 200 (ALAM = 0.15) (the same phenomenon was observed in Scenario
3). The marker sets of NM = 100 and NM = 200 were randomly and independently selected
from the whole marker set. Potentially, more markers of NM = 100 were in LD with QTL of
PH than for NM = 200 by chance. In Scenario 1 of NP = 180 and NM = 100, rMG of GDD
and PH were only 0.304 and 0.159, respectively (compared to 0.48 and 0.57 in Scenario 2), and
rMG exceeded or was near 0.5 until marker density reached 400 (ALAM = 0.19) or 800
(ALAM = 0.32) for GDD or PH, respectively. Thus, more markers were needed in Syn10 to
obtain the same accuracy as in Syn4.

The expected (coancestry) relationship within and between pairs of Syn4 and 10 lines does
not differ as they derived from the same parents. However, the actual relationships deviated as
a consequence of Mendelian sampling. Thus the realized genetic relationship, which is more
accurate than expected genetic relationship, was calculated based on markers genotype. The
average realized genetic relationship in Syn4 was higher than that in Syn10 (0.63 vs. 0.44). Pos-
sibly the higher number of generations of intermating in Syn10 reduces average genetic rela-
tionship between individuals compared to Syn4.

For NM = 400 in Scenario 1, the average distance between adjacent markers was 5.1 Mb
(28.0 cM) and LD was 0.08 (r2 = 0.19). For NM = 100 in Scenario 2, the distance and LD
between adjacent markers was 20.5 Mb (62.4 cM) and LD was 0.19 (r2 = 0.08). Accuracy due to
realized genetic relationships can be regarded as lower bounds, if accuracy due to LD is small
[22]. Therefore, prediction accuracy in this study was mainly due to realized genetic relation-
ship as the contribution of LD should be limited using low density markers. In previous studies,
the accuracy of GS was non-zero, even when the LD between marker and QTL was zero, as the
GS model also captures realized genetic relationships [19,35]. However, rMG of Scenario 2 was
higher than that of Scenario 1 at lower marker density. We inferred that more benefits were
obtained for related individuals from Syn4 due to higher realized genetic relationships com-
pared to Syn10. This also explains, why the accuracy of Scenario 7 was higher than that of Sce-
nario6. Although both scenarios used mixed populations as training population, the validation

Impact of Genetic Relationship and LD on Genomic Selection

PLOS ONE | DOI:10.1371/journal.pone.0132379 July 6, 2015 8 / 13



populations were from Syn4 and Syn10 for Scenario 7 and Scenario 6, respectively. The differ-
ence between the highest rMG of Scenario 1 and Scenario 2 was 0.05 and 0.18 for GDD and PH,
respectively. Similarly, the difference between the highest rMG of Scenario 6 and Scenario 7
was 0.06 and 0.16 for GDD and PH, respectively. We concluded that both differences were
derived from different contributions of realized genetic relationships from Syn4 and Syn10
populations.

In addition to heritability and training population size, the effective number of quantitative
trait loci (QTL) was also a factor influencing prediction accuracy [41–43]. Thus, the QTL num-
bers of two traits were investigated. The result showed that the average number of QTL of
GDD for Syn10 and Syn4 was 17.5 and 17 respectively, and the number of QTL of PH for
Syn10 and Syn4 was 17 and 16, respectively (unpublished data). The result excluded the effect
of number of QTL for prediction accuracy between different Scenarios in this study.

In Scenario 3 and Scenario 4, no rMG value (correlation between the true genotypic values
and the predicted genotypic values based on markers) reached 0.4 when NM = 800. It seems
that the impact of genetic relationship is limited compared to Scenarios within populations.
LD should be a good complement in this situation.

Effect of LD on prediction accuracy
Zhong et al. (2009) [18] discussed the effect of LD in RR-BLUP models in another simulation
study. According to the study, the dichotomy between contributions “due to LD” vs. those “due
to genetic relationship” is useful for considering the strengths of different methods, but the two
contributions are confounded in practice. Indeed, in most empirical studies, the effect of LD
and genetic relationship exist simultaneously. However, the accuracy due to LD may be a lower
boundary for the accuracy of an individual that is unrelated to the training population [41]. In
our study, due to being derived from the same founders B73 and Mo17, any pair of individuals
across two populations was expected to share 50% of the genome. However, two populations
have experienced generations of independent intermating. There is no close pedigree relation-
ship between Syn4 and Syn10 lines (other than sharing the same parents), and the genetic rela-
tionship between both populations is complicated. This might explain, why Scenarios 3 or 4
did not result in a comparable accuracy at low marker density compared to Scenarios 1 or 2. As
Scenarios 3 and 4 remove at least part of these effects due to a close direct genetic relationship,
prediction accuracies depends mostly on LD between markers and QTL. It is thus excellent
material for studying the effect of LD on prediction accuracy.

In Scenario 3, the training population Syn10 has a lower LD than Syn4. A higher marker
density needed to maintain LD between markers and underlying QTL in Syn10 compared to
Syn4. Low LD in the training population also means that recombination reduces the size of
parental haplotypes, and that the effects of segments can be evaluated more accurately, given
sufficient marker coverage. At low marker density in Scenario 3, the prediction accuracy
increased slowly with increasing size of the training population. Even at NM = 3200 (ALAM
was 0.66), rMG of both traits was lower than 0.4. When the marker density was near saturation
(NM = 6611,with ALAM of 0.78), rMG increased substantially, and reached about 0.5 with NP =
180. In Scenario 4, the situation was opposite, as the training population Syn4 has a higher LD
than Syn10. Low density coverage with markers was sufficient to capture LD, but higher colin-
earity between adjacent markers (and underlying QTL) hinders evaluation of genome segment
effects accurately. Prediction accuracy was higher for Scenario 4 compared to Scenario 3 at low
marker coverage, as low density markers also capture part of LD in Scenario 4. With increasing
marker density, the rMG with NM = 6611 andMP = 180 was almost 0.1l lower in Scenario 4
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than the corresponding rMG in Scenario 3, as the effect of segments were estimated more accu-
rately in Scenario 3.

In case of a weak genetic relationship between training and breeding population, LD con-
tributed most of the prediction accuracy, thus marker density (LD between adjacent markers)
becomes the most important factor. Calus and Veerkamp [44] suggested that an ALAM>0.15
was sufficient for a highly heritable trait. Our study indicated that the contribution of LD for
prediction accuracy was limited, when the LD between adjacent markers was only 0.15 (about
NM = 200 for Syn4 in our study). Increasing NP has almost no effect, until the marker density
was high enough to capture LD and to make predictions between 'distant related' populations.
We further infer that the prediction accuracy under low marker density is due to other factors,
such as genetic relationships.

The effect of LD and pedigree relationship on GS in maize breeding
A large number of maize DH lines are produced every year. It seems impossible to evaluate all
inbred lines for testcross performance in repeated field trials with limited breeding resources.
The combination of DH technology and GS revolutionizes maize breeding [45]. Using GS, DH
lines can be evaluated based on markers only, thus the cost of genotyping will become the key
factor to determine the intensity of application of GS. If, for example, the cost of genotyping on
a large scale is 10 cents per data point and the cost of growing a maize yield experimental plot
is U.S. $20, genotyping for 200 markers would cost less ($20) than conducting yield trials at
three locations ($60) [20]. Costs of genotyping can be expected to drop further, while costs of
labor will likely increase (increasing field trial costs) in future.

In our study, a marker density ensuring a LD of 0.1 between adjacent markers was sufficient
for acceptable prediction accuracies in bi-parental populations. If training and prediction pop-
ulations are not closely related, the prediction accuracy will only depend on LD. In this situa-
tion, the number of markers required will be larger, a high LD with r2>0.8 is needed for
acceptable rMG values. Undoubtedly, this will increase the cost of GS. Therefore, the genetic
relationship and LD decay of the population will be of great importance in GS practice.

GS was tested by cross-validation for the Dent heterotic pool, as used on one side of the
Flint × Dent pattern in central Europe. Prediction accuracies were near 0.8 for seven biomass-
and bioenergy-related traits at a marker density of 5000 (LD between adjacent markers was
about 0.1) [21]. The materials from the Dent heterotic pool were highly inbred. Genetic rela-
tionships were maintained between “unrelated” lines and could be tracked by genotyping data.
In GS application practice, we could genotype and phenotype different populations presenting
widely diverse genetic backgrounds to construct a training database. When a new population
needs to be evaluated by GS, we can select the best training set from a training database accord-
ing to the genetic relationship between prediction population and potential training set, to
reduce the marker density requirement for prediction.

LD is an important factor that needs to be considered, when there is only a weak genetic
relationship for prediction. In Scenarios 3 and 4, the impact of LD in the training population
was observed. High LD in the training population not only means a lower marker density
requirement to cover the genome, but also means a higher colinearity between linked markers,
hindering evaluation of small genome segment effects accurately. This will reduce the robust-
ness of prediction models for other populations. Therefore, if the prediction model is used tem-
porarily, a training population with high LD is suggested for lower marker density. But if the
prediction model is very important and will be used frequently, a low LD training population is
recommended for extensive and persistent fitness over generations. A saturated marker density
is suggested for such training populations to obtain an accurate and robust prediction model.
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The marker density for the prediction population will be determined according to LD in the
prediction population, and the process of imputation (such as for Syn4 in our study) will help
to ensure consistent marker sets between training and prediction populations to obtain accu-
rate prediction.

In our study, Syn4 and Syn10 were derived from the same parents and under high levels of
identity by descent, however they didn’t predict each other well. While the reason related to
genetic relationship and LD was discussed above, there were two more potential factors that
shouldn’t be ignored. One was the genotyping error in syn10 and syn4 populations. We
planned to randomly extract parts of the lines from two populations and validate their geno-
type by restriction-site associated DNA tags (RAD) sequencing. The other potential factor was
that two populations grew in adjacent locations, which might induce extra environmental
error. In the two populations, limited genetic diversity and clear genetic background help us
simplify the analysis and draw a preliminary conclusion. However, the shortcoming of our
study is also obvious. Diverse materials were used in practical breeding program, and several
issues should be solved for application of genomics selection. For instance, lower identity by
descent, faster LD decay, and three or more genotypes in one locus due to high genetic diver-
sity. Next step, we will gradually extend our study to more diverse materials, so as to further
study the impact of genetic relationship and LD in practice.
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