
1. Introduction
In March 2020, the first known cases of the COVID-19 pandemic, caused by the respiratory virus SARS-CoV-2, 
occurred in European countries (JHUM, 2020; Ritchie et al., 2020). Since that time, scientists from many fields 
have been trying to understand conditions that lead some areas to have rampant COVID-19 outbreaks while other 
areas are spared. Identifying which areas have higher versus lower overall COVID-19 spread and unraveling 
factors that differ between them can help health care decision makers to better understand and prepare for future 
waves of the pandemic. In this study, we examine how two environmental factors, Köppen-Geiger climate zones 
and the Continentality Index, relate to total COVID-19 incidence between March 2020 and July 2021 in munic-
ipalities and counties in 5 European countries (Norway, Sweden, Germany, Italy, and Spain) while statistically 
controlling for crowding.

Abstract In March 2020, the first known cases of COVID-19 occurred in Europe. Subsequently, the 
pandemic developed a seasonal pattern. The incidence of COVID-19 comprises spatial heterogeneity and 
seasonal variations, with lower and/or shorter peaks resulting in lower total incidence and higher and/or longer 
peaks resulting higher total incidence. The reason behind this phenomena is still unclear. Unraveling factors 
that explain why certain places have higher versus lower total COVID-19 incidence can help health decision 
makers understand and plan for future waves of the pandemic. We test whether differences in the total incidence 
of COVID-19 within five European countries (Norway, Sweden, Germany, Italy, and Spain), correlate with 
two environmental factors: the Köppen-Geiger climate zones and the Continentality Index, while statistically 
controlling for crowding. Our results show that during the first 16 months of the pandemic (March 2020 to 
July 2021), climate zones with larger annual differences in temperature and annually distributed precipitation 
show a higher total incidence than climate zones with smaller differences in temperature and dry seasons. This 
coincides with lower continentality values. Total incidence increases with continentality, up to a Continentality 
Index value of 19, where a peak is reached in the semicontinental zone. Low continentality (high oceanic 
influence) appears to be a strong suppressing factor for COVID-19 spread. The incidence in our study area is 
lowest at open low continentality west coast areas.

Plain Language Summary In March 2020, the first known cases of COVID-19 occurred in 
Europe. Over the next 16 months (March 2020 to July 2021) a pattern emerged where some areas had higher 
versus lower COVID-19 spread. We studied whether this pattern could be explained by climatological factors 
in five European countries (Norway, Sweden, Germany, Italy, and Spain). Our results show that areas with 
larger annual temperature ranges and year-round rain had higher COVID-19 spread than areas with smaller 
annual temperature ranges and dry seasons. We also examined continentality, which measures the influence of 
the ocean on climate. In Europe, where predominant winds come from the west, we find the highest oceanic 
influence at open west coasts; in our study area these are represented by north-west Spain, northernmost 
Germany, and south-west Norway. In these areas, COVID-19 spread was lowest. With decreasing oceanic 
influence, COVID-19 spread was higher. For the five countries we studied, we found highest COVID-19 spread 
in south-east Norway, the entire south of Sweden, the south-eastern part of Germany, northern Italy, and central 
Spain. Healthcare decision makers in areas that have wide ranges of temperature and rain throughout the year or 
that have little oceanic influence should expect a higher COVID-19 spread.
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Meteorological and climatic (meteoclimatic) conditions are known to have a strong correlation with pneumonia 
diseases (Bull, 1980; D'Amato et al., 2014; Shaman & Kohn, 2009; Tamerius et al., 2013). Particularly, climatic 
parameters that act on a large-scale level to influence the COVID-19 pattern have been discussed in literature; 
these include humidity and temperature (Byun et al., 2021; Chen, Jia, Han, 2021; Chen, Prettner, et al., 2021; 
Loché Fernández-Ahúja & Fernández Martínez, 2021; Matthew et al., 2021; Notari, 2021) and the intensity of 
variations in temperature (Kronfeld-Schor et al., 2021; Piazzola et al., 2021). For example, in New York, USA, 
days with a higher minimum temperature, a higher average temperature, or poorer air quality were associated 
with higher daily reported COVID-19 cases (Bashir et  al.,  2020). Other studies have focused on maritimity 
(Piazzola et al., 2021) or the closeness to the equator (Chen, Jia, Han, 2021; Chen, Prettner, et al., 2021), with 
the general finding that a mild and humid climate appears to suppress COVID-19 cases. Nonetheless, results are 
contradictory, likely because many studies were carried out using data from the first months of the pandemic 
when incidence patterns were still emerging. Further work is necessary using longer term data to understand how 
meteoclimatic conditions impact the spread of COVID-19.

We test whether differences in the total incidence of COVID-19 across 16-months within countries can be explained 
by two environmental factors: the Köppen-Geiger climate zones and the Continentality Index. Köppen-Geiger 
(Beck et al., 2018; Geiger, 1954; Köppen, 1900; Kottek et al., 2006) is a quantitative bioclimatic classification 
based on temperature and rainfall and their distribution throughout the year. This classification is widely used 
to examine phenomena such as the effect of climate change (Cui et al., 2021; Santini & di Paola, 2015), the 
impact of El Nino (Naranjo et al., 2018), or the impact of climate on human-health (e Almeida et al., 2020; Yang 
& Matzarakis, 2016). The Continentality Index (Conrad, 1945; Driscoll & Yee Fong, 1992), a measure of how 
much temperature varies within a year, has been shown to relate to human health in various studies (Ben-Ahmed 
et al., 2009) and to respiratory diseases due to pollen allergy (Rojo et al., 2021). Köppen-Geiger climate zones 
and Continentality Index are both climatic descriptors characterizing the average climatic conditions of a given 
area. Since they refer to long periods of time (about 30 years), they are more useful when comparing different 
geographical regions, as we attempt to do, than are purely meteorological indices that describe local and very 
short-lasting events.

Comparing COVID-19 incidence across geographical regions presents several challenges. First, the measure 
of COVID-19 incidence must be comparable across geographical regions for the time period studied. Luckily, 
the incidence of the confirmed SARS-CoV-2 occurrence per 100 k inhabitants is commonly used in European 
countries to express the status of the COVID-19 pandemic (ECDC, 2020). Countries typically report 2 inci-
dence metrics: (a) the 7-day added or average values per day that can be used to describe the temporal pattern of 
COVID-19 cases over time, and (b) the total incidence that gives the cumulative value of known cases over the 
time period chosen. Examining daily patterns indicates that, like other respiratory viruses (e.g., Influenza and 
Respiratory Syncytial Virus), COVID-19 spreads with probable seasonality (Bloom-Feshbach et al., 2013; Byun 
et al., 2021; Choi et al., 2021; Liu et al., 2021; Obando-Pacheco et al., 2018). Seasonal patterns with lower and/
or shorter peaks result in lower total incidence, while seasonal patterns with higher and/or longer peaks result in 
higher total incidence. By studying total incidence over a full-year cycle, we account for the variation in seasonal 
fluctuations in COVID-19 that do not necessarily happen at the same time in all geographic regions. At least a 
full year is needed for our purposes because climate zones and continentality act differently locally but have a 
summarized long-term impact. Here, we analyze the total incidence from the beginning of the pandemic in March 
2020 over a more than full year circle to mid-July 2021. This time period includes the smaller first wave in spring 
2020 (with low test rates), but especially, the two larger waves that followed, during autumn/winter 2020/2021 
and during spring 2021.

Second, the COVID-19 incidence measures must correspond to the geographic regions used for the environ-
mental factors we study. We know that COVID-19 incidence varies within countries and that countries also have 
multiple climate zones and varying continentalitiy within their borders. We therefore investigate the pattern of 
the total incidence and environmental factors within the smallest spatial entities (municipalities and counties) for 
which data were available in our countries of interest.

Finally, factors that could potentially confound the hypothesized relationships between total COVID-19 inci-
dence and environmental factors must be taken into account. Specifically, COVID-19 cases have been shown to 
amplify in crowded urban areas (Rader et al., 2020). This has been explained with various hypotheses such as a 
greater concentration of air pollutants in areas with a greater urban vocation (Martelletti & Martelletti, 2020) or 
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simply because the greater the degree of urbanization, the greater the possible social interactions between people 
(Sharmeen et al., 2014). We therefore chose to use the degree of urbanization (Dijkstra et al., 2020) provided by 
the European Commission (Florczyk et al., 2019) as a control measure in all of our analyses.

In summary, we examine how two environmental factors relate to total COVID-19 incidence between March 
2020 and July 2021 in five countries (Norway, Sweden, Germany, Italy, and Spain) that represent a European 
north-south and east-west cross-section through climate zones and continentality, and where data are available 
for county or community-sized entities.

2. Method
We use a combination of Geographic Information Systems (GIS) (ArcGIS Pro v2.8) and regression and analysis 
of variance (SAS v9.4) to investigate the relationships between COVID-19 incidence and two environmental 
factors (climate zones and continentality), while controlling for the degree of urbanization. Geographic Informa-
tion Systems (GIS) is a long-used tool in health related studies and has been used to support spatial decisions in 
health care services (McLafferty, 2003), for health surveillance (Luan & Law, 2014), and to access environmental 
health determinants (Nordbø et al., 2018). Geographic Information Systems (GIS) has been used as a tool to 
investigate COVID-19 from the very beginning of the pandemic (Franch-Pardo et al., 2020; Kamel Boulos & 
Geraghty, 2020), mostly for dashboard mapping (cf. JHUM, 2020). Even though mapping of risk or correlations 
is advancing (e.g., Al-Kindi et al., 2020; Hassaan et al., 2021) the potential of GIS as a helping tool to understand 
COVID-19 is far from being fully utilized (Ahasan & Hossain, 2021). We here integrate GIS and statistics to find 
both a (visualized) pattern and statistical correlations between COVID-19 and environmental factors.

For the GIS visualization and analysis of municipalities and counties, we use the Nomenclature des Unités Terri-
toriales Statistiques (NUTS) data sets, Nomenclature des Unités Territoriales Statistiques (NUTS3) (counties) for 
Spain, Italy, and Germany and Nomenclature des Unités Territoriales Statistiques (NUTS) communes for Sweden 
and Norway (Eurostat, 2020).

We imported the total incidence for each county/commune (municipality), from official sources where these data 
were available, with incidence data for Sweden (Folkhälsomyndigheten, 2021); Norway (VG, 2021); Germany 
(Robert Koch Institut, 2020); Italy (Github, 2021); and Spain (CNECovid, 2021).

Köppen-Geiger climate zones were assigned to each county/commune, based on the data set from Beck 
et al. (2018). Using zonal statistics, the climate zone that covers the relatively largest part of the area (that consti-
tutes the majority of pixels) was attributed to each county/commune.

We attributed a Continentality Index value to each county/commune. The Continentality Index measures the 
annual range of temperature, this range increases over land in the lands farthest from the sea as a consequence 
of the different heat capacities of the seawater. In our calculations this index has been applied in its simplified 
form (Noce et al., 2020), this differs from the one developed by Driscoll and Yee Fong (1992) and is calculated 
as the difference (in °C) between the mean temperature of warmest and of the coldest months of the year. The 
Continentality Index here is based on the BioClimInd data set (Noce et al., 2020). Using zonal statistics, the mean 
of the continentality value within each area was attributed to each county/commune.

Degree of urbanization values were assigned to each county/commune and used as a statistical control in our 
analyses. “The degree of urbanization is the relationship between the population living in urban (and rural) areas 
and the total population of the municipality,” based on the Global Human Settlement Layer (GHSL) (Pesaresi 
et  al., 2019 [data]; Florczyk et al., 2019 [report]). The Global Human Settlement Layer (GHSL) is a refined 
version of the degree of urbanization (Eurostat,  2011; European Commission,  2021; Schiavina et  al.,  2019), 
where grid cells are classified after population size, population, and built-up area densities, based on satellite 
data (Corbane et al., 2017, 2019; Corbane, Florczyk, et al., 2018; Corbane, Politis, et al., 2018). The Global 
Human Settlement Layer (GHSL) classifies each pixel, excluding water, ranging from “very low density rural 
grid cell” to “urban center grid cell” (Florczyk et al., 2019). Using the degree of urbanization, even in large 
counties or municipalities with low population density, population accumulations are identified (cf. Dijkstra 
et al., 2020) and thereby, risk areas for COVID-19 spread. Using zonal statistics, the mean value for the degree of 
urbanization of the GHSL was attributed to the counties of Germany, Italy, and Spain, and the maximum value for 
the degree of urbanization was attributed to the communes of Norway and Sweden (see Figure S2 in Supporting 
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Information S1). The degree of urbanization for the five countries is thus not directly comparable for all five 
countries. The reason for this difference in expression is that urbanized areas in the huge northern municipalities 
of Norway and Sweden would be “swallowed” in the mean values, whereas a maximum value for Germany and 
Italy would “swallow” rural areas. For Spain, no expression worked ideally but the mean gave a better result. The 
aim of the degree of urbanization was to achieve intra-country differences that resulted in as many relative values 
as possible, to show in-country differences in the degree of urbanization. In all five countries, the capitals display 
high degrees of urbanization, but apart from that, the number and localities of urbanized areas varies (see Figure 
S2 in Supporting Information S1). As expected, there was a positive relationship between the degree of urbaniza-
tion and COVID-19 incidence in all countries except Spain. The lack of a relationship between urbanization and 
COVID-19 in Spain is likely due to a restriction of range; Spain had only four relatively low values of urbaniza-
tion (see Table S1 in Supporting Information S1). We normalized our data against the degree of urbanization by 
regressing urbanization on COVID-19 incidence and saving the residuals; the saved residuals represent incidence 
without urbanization bias (cf. Rader et al., 2020).

The resulting values of COVID-19 incidence, Köppen-Geiger climate zone, Continentality Index, and the degree 
of urbanization for the counties/communes for each county were exported from ArcGIS Pro in tabular format 
and statistically analyzed in SAS v9.4. To examine the relationship between COVID-19 incidence and climate 
zones and continentality across countries we created two residualized scores. For analyses completed separately 
by country, we adjusted for the degree of urbanization; for analyses completed across countries, we adjusted for 
both country and the degree of urbanization. We examined differences in residualized total incidence between 
climate zones using analysis of variance (ANOVA). The relationships between residualized total incidence and 
continentality were examined using linear regression, testing for both linear and quadratic relationships. As a 
secondary analysis, we conducted multivariate adaptive regression splines (MARS) modeling of the relationship 
between continentality and residualized total incidence to identify discontinuities, or knots, directly from the data 
(Bilenas & Herat, 2016).

Finally we used our statistical results to produce a COVID-19 probability map in GIS. We use the ranking of 
the climate zones and continentality that our results show from low to high COVID-19 incidence, and reclassify 
the values accordingly (see Table S3 in Supporting Information S1). These values were then added in the raster 
calculator in ArcGIS Pro to show a combined probability map (cf. Ebert et al., 2016).

3. Results
3.1. Spatial Analysis

3.1.1. Spatial Pattern of COVID-19 Total Incidence

The mapped total incidence for the five countries from March 2020 to mid-July 2021 shows a patchy pattern 
(Figure 1). An observable pattern shows relatively lower incidence values in the west of countries with an open 
western coastline toward the Atlantic Ocean: the entire coast of Norway, north-west Germany, and north-west 
Spain. This also goes for the Italian islands with an open western coastline in the Mediterranean. The only coun-
try lacking an open western coastline and the associated pattern is Sweden. Relatively high incidences can be 
found in all five countries in the counties/communes that hold the capital cities. However, these are not necessar-
ily the areas with highest incidences.

The highest incidences for Norway are found in the south-east of the country, in the area of the capital also in the 
surrounding communes. Two single outliers with high incidences in the south of the country, and one in the very 
north break the pattern of otherwise generally low incidence values.

Sweden shows a rather patchy pattern with highest incidence in the southern highlands, along the northern half of 
the East-Coast toward the Baltic, and in some communes in the northern half of the country.

The highest incidence values in Germany are distributed along the south-eastern border of the country, with the 
absolutely highest values in Saxony at the border to Czechia. Single outliers with higher values exist in the south-
west and in the north-west. Generally Germany shows a pattern of incidences from low to high in a north-west 
to south-east direction.
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In Italy the highest incidence values are concentrated in the north of the country at the border to or in the Alps, 
and along the Mediterranean east-coast, with one outlier with higher values in the central Italian mountains 
(Apennines).

The highest incidence in Spain is found in the northern half of the country, at the border to Spain, and in the 
capital county. However, the low to high south to north pattern shows an exception in the northwestern corner of 

Figure 1. Total (cumulated) incidence of reported SARS-CoV-2 occurrence per 100,000 inhabitants for the five countries 
from the reports between March 2020 and mid-July 2021. Based on data from the Norwegian Institute of Public Health 
(Folkhelseinstituttet), incidence calculated in VG (2021); the Public Health Agency of Sweden (FHM, 2020), the Robert-
Koch Institute, Germany (Robert Koch Institut, 2020); the Italian Ministry of Health (Ministero della Salute) (Github, 2021) 
(Italy) and CNECovid (2021) (Spain). The total incidence in this article is treated as a relative value. The relation between the 
reported cases, the death rate and the conducted tests differs spatially and temporally within and across countries and makes 
a meaningful country-to-country comparison of the total incidence challenging (cf. data for death rates, tests, etc. on https://
ourworldindata.org/coronavirus).
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the country, in six counties with a western coastline to or close to the Atlantic. These six counties clearly show 
the lowest incidence values for Spain.

3.1.2. Spatial Pattern of Köppen-Geiger Climate Zones

The Köppen-Geiger climate zones are defined by a classification based on a combination of temperature and 
precipitation range. The countries we investigate comprise nine Köppen-Geiger climate zones (Figure 2). The 
vast majority of Norway, with the exception of the south-west coast in a temperate climate, is located in cold 
climate zones. Some of the highest ranges of the northern Scandes mountain chain, and northernmost areas, 
hold a Polar climate. Sweden is entirely located in two cold climate zones. The northwestern part of Germany is 
located in temperate climate, the southeastern part in a cold climate zone. Italy has the widest range of climate 

Figure 2. Köppen-Geiger climate zones for the largest part of the area per municipality (Norway, Sweden) or county 
(Germany, Italy, Spain). Based on Beck et al. (2018).



GeoHealth

KARIN ET AL.

10.1029/2021GH000568

7 of 18

zones (7), however, only few counties are located within the cold and polar climate zones (in the Alps and on 
the highest elevations of the central Apennines). The majority of the country is located in temperate climates, 
and some counties on the southern part of the east coast in an arid climate. This arid climate zone comprises the 
majority of Spain in the central-eastern zone. The rest of Spain, along the northern and western boundaries, has 
temperate climates.

3.1.3. Spatial Pattern of the Continentality Index

The five countries we investigate have all different ranges of continentality (Figure 3), where north-west Spain 
reaches the lowest level of continentality (the highest level of oceanicity) with the value of 10 and northern 
Norway and Sweden the highest continentality, with the value of 32.

Figure 3. Mean Continentality Index per municipality (Norway and Sweden) or county (Germany, Italy, and Spain). 
Continentality Index raster data from Noce et al. (2020).
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However, Norway has the widest range of values, with a rather low continentality (15) at its southwestern coast 
line, and higher ranges of continentality, above a value of 25, are only reached on the northernmost peninsulas of 
the country. In contrast, Sweden reaches a high continentality much further south and almost the entire northern 
half of the country displays continentality values of 27 and higher. This makes Sweden by far the most continental 
country of the five. Germany has the lowest range of values, from 16 to 21, with the lowest continentality at the 
north-western coast and increasing values across the country in a north-west to south-east direction. Italy has a 
slightly larger range of values than Germany, with low values of 14 and 15 on the western islands and a lowest 
value of 22 in northern central Italy. Spain, with the lowest value of 10 in the north-west, low values of 10–16 
along its entire coastline, and the highest values of up to 19 in the center of the country, is the most maritime 
country in range.

3.2. Mean Differences in Total COVID-19 Incidence by Köppen-Geiger Climate Zones

If we statistically adjust for country differences in incidence, and control for the degree of urbanization, the KG 
climate zones formed four distinct groups. Climate zones KG8 and KG9 had significantly lower total incidence 
than other climate zones. Climate zones KG15, KG16, and KG27 formed the next group; KG29, KG26, and KG7 
formed the next group with even higher incidences; and climate zone 14 had significantly higher total incidence 
than any other climate zone (Figure 4; Table 1).

Climates with larger annual differences in temperature and rainfall distributed throughout the year (temperate 
climate zone 14, cold climate zones 26, and cold arid 7 and polar 29) have a higher total COVID-19 incidence 
than climate zones with smaller annual differences in temperature and dry summers and winter rain (=unevenly 

Figure 4. The relative distributions for each KG climate zone after regressing out the degree of urbanization and mean-level differences between countries in overall 
incidence rates. Boxes represent the interquartile range (Q1 to Q3), the middle line in each box represents the median value, circles represent the mean, and whiskers 
represent the minimum and maximum values for each KG climate zone.
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distributed annual precipitation) (temperate climate zones 8 and 9). Consequently, climate zones with lowest 
incidence values in our study area are climate zones with a clear divide of dry and wet seasons.

3.3. Relationship Between Total COVID-19 Incidence and the Continentality Index

We first ran linear and quadratic regression models with the degree of urbanization-adjusted total incidence as 
the dependent variable and continentality as the independent variable, separately by country (Figure 5). Linear 
models explained between 0.3% (Norway) and 30.8% (Italy) of the variance in total incidence (see Table S2 
in Supporting Information S1). In all countries except Norway and Sweden, the linear trend was significantly 
positive. For Norway, the linear slope was not significantly different from zero; for Sweden it was significantly 
negative. Quadratic models explained between 0.8% (Norway) and 36% (Italy) of the variance.

Table 1 
Köppen-Geiger Climate Zones and Their Temperature and Precipitation Properties, Sorted Into Four Groups 
From Highest to Lowest Total COVID-19 Incidence in the Five European Countries, When Controlled for 
the Degree of Urbanization, and After Regressing Out Mean-Level Differences Between Countries in Overall 
Incidence Rate (Climate Zone Criteria Modified From Beck et al. (2018) and Forkel (2015))
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The quadratic term did not add significantly to the explanation of total incidence in four countries (Germany, 
Norway, Sweden, and Spain). It did add significantly to the explanation in Italy, which saw rising total incidence 
at lower values of the Continentality Index and declining total incidence at higher values of the Continentality 
Index. Figure 5 graphs the predicted linear and quadratic relationship for each country, including only those 
continentality indices that were observed in the country.

To examine the effect of the full range of continentality indices on total incidence, we ran linear and quadratic 
regression models with country- and the degree of urbanization-adjusted total incidence as the dependent variable 
and continentality as the independent variable. The linear model accounted for <0.1% of the variance in adjusted 
total incidence and continentality showed no significant linear relationship with adjusted total incidence. The 
quadratic model accounted for 5.2% of the variance in adjusted total incidence. Continentality showed a signifi-
cant linear trend with each 1-unit change in continentality adding 98 more cases to the adjusted total incidence. 
There was also a significantly negative quadratic trend, such that adjusted total incidence rose through approxi-
mately a Continentality Index of 19–23, at which time total incidence began to decline.

To further examine the nonlinear relationship between adjusted total incidence and continentality, we conducted 
a follow-up analysis using multivariate adaptive regression splines (MARS) modeling. multivariate adaptive 
regression splines (MARS) is a flexible, nonparametric regression technique used to identify discontinuities, or 
knots, directly from the data (Bilenas and Herat, 2016); in our case, it is purely exploratory and results will need 
to be replicated in other samples. We used a random draw of 50% of our sample for training, 25% for testing, and 

Figure 5. The figure graphs, the predicted linear, and quadratic relationships between the Continentality Index and residualized total incidence (residualized for the 
degree of urbanization for country-specific analyses; residualized for country and the degree of urbanization for overall analyses). Lines for each country only include 
the Continentality Index values observed in that country. Thinner lines indicate that the linear trend for Norway and overall multicountry linear trend between total 
incidence and continentality was not statistically significantly different from zero and that the quadratic trends between total incidence and continentality for Germany, 
Norway, Sweden, and Spain were not statistically significantly different from zero. Model results are presented in Table S2 in Supporting Information S1.
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25% for validation. Results indicate two significant discontinuities in the relationship between residualized total 
incidence and continentality at 19 and 24, such that the relationship between total incidence and continentality is 
positive before 19, negative between 19 and 24 and not significantly different from 0 thereafter.

3.4. Relationship Between COVID-19 Incidence and Continentality in Different Köppen-Geiger Climate 
Zones

In Köppen Geiger climate zones 7, 8, and 9 there was a significantly positive linear relationship between conti-
nentality and total country-adjusted incidence, such that each 1-unit change in continentality adds ∼500–560 
to the total incidence per 100 K. In Köppen Geiger climate zones 14, 15, and 16 there was no significant linear 
relationship between continentality and total country-adjusted incidence. In Köppen Geiger climate zones 26, 27, 
and 29, there was a significantly negative linear relationship between continentality and total country-adjusted 
incidence such that each 1-unit change in continentality decreases total incidence by ∼120 per 100 K (Figure 6).

3.5. Pattern of COVID-19 Spread Probability Based on Continentality and Climate Zone

We translated our statistical results to a visual GIS-map (Figure 7) that shows the probable pattern of COVID-19 
spread in the five countries that comprise our study area, if continentality and climate zone were the exclusive 
determining parameters. We ranked the climate zones and continentality accordingly to produce the probability 
map (see reclassification values for the ranking in Supporting Information S1). The map is purely based on our 
results, showing the probability after residualizing across country differences and the degree of urbanization.

Figure 6. The figure graphs the predicted linear relationships between the Continentality Index and residualized total incidence (residualized for country and the 
degree of urbanization). Lines for each climate zone only include the Continentality Index values observed in that climate zone. Thinner lines indicate that the linear 
trends for KG's 14, 15, and 16 were not statistically significantly different from zero.
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4. Discussion
After controlling for the degree of urbanization and cross-country differences, the ranking of climate zones results 
in four groups with different COVID-19 incidences. The highest incidence is within climate zone 14—Temper-
ate, no dry season, hot summer. Within the temperate (mild) climates represented in the five countries studied, 
this is the temperate climate with the highest differences in temperature. Like the other climate types we find with 
higher incidence numbers, this climate type has no clear dry or wet season, rather precipitation occurs through-
out the year. Climate zone 14 is not well represented in Europe; in the five countries of our study it comprises 
the north of Italy and one county in north-east Spain. As for northern Italy, this area is rather special from a 
topographic point of view as it is surrounded in the west and the north by the Alps, which shields it from the 
influence of the west-wind zone and by that from oceanic influence (further explained in the next section about 

Figure 7. The probability for the spread of COVID-19, weighed after the statistical results of this paper, for the influence 
of continentality and climate zones. Thereby, other possible influencing parameters such as the degree of urbanization are 
excluded.
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the Continentality Index). Köppen-Geiger climate zones are defined by values of temperature and precipitation. 
Minimum temperatures have been found to correlate with COVID-19 propagation, where lower temperatures 
promote COVID-19 spread (Loché Fernández-Ahúja & Fernández Martínez,  2021). Our findings are similar 
in that the group of climate zones with the lower mean and minimum temperatures have higher total incidence. 
Additionally, the two temperate winter-rain climate zones with highest mean temperatures (8 and 9) had the 
lowest total incidence. The climate zone with the highest total incidence is nonetheless not the climate zone with 
lowest mean temperatures. This might not be necessarily contradictory, as Köppen-Geiger climate zones are a 
summary of climate indicators, and correlations of COVID-19 and temperature would need a temporal resolution.

In our data we find a peak of cumulated COVID-19 incidence at Continentality Index values 19–24, rising steep 
from lower values to 19, slowly falling until 24, and thereafter barely falling at all (statistically no different from 
zero). Possible reasons for a decrease in cases above 19 might be lower populations in areas with rising conti-
nentality indices among our study countries. This is the case for Norway and Sweden, where the Continentality 
Index is rising toward the northern inland with harsher living conditions. However, Italy also shows incidences 
falling in areas with a Continentality Index of 20 and above; this happens in one of the areas with the highest 
degrees of urbanization, the Venice area of northern Italy. Seen in a wider context, countries in Europe that fall 
entirely within continentality indices 19–21, like Czechia, Bosnia, and Herzegovina, Northern Macedonia and 
Montenegro, display the highest accumulated COVID-19 death rates in Europe, where countries further east with 
continentality indices above 20, like Poland, Finland, Lithuania, Slovakia, and Ukraine, have lower death rates at 
the date of writing in November 2021 (cf. Ritchie et al., 2020, Our World of data, for death rates).

It is worth unpacking what makes the Continentality Index range of 19–24 a favorable value for high COVID-
19 infection rates. Either, this value is a proxy for another phenomenon, or the value itself, that is, the range of 
temperature has a direct effect. The continentality displays the influence of the ocean, a function of distance and 
topographical hinders and the dominating wind direction. Europe falls in the west-wind zone of the northern hemi-
sphere, the so-called westerlies. The Continentality Index is lowest at open west coast areas such as north-eastern 
Spain and is (irregularly) rising toward the east. This is also the case for the USA, the other great landmass in the 
westerlies. Torregrosa et al. (2013) described continentality categories for the wider San Francisco area on the 
US west coast. If we would apply these values to our study area, Continentality Index values up to 17 fall in an 
oceanic category, values of 17–21 are described as semicontinental, and values >21 as subcontinental. By this, 
the values where we find the highest COVID-19 incidence would fall right outside the oceanic influence and into 
the category “semicontinental.” This suggests that maritime climates may suppress COVID-19 infectiousness, 
and confirms the results of earlier studies that found mild and humid coastal climates limit COVID-19 contami-
nation (e.g., Piazzola et al., 2021). However, the question as to why cases are falling in subcontinental conditions 
remains for the moment unsolved.

Studies in the early stages or about the early stages of the COVID-19 pandemic have shown contradictory or 
inconsistent relationships between climate factors and the spread of the virus (e.g., Sera et  al.,  2021). These 
studies commonly only include one climate factor, such as temperature, and not climate systems. Also, they 
only include the first wave of the pandemic. First waves of pandemics behave erroneously, as they hit a popula-
tion with a completely unprepared immune system and only in later waves, does a seasonal pattern of infection 
emerge (Chandra et al., 2020). But even in later studies, certain temperatures and air humidity have been shown 
to be inconsistent with the virus spread (Choi et al., 2021). Alternative environmental factors that showed more 
correlation than temperature and humidity were air drying capacity and ultraviolet radiation (Choi et al., 2021). 
However, the main argument why air drying capacity might be a factor was the transport of droplets, which then 
was still the presumed spreading mechanism for COVID-19, was later corrected, as COVID-19 also spreads with 
aerosols (Chen, Jia, Han, 2021; Chen, Prettner, et al., 2021). Ultraviolet radiation has been in discussion as a driver 
for respiratory virus seasonality for decades, however, never with entirely conclusive results (Jensen, 1964); when 
investigated for the Sars-Cov-2, Sagripanti and Lytle (2020) showed a probability of inactivation of the virus 
during summers in higher ultraviolet radiation in Italy. Most of these factors show a better correlation with the 
seasonality of respiratory viruses in the northern hemisphere and get illusive in the tropical/equatorial zone (cf. 
Bloom-Feshbach et al., 2013).

We look at the total incidence and not directly seasonal difference in COVID-19 spread; however, in all five 
countries—entire Europe—the COVID pattern shows a clear seasonality. Lower total incidence means that the 
seasonal ups are weaker and/or shorter than in regions with higher total incidence. This means there is an indirect 
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connection to seasonality to climate zones and the Continentality Index. Martinez (2018) suggested a possible 
host susceptibility, meaning that environmental factors influence the host and not the virus. This would imply a 
host seasonality (Martinez, 2018) that in turn might be influenced by the distance to the ocean.

Death rates or ICU numbers might have been more comparable; however, only the incidence was available for 
the smaller special entities across all five countries. Incidence cannot be directly compared across countries, due 
to different testing numbers and other factors. However, a relative relation can be given. We residualize against 
country differences to find the overall correlation with continentality and climate zones. The incidence varies 
across and within countries. The discussed possible reasons for this variety are manifold, such as vaccination 
rate, the possibility and willingness to distance keeping, social factors, access to healthcare and others (Bendavid 
et al., 2021; Brauner et al., 2021; Choi et al., 2021; Haas et al., 2021; Loomba et al., 2021; Prata et al., 2021), and 
socio-economic factors (Buja et al., 2020; Ehlert, 2021). We look at the overall main pattern that shows a lot of 
“noise” because of these factors.

At the current date (November 2021) the low to high incidence patterns within the five countries as described in 
our paper are persisting or even manifesting. By now between 65% and 90% of the population in the five coun-
tries we investigate are vaccinated and the majority of COVID-19 patients in ICU and death are unvaccinated 
(cf. Robert Koch Institut). The pattern of low to high persists nonetheless, and the time span of our investigation 
only includes the very first months of vaccination, with around 30% of the population vaccinated at the end of 
our time span in the overall low-incidence summer time (Ritchie et al., 2020). We thereby assess vaccinations not 
to impact our results.

Our study has limitations. First, the pandemic occurred through time with different surges at different times in 
different countries. Our analysis does not take this time variation into account; since this was the first look at 
the effect of climate zones and continentality on COVID-19 incidence we wanted to first establish an overall 
relationship before examining timing effects. Future studies will need to take this time variation into account to 
more fully explore which climatological parameters have the most effect on COVID-19 incidence. Second, our 
study was limited to five countries in Western Europe. Concentrating on the west-wind zone of Europe limited the 
potential range of Köppen Geiger climate zones we could study and may limit generalizability beyond Europe. 
We chose these countries because they provided easy access to municipality and county level COVID-19 data. 
Future studies should attempt to replicate our findings in a broader sample of countries representing different 
continents and a wider range of climate zones. Third, there are multiple other social vulnerability measures 
beyond urbanization that we could have statistically controlled for (cf. Islam et al., 2021). For example, popula-
tion density has been widely investigated, with diverging results (Paez, 2021); we chose urbanization to normalize 
our data because high urbanization has been shown to better explain high COVID-19 incidence than population 
density (González-Val & Sanz-Gracia, 2021). Fourth, social vulnerability and mitigation measures may have a 
considerable influence on incidence (Kashem et al., 2021); particularly at the beginning of the pandemic, these 
measures were inconsistently applied across Europe and not well documented or easily obtained. Our analyses 
attempted to take these potential country-level differences into account by adjusting for mean level differences in 
COVID-19 incidence when examining cross-country effects. Finally, our study considers two main climate indi-
ces (Köppen Geiger climate zones and the Continentality Index). As previously mentioned they describe long-
term average climatic conditions and do not allow us to identify short-term phenomena (related to meteorology) 
that may locally increase or decrease the risks to human health.

5. Conclusions
According to our results for Norway, Sweden, Germany, Italy, and Spain, during the first period of the COVID-19 
pandemic from March 2020 to July 2021, climates with larger annual differences in temperature and precipita-
tion all year (temperate climate zone 14, cold climate zones 26, and cold arid 7 and polar 29) have higher total 
COVID-19 incidence than climate zones with smaller annual differences in temperature and dry summers and 
winter rain (=unevenly distributed annual precipitation) (temperate climate zones 8 and 9).

Maritimity has a strong suppressing effect on total COVID-19 incidence. Up to a Continentality Index of 19, 
the total incidence in the study area rose steeply. Starting from 19 to 24, it slowly fell, thereafter, it fell slightly, 
but the decline was not statistically significantly different from zero. The total Covid-19 incidence was lowest at 
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open west coast areas, which have the lowest Continentality Index values and are in temperate climate zones 15, 
8, and 9. Taken together, the “best climatic conditions” to forestall COVID-19 spread in our study of countries 
in the European west-wind zone would be all areas with an open west coast (i.e., north-western Spain, the Italian 
islands, the German north-sea coast area, and the south-western coast of Norway). Although Sweden's lowest 
Continentality Index values are observed at its southern coastal area, the value of 18 is still relatively high and not 
in a favorable climate zone. From this perspective, Sweden does not have a clear “best climatic condition” area.

The “worst climatic conditions” for forestalling COVID-19 spread in the countries studied would be the Oslo 
area and the south-eastern coast stretch of Norway, southern central Sweden, and the west-east area bordering to 
that, including Göteborg and Stockholm, south-eastern Germany including Saxony and Bavaria, northern central 
Italy including Lombardia, and central Spain, including Madrid. Healthcare decision makers in these area should 
expect greater COVID-19 spread.
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