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ABSTRACT: Protein−ligand binding is a key biological process at
the molecular level. The identification and characterization of small-
molecule binding sites on therapeutically relevant proteins have
tremendous implications for target evaluation and rational drug
design. In this work, we used the recently developed level-set
variational implicit-solvent model (VISM) with the Coulomb field
approximation (CFA) to locate and characterize potential protein−
small-molecule binding sites. We applied our method to a data set of
515 protein−ligand complexes and found that 96.9% of the
cocrystallized ligands bind to the VISM-CFA-identified pockets
and that 71.8% of the identified pockets are occupied by
cocrystallized ligands. For 228 tight-binding protein−ligand
complexes (i.e, complexes with experimental pKd values larger than
6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding
orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization
of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The
results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.

1. INTRODUCTION

Many biological processes, such as signal transduction, cell
regulation, and the immune response, involve protein−ligand
binding. The identification and characterization of protein
binding sites for small molecules are crucial to the under-
standing of the functions of both endogenous ligands and drug
molecules. Despite our increased knowledge about proteins,
there are many proteins with unknown binding sites. Even for
the ones with known sites, it is still possible to find additional
binding sites (e.g., allosteric binding sites) that provide new
means to modulate the protein function.
There are about 30 000 genes in the human genome. It is

speculated that only 10% are amendable for small-molecule
modulation. Among them, less than half have therapeutic
potential.1 Analysis of data from major pharmaceutical
companies indicates that less than 2% of projects succeed to
get drugs to market throughout the discovery and development
phases. This poor success rate is mainly associated with two
central problems: the identification and validation of disease-
specific targets and the development of specific molecules that
can modulate these targets with good therapeutic windows.2

Because some biological targets are not “druggable”, ∼60% of
small-molecule drug discovery projects fail at the stage of “hit-
to-lead”.2 Knowing the locations and physicochemical proper-

ties of the target protein binding sites prior to screening or
optimization offers tremendous benefits with respect to time
and cost.
Most marketed small-molecule drugs target protein−ligand

interactions (PLIs). Recently, the demand for bioavailable
protein−protein interaction (PPI) modulators is growing.3,4

For PLI, the analysis of available crystallographic structures has
indicated that most small molecules prefer hydrophobic protein
pockets with more complex topological features than typical
protein surfaces.5−7 Small-molecule binding sites usually consist
of deep concave pockets that can maximize favorable protein−
ligand contacts. Similar to the cores of proteins, the binding
sites of small molecules are often made of hydrophobic residues
that could positively contribute to the binding of organic
molecules in aqueous environments. On the other hand,
general PPI sites are relatively large and flat with both polar and
apolar residues (700−2000 Å2 contact surface area).4,8−11

Historically, these interfaces are considered to be “undruggable”
by small molecules. With detailed characterization of unique
aspects of the interaction surfaces, however, some encouraging
breakthroughs have been achieved in the past decades for
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certain cases.4,12 Recently, 12 small molecules targeting PPIs,
such as the inhibitors for p53−MDM2, BCL-2 family−BH3
domain, and tubulin-α−tubulin-β interactions,13 have been
clinically developed.
In principle, binding sites at protein surfaces can be detected

experimentally. Hajduk and co-workers used heteronuclear-
NMR-based screening to identify and characterize hot spots on
protein surfaces.14 By screening of a large number of diverse
“fragmentlike” or “leadlike” compounds (approximately
10 000) against 23 target proteins, this method predicted that
90% of the ligands bind to specific locations on the protein
surface. The NMR hit rates of particular sites showed high
correlation with the probability of finding high-affinity ligands.
The hit rates were also correlated with the pocket apolar surface
area (with low-hit-rate pockets having ∼35% lower apolar
surface area) for the known pockets. On the basis of the results
for a large number of diverse compounds and targets, it is
believed that certain properties of small-molecule binding sites
should be common to general molecular recognition. Seco et
al.15 used molecular dynamics (MD) simulations with explicit
binary water/organic solvent to study this phenomenon.
Isopropyl alcohol (iPrOH) molecules were used to represent
generic druglike small molecules with relatively high diffusion
coefficients. After sufficient sampling, iPrOH molecules tended
to replace water at the protein binding hot spots. The local
density of iPrOH was proportional to the interaction strength
with the protein.15

Most of the computational studies to identify protein active
sites can be categorized into three major classes: geometry-
based cavity detection algorithms, energetics-based methods,
and pocket physicochemical property-based analysis. Geometric
algorithms have been developed to detect putative binding
pockets since the early days. Examples are POCKET,16

SURFNET,17 APROPOS,18 LIGSITE,19 CAST,6 PASS,20

CASTp,21 etc. These methods are all based on steric
complementarity and involve moving probes with different
sizes around the protein surface to detect the accessible and
inaccessible regions.22 Various algorithms have been reviewed
elsewhere.23−27 When the binding sites have well-defined
pockets, these methods are fast and accurate. PocketFinder by
Abagyan and co-workers expands the geometric method by
contouring a smoothed van der Waals (vdW) potential for the
target protein to identify candidate ligand binding sites.28 This
method partially accounts for nonpolar energetic properties but
neglects electrostatic and desolvation effects. SiteMap,
developed by Schrödinger, Inc., identifies potential binding
sites by linking together “site points” that are likely to
contribute to tight protein−ligand or protein−protein binding.
This method showed >96% sensitivity in a validation test of
538 proteins with cocrystallized ligand.29,30

More sophisticated methods combining physical properties
and knowledge-based properties have also been developed.31,32

One of the caveats for most of these methods is their relatively
low specificity. They are able to find most small-molecule
binding sites, but they also identify many other functionally
irrelevant pockets (i.e., false positives) as potential binding sites.
For any novel protein, it is a challenge to separate the correct
pockets from multiple false positives.
Our current work is based on the recently developed level-set

variational implicit-solvent model (VISM) with the Coulomb
field approximation (CFA). In this VISM-CFA approach, the
molecular solvation process is described by minimization of a
solvation free energy functional of all possible solute−solvent

interfaces. The final stable equilibrium solute−solvent surface
balances the interactions among various solvation contribu-
tions, including surface tension, vdW interactions, and
electrostatics. Comparison between the local geometries of
the equilibrium VISM surface and the protein molecular surface
illustrates the strength of local hydrophobicity or hydrophilicity
near the protein surface. In principle, the balanced description
by VISM surfaces can characterize potential small-molecule
binding pockets on target proteins. With such a physics-based
method, we aim to describe the properties of generic protein
surfaces where a druglike small molecule could potentially bind
and to provide a geometrical and physicochemical character-
ization of these regions. All of the protein−ligand complexes
used in this study were cocrystallized structures. A set of
topological and energetic parameters from quantitative analysis
of the protein−ligand binding sites were used to predict the
target protein “ligandability”. We believe that this method can
be very helpful for rational drug design and target evaluation.

2. MATERIALS AND METHODS
2.1. Materials and Preparation. Our data set consisted of

515 biologically relevant protein−ligand complexes from the
PDBbind database. The proteins belong to 40 families, among
which the top 10 are shown in Table 1. Within the data set,
subsets of 228 proteins with experimental pKd values larger
than 6 were used in a tight-binding case study.

We used the “Protein Preparation” workflow in Maestro33 to
prepare the input files from original Protein Data Bank (PDB)
files. Hydrogen atoms were added, N- and C- termini were
incorporated, missing side chains were added, and appropriate
bond orders were assigned. Then, impref was used to relax the
complexes and remove unphysical contacts with the heavy
atoms constrained. Cocrystallized ligands and the correspond-
ing protein targets were separated with the standard
Schrödinger protocol (i.e., pv_convert.py). The numbers of
heavy atoms for the cocrystallized ligands ranged from 24 to
144. In this data set, we visually checked all 515 complexes and
found no ligand that formed a covalent bond with its receptor.
Most of the ligands (72%) were small organic molecules with
molecular weight (MW) less than 600 Da, and we also included
92 known drugs in their respective targets in our study; 72
ligands were peptides or peptide-like small molecules, and 10
ligands were nucleotides. The total number of atoms for each
target protein ranged from 1100 to 9200 with cocrystallized
ligands. Waters play a crucial role in the mediation of protein−
ligand and protein−protein interactions.34−37 Proteins are
covered with water molecules with varying degrees of tightness

Table 1. Top 10 Functional Types of Proteins Studied in the
Data Set Containing 515 Complexes

functional type count (PDB)

hydrolase 298
transferase 26
chaperone 21
transporter 20
isomerase 17
transcription factor 15
oxidoreductase 12
aspartyl protease 11
hormone receptor 7
lyase 4
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according to the physicochemical properties of the protein
surface and the ionic conditions. When a ligand binds to a
protein surface, it must displace bound waters in that region to
interact with the protein directly. Understanding of the
behavior of water molecules near a protein surface greatly
improves the characterization of protein−ligand binding.38 In
our study, we analyzed the VISM equilibrium surface to obtain
hydrophobic pockets near the protein surface. The treatment of
water molecules as an implicit solvent in this theory averages
water−protein and water−water interactions (i.e., the potential
of mean force is used). Explicit consideration of the solvent in
protein binding sites can potentially provide refined insights
into protein−ligand binding.15,39

For the target “ligandability” analysis, 27 protein targets
described by Cheng et al.31 were used. All of these targets were
also contained in the whole data set. For each target, one
representative crystallographic structure was chosen. The
targets were angiotensin-converting enzyme 1 (ACE-1) (PDB
entry 1o86), acetylcholinesterase (1gpk), aldose reductase
(1pwl), DNA gyrase B (1kij), cyclooxygenase 2 (4cox), cAbl
kinase (1iep), EGFR kinase (1m17), P38 kinase (1kv1), cyclin-
dependent kinase 2 (CDK2) (1ke9), enoyl reductase (1c14),
HIV reverse transcriptase (RT) NNRTI site (1ep4), HIV RT
nucleotide site (1t03), HIV-1 protease (1hvr), fungal Cyp51
(1ea1), HMG CoA reductase (1hwi), IMPDH (1nf7),
phosphodiesterase 4D2 (PDE-4D) (1oyn), phosphodiesterase
5A (PDE-5A) (1udt), penicillin binding protein (PBP) (1qmf),
thrombin (1ktt), neuraminidase (1a4q), factor Xa (1ezq),
MDM2 (1rv1), protein-tyrosine phosphatase 1B (PTP-1B)
(1g1f), cathepsin K (1nlj), HIV integrase (1qs4), and caspase 1
(ICE-1) (1bmq).
2.2. Level-Set Implementation of VISM-CFA. The level-

set implementation of VISM-CFA has been described
extensively in previous publications.40−44 In short, we optimize
the free energy of the solvation system, G, as a functional of all
possible solute−solvent interfaces Γ:
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where there are assumed to be N solute atoms located at x1, ...,
xN inside the solute region Ωm with point charges Q1, ..., QN,
respectively. The first term, PVol(Ωm), is the volumetric part of
the energy for creating the solute cavity Ωm, in which P is the
pressure difference between the solvent liquid and solute vapor.
The second term is the surface energy, where γ(x) = γ0(1 −
2τH(x)), in which γ0 is the constant macroscopic surface
tension for a planar solvent liquid−vapor interface, τ is the first-
order correction coefficient, often termed the Tolman
coefficient,45 H(x) is the mean curvature, defined as the
average of the two principal curvatures, and S is the interface
area. The third term is the energy of the vdW interaction
between the solute atoms and the continuum solvent. The bulk
solvent density ρw was set to 0.0333 Å−3. The last term
represents the electrostatic contribution to the solvation free
energy. It is defined by the Born cycle46 as the difference
between the energies of the vacuum and solvated states, where
ε0 is the vacuum permittivity, εm is the relative permittivity of
the solute molecule, and εw is the relative permittivity of the
solvent.
To minimize the free-energy functional (eq 1), an initial

surface that encloses all of the solute atoms located at x1, ..., xN
is chosen. In this pocket-finding study, we chose a loose initial
surface in which the closest solute atom (from the edge of the
vdW sphere) was at least 1.5 water diameters away from the
surface. The initial interface can have a very large value of the
free energy. The system is subsequently moved in the direction
of steepest descent of the free energy by the level-set method
until a minimum is reached. We performed the level-set VISM-
CFA calculations for the target proteins after removing the

Figure 1. Definition of the binding pocket region by the differences between the molecular surface (gray) and VISM surfaces obtained using a loose
initial surface.
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cocrystallized ligands. The partial charges and Lennard-Jones
(LJ) 12−6 potential parameters of solute atoms were obtained
from the Amber force field; the TIP3P water LJ parameter εww
= 0.152 kcal/mol and solvent molecular diameter σww = 3.15 Å
were used. We set the macroscopic planar surface tension as γ0
= 0.076 kcal mol−1 Å−2 at 300 K, which was obtained from the
TIP3P water simulation.47 We chose the Tolman coefficient to
be τ = 1 Å for the convex and concave atomic-level surface
tension correction. It should be noted that for consistency we
used the same VISM parameter as in previous studies.37,43

2.3. Identification of Putative Binding Pockets from
Equilibrium VISM-CFA Surfaces. In previous studies,37 we
found that the stable equilibrium VISM surface resembles the
predefined solvent-accessible surface near protein polar and
convex molecular surfaces. However, the VISM surface differs
from the molecular surface in the concave and hydrophobic
regions (i.e., the binding pocket) because of the relatively
strong surface tension and weak attractive polar interactions.
The unique features captured by VISM surfaces are consistent
with those from the analysis of known small druglike molecular
binding sites.5−7 In this part, we describe a method to identify
the putative binding pockets of target proteins and extract the
regions for further characterization using VISM-CFA.
The basic concept is illustrated in Figure 1. The gray

transparent surface represents the protein molecular surface.
The black, red, and blue surfaces represent VISM isosurfaces
with different level-set values. The equilibrium solute−solvent
interface is represented by the zero-level-set surface. In the first
row of Figure 1, the opaque black, red, and blue surfaces are
“contracted” VISM isosurfaces with lower level-set values. The
level-set value equals the distance (in units of Å) of the
“contracted” VISM surface from the equilibrium zero-level-set
VISM surface. Negative values represent distances from the
VISM surface toward the inside of the solute, and positive
values represent distances in the other direction. We grow the
level-set value from the center of the molecule. By comparing
the appropriate VISM surface with the molecular surface, one
can readily identify potential binding sites (the seed of the first
one is shown as a tiny red tip in the middle structure in the
second row of Figure 1). In practice, each pocket is identified
and refilled from this deepest region until a “water level”
defined by the equilibrium (zero-level-set) VISM surface is
reached. In addition, through the different VISM level-set
values from the beginning level to the final refilled level, one
can characterize the individual pockets, such as the depth. In
VISM theory, the surface defines the dielectric boundary
between the solvent and solute. Our previous study
demonstrated that the VISM surface tracks the first solvation
shell nicely and encloses the ligand binding site. After the first
pocket region is completely identified, we pave that region and
make it part of the molecular surface (the first structure in the
third row). As the level-set value continues to grow, a second
pocket seed (the blue region in the middle structure in the third
row) is obtained. Iterations are implemented as in the process
to obtain the first pocket region until we find all of the putative
binding pockets for individual targets.
2.4. Characterization of Identified Binding Pockets by

Topological and Physicochemical Parameters. A. Pocket
Topological Parameters. We define the pocket depth as the
largest distance along the normal direction from the stable
equilibrium VISM surface to the protein molecular surface. The
pocket solvent-accessible surface area (SASA) is obtained by
rolling a sphere with a radius of 1.4 Å on the protein molecular

surface of atoms in the pocket region. The pocket volume is
calculated by counting the grid points inside the identified
pocket, with each accounting for a volume of 0.8 × 0.8 × 0.8
Å3. The three principal axes of the pocket, represented by the
principal moments of the inertia matrix of the pocket grids, are
used to characterize the overall shape of the pocket. For
example, three similar principal moments of inertia indicate a
spherical-like pocket.

B. Pocket Physicochemical Parameters. The parameters
used to characterize binding pockets include local hydro-
philicity, hydrophobic SASA fraction, dehydration penalties
(vdW, surface, electrostatic, and total), and predicted optimal
binding affinities for small molecules. The total solvation free
energy in the VISM theory (eq 1) is considered to be the sum
of the corresponding solvation free energy density φ over the
entire space. The solvation free energy density is heteroge-
neously distributed around the protein surface. It can be used
to characterize the relative hydrophobicity or hydrophilicity.
Here, we define the solvation energy density as

φ φ φ= +− x x x( ) ( ) ( )solute solvent vdW elec (2)

where the vdW solute−solvent solvation energy density is given
by
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The estimated total penalty for desolvation (i.e., the opposite
process of solvation) for each identified pocket is obtained as
the sum of the vdW dehydration energy ΔGvdW, the
electrostatic dehydration energy ΔGelec, and the dehydration
energy penalty caused by the surface, ΔGsurf. The vdW and
electrostatic contributions to the total dehydration energy
penalty are obtained using the individual components of the
solvation energy density (i.e., eqs 3 and 4) with the opposite
sign by volume integration over the binding pocket region. The
dehydration energy penalty caused by the surface area, ΔGsurf, is
modeled using the curvature-corrected surface tension term:

∫ γ τΔ = − −
Γ

G H Sx(1 2 ( )) dsurf 0
binding (5)

where Γbinding is the surface of the binding pocket region.
Local regions inside the pockets can be relatively hydro-

phobic or hydrophilic, as characterized by the local hydration
energy distribution φsolute−solvent(x). On the basis of comple-
mentary ligand−protein binding interactions, the relatively
strong hydrophobic regions of a binding pocket are usually
occupied by hydrophobic funtional groups of a ligand.
However, occupation of hydrophilic regions is unlikely to
contribute to the binding affinity significantly for many druglike
ligands (apolar molecules with rarely more than one formal
charge).48 It has been argued that the ligand−protein
electrostatic interactions and desolvation penalties counteract
each other and that the combination provides insubstantial
contributions to the binding affinity.49

Theoretical and experimental studies have indicated that
occupation of hydrophobic pockets is the main contributor to
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the binding affinity, while hydrophilic regions mainly contribute
to the drug specificity.50 Here we estimate the optimal binding
affinity as the contribution from the apolar surface area:

∫ γ τΔ = − −
Ω _

G H Sx(1 2 ( )) doptimal 0
nonpolar surface (6)

In the previous study of p53/MDM2 hydration,37 we compared
the water density around the MDM2 with the hydration energy
distribution φsolute−solvent(x) and found that for φsolute−solvent(x) <
−0.06 kcal mol−1 Å−3, the water density was larger that its bulk
value (hydrophilic regions). Therefore, Ωnonpolar_surface is defined
as the region where φsolute−solvent(x) ≥ −0.06 kcal mol−1 Å−3. In
the current level-set VISM model, spatial and orientational
distribution of water around protein are ignored. The entropic
contributions from these factors might lead to systematic
overestimation.
2.5. Statistical Validation of Identified Pockets. The

predicted binding pockets are validated by volume overlaps
between the identified pockets and the cocrystallized ligands. A
significant overlap indicates that the identified pocket is a ligand
binding pocket. The volume-overlap method is argued to be a
more precise method than methods based on the pocket−
ligand center distance, where the actual spatial configuration of
the identified pocket and the corresponding cocrystallized
ligand is ignored. Box plots are used for comparison of the
topological and physicochemical characters of ligand-occupied
pockets and unoccupied ones.

3. RESULTS AND DISCUSSION

3.1. Performance of Protein Binding Pocket Identi-
fication through VISM-CFA. VMD was used for visualization
inspection. Figure 2a displays the identified pockets aligned
with the original complex (PDB entry 1sqn), with the target
protein shown in gray cartoon, the ligand shown as a stick
model, and the identified pockets highlighted by transparent
surfaces. The primary (deepest) pocket is shown in red, the
secondary pocket in blue, the tertiary pocket in green, and the
fourth pocket in yellow. In Figure 2b, the relatively strong
hydrophilic regions are shown in blue wireframe for the
identified primary pocket. There are two blue regions. The top-
right region is occupied by the ligand hydroxyl group (−OH),
and the bottom one is occupied by a ketone carbonyl group
(CO). This is consistent with ligand polar groups occupying
the relatively strong hydrophilic regions for specificity and
hydrophobic groups occupying the hydrophobic regions for
affinity. These specific hydrophilic regions can be illustrated by
the pocket hydration energy density distribution. The table
below the illustrations of the pockets lists the various
topological and physicochemical parameters for the corre-
sponding putative pockets for further characterization of each
pocket’s properties. We will interpret these implications in the
following sections of this study.
To systematically investigate the robustness of the VISM-

CFA binding pocket identification method, we examined 515
diverse cocrystallized ligand−protein complexes (Table 2). In
the data set of 515 complexes, a total of 703 potential binding

Figure 2. (a) Identified pockets (PDB entry 1sqn), in which the target protein is shown as a gray-colored cartoon, the ligand as sticks colored by
atom name, and the identified pockets as transparent surfaces. The primary pocket is shown in red, the secondary pocket in blue, the tertiary pocket
in green, and the last pocket in yellow. The cocrystallized ligand binds to the primary pocket. (b) Hydrophilic regions for the identified primary
binding pocket and overlapping with the cocrystallized ligand are shown in blue wireframe. The top-right region is occupied by the ligand hydroxyl
group (−OH), and the bottom one is occupied by a carbonyl group (CO). (c) Topological and energetic parameters for the identified protein
pockets.
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pockets were identified, and 505 identified pockets were
occupied by cocrystallized ligands. Among them, 398 proteins
had only the primary pocket identified, 107 proteins had two
putative pockets, 54 proteins had more than two putative
pockets, and only three protein targets (PDB entries 1qmf,
1t03, and 2qft) showed as many as five pockets. In the
crystallographic complexes, 96.9% of the ligands are bound to
the VISM-CFA-identified pockets, 71.8% of the identified
pockets are occupied by the cocrystallized ligands, 92.4% of the
ligands bind to the deepest site, 4.7% of the ligands bind to the
second-deepest pocket, 0.6% of the ligands bind to the third-
deepest pocket, 90.7% of the ligands bind to identified pocket
with the largest volume, 88.3% of the ligands bind to the pocket
that is both deepest and largest, and 91.1% of the ligands bind
to the pocket with the maximum estimated binding affinity.
In this data set, we chose 228 complexes with experimental

pKd > 6 as tight binders. For this subset, 99.1% of the ligands
bind to the pocket identified by VISM-CFA, 96.9% of the
ligands bind to the deepest site, 94.2% bind to the largest-
volume site, 93.0% bind to the pocket that is both deepest and
largest, and 97% bind to the pocket with the maximum
estimated binding affinity. For comparison, in an exhaustive
study of 5616 protein−ligand complexes using PocketFinder,28

which incorporates a modified LJ potential that was believed to
be more sensitive and specific in terms of pocket identification,
96.8% of the ligands were found to bind in the identified
pockets. However, only 5% of the proteins had only one pocket
identified, 17% were identified with two pockets, 20% of the
proteins showed three identified pockets, and more than half of
the proteins were predicted to have more than three pockets.
The largest protein showed 17 identified pockets. Our method
is based solely on our physical implicit-solvent model with
unmodified vdW and electrostatic potentials. The sensitivity
reached 96.9%, which is as high as those for the best literature-
reported methods. At the same time, we significantly improved
the specificity, as 77.3% of the proteins had only one protein
binding pocket identified, 12.4% showed two pockets, 7.0%
showed three identified pockets, and no protein had more than
five putative binding pockets. In VISM theory, the equilibrium
VISM surfaces are the consequence of balanced interactions
between the solute and solvent. Strong attractive interactions
between the solute and solvent (i.e., solute−solvent electro-
static interactions) draw the VISM surface closer to the solute
until it is counterbalanced by the repulsive part of the vdW
interactions and minimal solvent surface tension. The pockets
identified by VISM-CFA tend to be deep and contain
significant hydrophobic characteristics. This self-consistent
physical chemical description is largely missing from other
methods.

Among the 515 ligand−protein complexes, there are 16 cases
where cocrystallized ligands do not bind to the VISM-CFA-
identified pockets. Table 3 lists these PDB codes and the

binding information on the cocrystallized ligands. They can be
classified into five different categories. For the first two cases
(PDB entries 1l83 and 220l), we found that the ligands are very
small ring molecules with fewer than 10 heavy atoms and are
completely enclosed by the molecular surface and deeply buried
inside the protein. The target protein is T4 lysozyme with the
L99A mutation to create a cavity that can accommodate one
benzene molecule inside of the protein.51 The cavity is tailored
for specific ligands to stabilize the protein structure and add
chemical functionality.52 The size and shape of the buried cavity
strongly depend on the ligands packed in it. There are other
mutations to alter the size and polarity of the T4 lysozyme
pocket suitable for specific bound ligands. On the other hand,
in our data set there are five complexes of the same target with
larger ligands (PDB entries 1li2, 1li3, 1li6, 1lgw, and 3dmz) that
all have the cocrystallized ligand bound to the VISM-CFA-
identified primary pocket. Case 3 shows a similar situation with
a small ligand tightly enclosed by its target protein.
In cases 4−9, the ligands carry a net charge higher than 1 and

bind to shallow pockets. In case 10, the ligand is a highly
charged molecule (−8) with four phosphate groups. In cases
11−16, the ligands are either non-natural peptides with
phosphate groups or DNA elements. The binding sites are
actually substrate binding sites that lack typical features of
small-molecule binding pockets. In all of these cases, the ligands

Table 2. Binding Site Identification Performance of VISM-
CFA in 515 Target Proteins

result
set of 515

proteinsa (%)
set of 228 tight
bindersb (%)

deepest pocket (primary) 92.4 96.9
largest pocket 90.7 94.2
best optimal binding affinity
(OBA) pocket

91.1 97.0

both deepest and largest pocket 88.3 93.0
identified pocket site 96.9 99.1
aAll 515 proteins contained a cocrystallized ligand. bSubset of 228
proteins that contain a ligand with experimental pKd larger than 6.

Table 3. Data for the 16 Ligand−Protein Complexes in
Which the Cocrystallized Ligand Does Not Bind to the
VISM-CFA-Identified Pocket

case
PDB
ID target ligand binding mode

1 1l83 T4 lysozyme small ligand bound to deep
buried cavity

2 220l T4 lysozyme small ligand bound to deep
buried cavity

3 1oss Streptomyces griseus trypsin
(SGT)

small ligand bound to deep
buried cavity

4 1gtb glutathione S-transferase
(GST)

charged ligand bound to
shallow pocket

5 2r5a MBT repeats of sex comb
on midleg (Scm)

charged ligand bound to
shallow pocket

6 2vyt MBT repeats of sex comb
on midleg (Scm)

charged ligand bound to
shallow pocket

7 2bt9 lectin from Rastonia
solanacearum

charged ligand bound to
shallow pocket

8 2jkj adhesin subunit (DraE/
AfaE)

charged ligand bound to
shallow pocket

9 1hwi HMG-COA reductase charged ligand bound to
shallow pocket

10 1fao pleckstrin homology
domains

Tetrakis(phosphate) as the
ligand (strong charge)

11 1o9d 14-3-3 protein non-natural peptide as the
ligand

12 2itk human pin1 non-natural peptide as the
ligand

13 1m48 interleukin-2 non-natural peptide as the
ligand

14 1nlj human cathepsin K non-natural peptide as the
ligand

15 1fzq ADP-ribosylation factor-
like protein 3

nucleic acid base with
phosphate as the ligand

16 1t03 HIV-1 nucleotide RT nucleic acid base with
phosphate as the ligand
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bind to the protein surfaces with relatively strong polarity and
shallow topological features that are unlikely to be captured by
the VISM calculation.
3.2. Comparison between the Topological and

Physicochemical Characters of Ligand-Occupied Pock-
ets and Unoccupied Ones. In the 703 VISM-CFA-identified
pockets for the 515 protein targets, 505 identified pockets are
occupied by cocrystallized ligand and 198 pockets are
unoccupied. We compared the topological and physicochemical
characters of the ligand-occupied pockets and the unoccupied
ones. In Figure 3, pocket depth, SAS area, pocket volume, and

pocket shape comparisons are shown as box plots. In these
figures, the red-colored boxes represent the distributions of
unoccupied pockets while the blue boxes are for ligand-
occupied pockets. The black bar at the right side of each box
indicates the 95% confidence interval of the mean. In Figure
3a−c, the plots show statistically significant differences (p value
< 0.05) in pocket depth, SAS area, and volume. The ligand-
occupied pockets tend to be deeper with relatively larger
volumes and SAS areas. The median depth of occupied binding
pockets is 6.8 Å, compared with 3.3 Å for unoccupied ones.
The median SAS area of occupied binding pockets is 163.7 Å2,

Figure 3. Comparison between the topological characters of ligand-occupied and unoccupied pockets.

Figure 4. Comparison between physicochemical characters of ligand-occupied and unoccupied pockets.
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compared with 42.0 Å2 for unoccupied ones. The median
volume of occupied binding pockets is 536.6 Å3, compared with
173.8 Å3 for unoccupied pockets. Figure 3d shows the
comparison of the normalized ratios of first and second
principal moments. If the value is close to 1, the pocket is
disklike, whereas the pocket shape is tubelike if the value is
close to 0. While the shape differences between ligand-occupied
and unoccupied pockets are not statistically significant (two-
tailed p value = 0.41), the shape distribution of ligand-occupied
pockets (i.e., first quartile = 0.32, median = 0.39, third quartile
= 0.53) is generally narrower than that of the unoccupied ones
(i.e., first quartile = 0.29, median = 0.40, third quartile = 0.61),
which indicates that tubelike pockets are slightly favored by the
small-molecule ligands.
Figure 4 compares the physicochemical properties of ligand-

occupied and unoccupied pockets. In Figure 4a−c, the box
plots indicate statistically significant differences between the
pocket hydrophobic fractions, solvent-accessible surface
tension-based optimal binding affinities, and pocket dehydra-
tion energies for the ligand-occupied pockets (blue boxes) and
the unoccupied pockets (red boxes). In Figure 4a, 75% of the
ligand-occupied pockets show pocket hydrophobic fractions
greater than 60%, compared with just 50% for unoccupied
pockets. This distribution is much narrower and concentrated
around a large hydrophobic fraction for occupied pockets. The
difference in distributions indicates that a high percentage of
hydrophobicity is an important factor for ligand binding, but it
obviously is not the only factor. Figure 4b,c shows the
estimated optimal binding affinities when a hypothetical ligand
occupies only the pocket hydrophobic fraction and the total
pocket dehydration energies. Both of them confirm that the
occupied pockets are thermodynamically favored by the small-
molecule ligands.
3.3. Characterization of the Influence of Protein

Conformational Changes on the Binding Pocket. Target
proteins can undergo conformational changes when bound with
different ligands. It is important to investigate multiple
crystallographic structures for a given protein target to
understand the pocket characteristics. In this study, we chose
the “closed” and “open” conformations of heat shock protein
90 (HSP90) as an example to illustrate the quality of binding
site identification and characterize the protein pockets of
different conformations through VISM-CFA.
The molecular chaperone HSP90 has been reported to help

cancer cell survival through stabilization of key proteins
responsible for a malignant phenotype. In a comprehensive
yeast protein interaction study, hundreds of proteins were
revealed to interact with HSP90. It is known that HSP90 also
interacts with numerous oncoproteins, including Cdk4, Akt,
BCR-ABL, p53, and v-src. It is of high interest to study the
binding sites and find potential small-molecule inhibitors. Both
NMR and X-ray crystallographic studies have confirmed that
there are “closed” and “open” conformations of HSP90.
Fluorescence resonance energy transfer (FRET) assay studies
indicated that a small compound binds HSP90 with a Ki of 18
± 1 μM, while a larger one is 5-fold more potent with a Ki of 4
± 1 μM.53

Figure 5a,b shows the binding sites of the “closed” and
“open” conformations of HSP90 identified by VISM-CFA.
Only one primary binding site (shown as a red transparent
surface) was found for each conformation. In Figure 5c,d, the
blue-colored wireframe indicates the pocket hydrophilic
regions. In both ligand−protein complexes, the hydrophilic

aminopyrimidine ring of the ligand overlaps well with the
pocket hydrophilic regions (blue wireframe). In Figure 5c, the
strongly hydrophobic trifluoromethyl group is mainly located in
the hydrophobic regions (no blue wireframe). In Figure 5d, the
larger ligand also arranges itself in such a manner as to
complement the binding pocket physiochemical features to
maximize the binding affinity. Both NMR spectroscopy and X-
ray crystallographic results indicate a high level of protein
flexibility for the HSP90 binding pocket, and it undergoes a
conformational change between the “closed” and “open” states
when different ligands are bound. With a large ligand (Figure
5b), the HSP90 binding site is wider to open the binding area
and accommodate the tighter-binding inhibitor (i.e., 5-fold
increase in binding affinity). With different target protein
conformations, the pockets identified by VISM-CFA have
different characters although they are around the same protein
surface region. As shown in Table 4, the “open” pocket is
relatively large and deep. The pocket depth and size are nearly
doubled in going from the “closed” to the “open” conformation.
Both the optimal binding affinity and total pocket dehydration
energy indicate the increasing ligand binding potency of the
“open” conformation. The occupancy of a large-sized ligand is
facilitated by the large solvent-accessible surface of the “open”
pocket.
It is argued that conformational differences of target proteins

affect the prediction performance of potential ligand binding
sites. On the basis of the comparison of different conforma-
tional structures in a limited set of protein targets, VISM-CFA
seems to tolerate a certain degree of conformational flexibility
and to be able to predict nearly identical binding locations for
each target. Abagyan et al.28 demonstrated that the conforma-
tional differences between the occupied and empty pockets do
not significantly affect the pocket prediction results for a large

Figure 5. (a, b) VISM-CFA-identified pockets for “closed” and “open”
conformations of HSP90. The target protein is shown as a gray-
colored molecular surface, and the ligand is shown in the ball-and-stick
representation. The identified pockets are enclosed by transparent red
surfaces. (c, d) Hydrophilic regions are depicted with blue wireframe
for the identified primary binding pocket together with the
cocrystallized ligand.
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number of protein−ligand complexes. For PPI interfaces, our
VISM-CFA-based algorithm can be applied to individual
protein subunits to detect the potential “pockets” at the PPI
interface and help evaluate the feasibility of modulating PPIs.37

Keskin et al.54 suggested that “hot spots” at a PPI interface and
their “neighboring” residues in the protein binding “hot
regions” are often preorganized by evolution in the unbound
protein state.38,55,56 When a protein binds with different
partners, different combinations of “hot regions” may be
involved. Similarly, there are characteristic regions in small-
molecule binding pockets that are evolutionarily conserved to
interact with natural ligands. They are routinely explored by
synthetic ligands in drug design. Although we have also used a
large set of static crystallographic structures to study the
volumetric, topological, and energetic characters of the
potential protein binding pockets, we must emphasize that it
is still not a comprehensive and exhaustive study. Protein
binding sites are flexible and dynamic. It would be beneficial to

combine advanced protein conformational sampling techniques
(e.g., accelerated molecular dynamics) with our VISM-CFA
pocket identification method, which would provide new
insights into the binding pocket dynamics and enable the
exploration of transient pockets for new drug discovery
opportunities.
The results of the above studies indicate that the equilibrium

VISM surfaces can provide statistically confident predictions of
the locations and characters of potential protein small-molecule
binding pockets. The above results are also consistent with the
observation that hydrophobic driving forces dominate small-
molecule ligand−protein binding processes.57

3.4. Assessing Target Protein Ligandability with the
Potential Binding Pocket Topological and Physicochem-
ical Properties. The ability to assess the “ligandability” of
target proteins is highly valuable.1,2 The ligandability
information on a gene family is often used to identify specific
target proteins. Nevertheless, estimations of gene family

Table 4. Parameters for the “Closed” and “Open” Binding Pockets of HSP90

pocket characteristic parameters obtained from VISM-CFA analysis

geometrical characters physiochemical characters

PDB
ID conformation

exptl Ki
(μM)

depth
(Å)

SASA
(Å2)

volume
(Å3)

shape (principal
moments of inertia)

hydrophobic
fraction (%)

optimal binding
affinity (kcal/mol)

dehydration penalties (vdW,
surf, elec, tot) (kcal/mol)

2qfo closed 18 ± 1 5 100.0 348.2 (0.43, 0.72, 1) 94.7 −13.5 (3.3, −16.0, 10.7, −2.1)
2qg2 open 4 ± 1 9 173.5 640 (0.51, 0.95, 1) 81.6 −18.5 (6.1, −29.1, 13.6, −9.4)

Table 5. Topological and Energetic Information for VISM-CFA-Identified Pockets for the 27 Targets Classified As “Druggable”,
“Difficult”, and “Undruggable” by Cheng et al.31

pocket characteristic parameters obtained from VISM-CFA analysis

knowledge-based geometrical characters physiochemical characters

PDB
ID target druggability

depth
(Å)

SASA
(Å2)

volume
(Å3)

shape (principal
moments of
inertia)

hydrophobic
fraction (%)

optimal
binding
affinity

(kcal/mol)
dehydration penalties (vdW,
surf, elec, tot) (kcal/mol)

1rth HIV RT (NNRTI) druggable 6.8 575.3 1799.2 (0.21, 0.92, 1) 81.9 −58.7 (20.8, −85.7, 40.9, −23.9)
1hvr HIV-1 protease druggable 6.4 211.5 571.4 (0.33, 0.85, 1) 92.7 −30.7 (6.5, −34.5, 12.3, −15.7)
1m17 EGFR kinase druggable 8.8 427.8 1416.7 (0.54, 0.75, 1) 68.7 −29.9 (17.0, −52.9, 76.3, 40.4)
1hwi HMG CoA reductase druggable 3.8 270.7 787.5 (0.32, 0.85, 1) 88.6 −25.9 (11.9, −36.5, 10.5, −14.1)
4cox cyclooxygenase 2 druggable 12.0 337.1 1097.2 (0.53, 0.82, 1) 74.1 −25.0 (14.6, −47.1, 22.8, −9.7)
1udt PDE 5A druggable 10.2 260.6 1009.2 (0.56, 0.63, 1) 50.8 −24.4 (11.1, −46.2, 56.3, 21.2)
1c14 enoyl reductase druggable 8.6 243.0 817.2 (0.39, 0.86, 1) 70.9 −22.6 (11.1, −35.5, 22.8, −1.6)
1ke9 CDK2 druggable 7.6 193.6 801.3 (0.47, 0.85, 1) 74.9 −21.7 (7.3, −34.6, 36.5, 9.2)
1oyn PDE 4D druggable 9.2 341.8 1023.0 (0.55, 0.76, 1) 51.8 −18.9 (14.071, −46.0, 63.1, 31.2)
1kv1 P38 kinase druggable 8.8 335.2 1230.3 (0.37, 0.98, 1) 32.9 −17.9 (13.9, −58.6, 89.0, 44.4)
1kij DNA gyrase B druggable 8.0 200.8 728.6 (0.42, 0.81, 1) 52.4 −13.0 (8.1, −37.9, 36.9, 7.1)
1iep cAbl kinase druggable 9.6 302.4 1207.3 (0.63, 0.74, 1) 32.3 −10.1 (11.7, −51.6, 81.6, 41.6)
1pwl aldose reductase druggable 8.8 139.3 587.8 (0.18, 0.96, 1) 42.2 −8.8 (6.7, −29.8, 15.5, −7.6)
1rv1 MDM2 druggable 3.8 66.8 218.6 (0.31, 0.94, 1) 90.2 −8.5 (2.4, −10.6, 1.8, −6.4)
1ea1 fungal Cyp51 druggable 10.2 223.5 973.8 (0.60, 0.80, 1) 33.9 −7.7 (9.9, −40.1, 37.8, 7.6)
1gpk acetylcholinesterase druggable 11.0 162.4 583.7 (0.32, 0.89, 1) 42.4 −7.7 (7.9, −27.9, 16.0, −3.9)
1ezq factor Xa druggable 5.5 93.9 353.8 (0.34, 0.88, 1) 49.7 −5.4 (3.9, −19.5, 13.5, −2.1)
1o86 ACE-1 difficult 14.0 1345.4 4328.5 (0.19, 0.88, 1) 41.1 −52.2 (62.5, −188.9, 261.4, 135.0)
1nf7 IMPDH difficult 9.2 425.0 1276.4 (0.31, 0.92, 1) 68.9 −26.4 (20.9, −49.0, 44.4, 16.4)
1t03 HIV RT (nucleotide) difficult 2.2 156.4 499.7 (0.21, 0.98, 1) 93.0 −18.3 (6.5, −20.9, 8.9, −5.5)
1ktt thrombin difficult 3.8 106.4 417.3 (0.21, 0.87, 1) 65.8 −12.0 (4.4, −21.4, 12.4, −4.6)
1qmf penicillin binding protein difficult 9.4 206.1 789.5 (0.25, 0.85, 1) 43.2 −11.6 (9.0, −16.8, 43.8, 35.9)
1a4q neuraminidase difficult 2.4 66.3 225.3 (0.41, 0.98, 1) 19.4 −1.6 (3.4, −9.9, 14.3, 7.9)
1g1f PTP-1B undruggable 4.0 31.0 138.8 (0.41, 0.78, 1) 5.5 −0.4 (1.2, −8.5, 9.5, 2.2)
1nlj cathepsin K undruggable 1.0 23.0 87.0 (0.43, 0.88, 1) 28.7 −0.6 (0.1, −0.8, 10.0, 9.1)
1bmq caspase 1 (ICE-1) undruggable N/A N/A N/A N/A N/A N/A N/A

1qs4 HIV integrase undruggable N/A N/A N/A N/A N/A N/A N/A
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ligandability can vary dramatically. Computational approaches
have been developed mainly according to the topological and
physiochemical properties of the protein binding pocket in
order to distinguish “druggable” and “difficult” from “undrug-
gable”.30,31 In the structural-based maximal binding affinity
model developed by Cheng et al.,31 structural information on
the target binding site is used to estimate the ligandability of the
target. They derived the maximal achievable binding affinity for
binding of a druglike ligand with a protein pocket (ΔGMAP)
from physical-based desolvation penalties:

γ
Δ ≈ −

−
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G f C( 300Å )

1
r

MAP
2

nonpolar
0

1.4
(7)

where f nonpolar is the ratio of pocket nonpolar SASA to the total
pocket SASA, which discriminates the relatively hydrophobic
pockets from the rest, γ0 is the planar surface tension, r is the
overall pocket curature to characterize the enclosure of the
potential binding pocket, and C is a constant to account for
system error. Despite many inherent exceptions and crude
approximations and the subjective “druggability” classification
for 27 targets, the performance of the maximal binding affinity
method is very reasonable for druggability prediction. We used
this method to test whether the information obtained by VISM-
CFA surface analysis can also provide target protein
druggability assessments.
Table 5 shows the topological and energetic information for

the ligand occupying the primary putative pockets. The four
“undruggable” targets (caspase 1, HIV integrase, cathepsin K,
and PTP-1B) show the lowest optimal binding affinities
(greater than −2 kcal/mol) with the smallest pocket volumes
(<200 Å3) or no identifiable binding pocket. The protein
surfaces for this category are relatively flat compared with those
of the other 23 targets. One prerequisite for a binding pocket
for a small organic ligand is the presence of a suitable surface
cavity with hydrophobicity. From the comparison of the pocket
topological information, the pocket size is an important factor
to discriminate “druggable” and “undruggable” protein targets.
For the other 23 targets, there are marketed drugs or advanced
drug candidates. All of them show reasonably good optimal
binding affinities (less than −5 kcal/mol) compared with the
“undruggable” targets.
In the “druggable” targets, the binding pocket of MDM2 is a

PPI interface that interacts with a regulator of tumor suppressor
p53. It shows an optimal binding affinity as −8.50 kcal/mol for
the pocket regions with relatively large pocket volume of 218.63
Å3. With about 20 years of effort, MDM2 has been recognized
as a druggable PPI interface suitable for small-molecule drugs.12

This benefits from the strong hydrophobicity inside of this
pocket. The pocket hydrophobic fraction is as high as 90.21%
with a small electrostatic dehydration penalty of ∼1.84 kcal/
mol. The P1/P2 ratio of 0.33 indicates a tube-shaped binding
pocket, consistent with the small-molecule pocket analysis. The
compound nutlin-2 (PDB entry 1rv1) displaced p53 protein
from the binding pocket of MDM2 with a median inhibitory
concentration (IC50) of 140 nM.58 In Figure 6, we align the
p53−MDM2 complex, the nutlin-2−MDM2 complex, and the
VISM-CFA-predicted binding pocket. Nutlin-2 closely mimics
the interactions of the p53 peptide to bind with MDM2. In the
nutlin-2−MDM2 complex, two bromophenyl moieties insert
deeply into the p53 Leu26 and Trp23 binding pockets. The
ethyl ether side chain from nutlin-2 directly inserts into the p53
Phe19 pocket. The shape of nutlin-2 shows good comple-

mentary to the VISM-CFA-identified pocket, and the polar
groups (e.g., bromine atoms) of the compound also align well
with the hydrophilic regions of the pockets (blue wireframe).
We must emphasize that PPIs and “druggability” are
profoundly complex topics that are far from being resolved.59

In addition, the difficulty of finding small-molecule PPI
modulators is confounded by that fact that legacy compound
collections are biased toward known drug targets such as
enzymes and G-protein-coupled receptors. They do not
necessarily reflect the best properties for PPI modulators.
Therefore, the “druggability” assessment of the PPI should be
treated with caution.
Thrombin is categorized as an outlier in several widely used

“druggability” prediction methods.30,31,39 Thrombin (1ktt) and
factor Xa (1ezq) are two serine proteases that are thought to
have similar druggability since they are in the same protein
family. Most inhibitors for thrombin are prodrugs that are
categorized as “difficult” by Cheng et al.31 Meanwhile, the
factor Xa inhibitors (e.g., rivaroxaban60 and apixaban61) are not
prodrugs and are classified as “druggable”. Interestingly, several
druggability assessment methods show a better druggability
potential for thrombin, such as the Dscore in SiteMap,30 the
hotspot index in Watermap,39 and even the structure-based
maximal binding affinity model of Cheng et al.31 In our VISM
pocket “ligandability”prediction study, thrombin also shows a
better optimal binding affinity by 6.6 kcal/mol with a slightly
larger pocket compared with factor Xa. Strictly speaking,
“druggability” is different from “ligandability”, as many factors
other than the interaction with its target play important roles
for a ligand to be a drug, such as its pharmacokinetic and
toxicology profiles. In order to be consistent and facilitate the
comparison with previous studies,30,31,39 we investigated the 27

Figure 6. VISM-CFA pocket prediction (red transparent isosurface) vs
small-molecule inhibition of the p53−MDM2 PPI. The p53−MDM2
protein−protein complex (gray and orange, PDB entry 1ycr) is
superimposed on the protein−inhibitor complex (tan for protein, red
for oxygen, blue for nitrogen, cyan for carbon, and pink for bromine;
PDB entry 1rv1).
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pharmaceutical targets by Cheng et al.31 and kept their original
“druggability” classifications.
Many kinase inhibitors have been approved for cancer and

other disease treatments. With about 518 kinases in the human
genome, the inhibition of kinase activities can lead to marked
physiological responses through a phosphotransfer cascade.62

Three different kinases were included in this study. While all of
them are in the “druggable” group with optimal binding
affinities less than −10 kcal/mol, all of them show relatively
high electrostatic dehydration penalties of around 80 kcal/mol.
This indicates that ligand selectivity could be a key for ligand
design.
In the structure-based maximal affinity model of Cheng et

al.,31 the binding sites are defined as the regions within 5.0 Å of
the cocrystallized ligand or α spheres, and a common size factor
for all druglike ligands is used rather than the actual pocket size
itself. In the case of ACE-1 for instance, the pocket is a
continuous long tube inside of the protein, and the ligand
occupies less than 10% of the volume. The putative binding site
defined by the cocrystallized ligand substantially underestimates
the binding potency of the target. In the present study, all of the
binding pockets were identified according to the target protein
without ligand present, which is completely different from the
model developed by Cheng et al. Both their method and ours
can estimate binding affinities on the basis of the hydrophobic
fractions of pocket surface areas. However, binding of druglike
ligands and target proteins is hydrophobically driven in most
but certainly not all cases.57 In the case of HMG-CoA
reductase, drug ligands have a conserved glutaminyl group that
makes substantial hydrogen-bonding and ion-pair interactions
with the protein.63 The clinically most advanced irreversible
kinase inhibitors of EGFR kinase are engineered to form a
covalent bond with a cysteine residue located at the entrance of
the ATP binding site. The formation of a covalent bond
between the ligand and protein could yield an effectively
“infinite” affinity potency for the ATP binding site.62

Statistically, druglike molecules prefer to bind target proteins
with higher SASA hydrophobic fractions and surface complex-
ities to make more contacts and gain higher binding affinity.
However, many other factors should also be considered in the
target druggability assessment, as it is an extremely complex
issue involving not just high binding affinity but also
pharmacokinetics and toxicology.

4. CONCLUSIONS
We have developed a method to identify and characterize
potential small-molecule binding sites using the VISM-CFA
equilibrium surface and the protein molecular surface.
Compared with previous geometrical- or physical-based
methods, our method properly incorporates electrostatic
contributions and does not impose subjective size restrictions.
The pocket prediction performance is enhanced through the
exclusion of shallow and polar pockets where druglike ligands
are unlikely to bind. In this study, individual pockets were listed
and characterized. For 515 protein−ligand complexes, 96.9% of
the ligands were found to be bound to the pockets identified by
VISM-CFA. For 228 tight-binding protein−ligand complexes
(i.e, ones with experimental pKd larger than 6), 99.1% of the
cocrystallized ligands were found to be in the VISM-CFA-
identified pockets. The hydration energy density maps were
consistent with cocrystallized ligand binding modes, and
therefore, they also provide guidance for structural-based drug
design. Quantitative characterization with volumetric, topo-

logical, and energetic parameters was also conducted. By the
statistical comparison of these parameters for ligand-bound and
unbound pockets, we found that the ligand -bound pockets are
likely to be deeper with relatively larger fractions of
hydrophobicity than unoccupied pockets. This is consistent
with previous theoretical and experimental studies suggesting
that druglike molecules prefer hydrophobic protein surfaces
with complementary geometry. In addition, we used these
binding pocket characteristics to assess the protein target
“ligandability”. Using the same 27 targets as studied by Cheng
et al.31 the Dscore in SiteMap,30 and the hotspot index from
Watermap,39 we found that all of the undruggable targets lack
relatively large pockets. Pockets with greater hydrophilic
character (i.e., higher electrostatic dehydration penalty) are
required for higher specificity for the ligand design, such as
kinase targets.
The VISM-CFA-based algorithm provides a very sensitive

and specific method to identify small-molecule binding sites on
proteins. In addition, it offers a quantitative means to estimate
the level of ligandability. A software package based on level-set
VISM is to be made publicly available for the analysis of
biomolecular solvation.64 We believe that it can be very useful
for rational drug design.
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