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Abstract

Hypertrophic scars often develop following burn-related injuries. These scars can be cosmetically

unappealing, but associated symptoms of pruritus, pain and restricted range of motion can impair

a person’s quality of life. Laser and light therapies offer a minimally invasive, low-risk approach

to treatment, with a short postoperative recovery period. As laser technology developed, studies

have shown decreased scar thickness, neuropathic pain and need for surgical excision, as well as

improved scar pigmentation, erythema, pliability, texture, height and pruritus. In this review, we

present the evolution of laser therapy for hypertrophic burn scars, how different types of lasers

work, indications, perioperative considerations and guidelines for practice management.
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Background

The prevalence of developing a hypertrophic scar following
a burn-related injury has been reported to be as high as
70% [1]. These scars can be cosmetically unappealing, with
associated symptoms of pruritus, pain and restricted range
of motion which can impair a person’s quality of life. Such
scars are thought to develop from patterns of dysregulation of
normal wound healing after trauma to the skin [2]. Surgical
scar removal and contracture release remain important cor-
rective therapies; however, there are high risks of scar recur-
rence. Nonsurgical interventions are often attempted prior
to surgical interventions to inhibit or slow scar progression.
Nonsurgical interventions include pressure garments, silicone
gel sheeting, intralesional injections, cryotherapy, radiation
therapy, laser and light therapy [2]. Laser and light therapies
have now emerged as a minimally invasive, low-risk therapy
with a short postoperative recovery period [3].

Since the first description in 1983 by Anderson and
Parrish with intense pulsed light (IPL) [4] and Castro et al.

with a continuous neodymium:yttrium–aluminum–garnet
(Nd:YAG) laser [5], evidence has suggested that lasers could
be used to treat hypertrophic scars. Anderson and Parrish
introduced the principle of selective photothermolysis [4].
An appropriate wavelength, exposure time and energy level
from light were focused on the target tissue. The tissue
absorbs photons, resulting in either a photochemical reaction
or heating. At different temperature ranges, physiologic
changes occur within the tissue. From 60◦C to 70◦C, collagen
along with other structural proteins are denatured; from
70◦C to 80◦C, cell membranes become permeable and
nucleic acids denature; from 70◦C to 100◦C, coagulation
necrosis results in hemostasis by closing blood vessels and
denaturing plasma proteins; and above 100◦C, tissue water
vaporizes, resulting in physical separation or ablation. The
selective nature relies on the principle that the targeted tissue
has a greater optical absorption at a specific wavelength
compared to the surrounding tissue. Lasers range from
shorter-wavelength potassium titanium phosphate (KTP)
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on the visible light spectrum to longer-wavelength carbon
dioxide on the infrared light spectrum [6]. Depending on
the wavelength, photons are absorbed by hemoglobin,
oxyhemoglobin, melanin, water, or collagen in the skin,
generating heat, selectively affecting capillaries, pigmentation
and scar tissue [4].

Review

Efficacy of lasers

As laser technology developed, studies have shown decreased
scar thickness, neuropathic pain and need for surgical exci-
sion and improved scar pigmentation, erythema, pliability,
texture, height, pruritus, heat sensitivity, contracture, function
and overall quality of life, due to laser treatment [2,6–14].

Scars with variations in maturity may see improvements
after the first laser session [8]. Scars can be targeted super-
ficially to smoothen the skin, or deep to decrease tension
and induce dermal remodeling of abnormal collagen. Often
surgeons can tailor therapy by targeting superficial, deep,
or a combination of both locations depending on the scar
characteristics [7,8].

Classifying scars by dyschromia (erythema, hyper-/hypopi-
gmentation) and scar thickness or atrophy was a way to
simplify methods for determining which lasers were most
appropriate depending on individual scar characteristics [10].
They are categorized as ablative or nonablative, fractional
or nonfractional and vascular or nonvascular depending on
their targeted mechanism of action [15]. Pulsed dye laser
(PDL) therapy and ablative fractional resurfacing (AFR) laser
therapy are two types of lasers that have shown the greatest
efficacy when treating hypertrophic scars [8,10].

Classification of lasers

Ablative vs. nonablative lasers Ablative lasers target the
dermal and epidermal layers of the skin, resulting in damage
to both layers and subsequent collagen remodeling. Pulsed
CO2 lasers were the first ablative lasers that were highly
efficacious; however, patients suffered from significant
adverse effects [16]. The treated area during the first week
would often present with edema, oozing, crusting and burning
discomfort. Long-term complications were skin pigment
changes, scarring and infections. Erbium:yttrium–aluminum–
garnet (Er:YAG) ablative lasers were developed with a
shallower absorption depth to decrease thermal damage and
increase the rate of skin healing. Shallower skin penetration
resulted in a lower efficacy, but a more favorable safety
profile [17]. Nonablative lasers were developed to spare
the epidermis and selectively damage the dermis skin layer.
Damage to the dermis layer could still be achieved with a high
optical penetration depth [18]. This resulted in less superficial
damage compared to the ablative lasers, but less efficacy. Both
ablative and nonablative lasers cause homogeneous thermal
damage at their targeted depths [15].

Fractional lasers The concept of fractional photothermolysis
was first described in 2004 as a way to balance the

efficacy of ablative lasers and the safety of nonablative
lasers [15]. Fractional lasers maintain the selectivity of
photothermolysis by targeting specific wavelengths of
molecules, while creating microscopic holes or microholes.
Microholes are areas of controlled widths, depths and
densities surrounded by islands of healthy dermal and
epidermal tissue for rapid regeneration and repair [15,19].
The surrounding unaffected skin becomes a source of
viability by aiding in neocollagenesis or the creation of new
healthy collagen and tissue remodeling. This decreases the
thickness and improves the pliability of hypertrophic burn
scars, allowing for improved range of motion across all
joints [6]. Nonablative and ablative devices were modified
and further categorized as either nonablative fractional
resurfacing (NAFR) vascular erbium:glass lasers with
wavelengths ranging from 1540 nm to 1550 nm or AFR
lasers with wavelengths ranging from 10,600 nm fractional
CO2 (fCO2) lasers to 2940 nm Er:YAG lasers [2].

NAFR First introduced in 2004 [15], NAFR lasers result in
selective thermolysis of the dermis layer of the skin by creating
microholes. They heat the skin layer to temperatures ranging
from 50◦C to 70◦C, resulting in irreversible coagulation of
dermis proteins [6]. The epidermal layer is left unaffected and
intact [3].

The lower temperatures of the NAFR laser allow for an
increased safety profile but decreased efficacy compared to
ablative lasers [10,20,21]. The wide safety profile allows for
NAFR laser use over all areas of the body with minimal
postoperative recovery time [6]. Traditionally, NAFR lasers
are used for mild to moderate hypertrophic scars primarily
involving the dermis and epidermis skin layers. Severe hyper-
trophic scars often require AFR laser tissue therapy [21].

AFR First introduced in 2007, AFR lasers result in selective
thermolysis of the dermis layer of the skin creating microholes
and targeting water molecules [22]. However, temperatures
rise above 100◦C and vaporize the surrounding tissue. The
area surrounding the thermolysis becomes a thermal coagu-
lation zone involving the epidermis [10].

The higher temperatures achieved by the AFR lasers
have achieved better efficacy profiles with better safety
profiles than the traditional IPL lasers for hypertrophic
scars [6]. Better safety profiles include a lower incidence
of hypopigmentation and scarring [23]. AFR combines a
short pulse duration with high energy to optimize efficacy
by using heat to create microholes in the skin. The high
temperatures induce a greater degree of dermis remodeling
[10,20,21]. The surrounding undamaged tissue helps in
the remodeling process, starting with a molecular cascade.
Heat shock proteins, metalloproteinases and inflammatory
cytokines are involved during the rapid healing response
48 hours following ablation to fill the vaporized columns
with epidermal cells and restoring skin continuity [22,24].
New collagen formation and collagen remodeling results in
a decrease of collagen type I and an increase in collagen
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type III [25]. The addition of collagen type III changes the
architecture of the dermis by increasing pliability, decreasing
thickness and improving molecular function [8,25,26].
This results in improved healing of unstable chronic scars
[8,23,26–30]. AFR has been validated by two patient-
reported outcome measures, the Vancouver Scarring Scale
and the Patient and Observer Scar Assessment Score, and
ultrasound by assessing scar thickness [7,8,13,25].

PDL PDL is light device often categorized as nonablative vas-
cular devices with wavelengths ranging from 585 to 595 nm.
The mechanisms of PDL help reduce the vascularity to reduce
erythema, pruritus, pigmentation, hypertrophy and neuro-
pathic pain from hypertrophic scars. This is achieved by
targeting hemoglobin, resulting in selective photothermoly-
sis of blood vessels to decrease vascularity [12]. The pulse
duration time must be shorter than the thermal relaxation
time of hemoglobin to destroy capillary vasculature [31]. This
selective blood vessel destruction results in tissue hypoxia and
collagen catabolism. Collagen remodels and realigns to form
less deposits [19,32]. PDL penetrates the skin less than AFR,
limiting its use with thick hypertrophic scars greater than
1 cm. It also has limited utility treating hypertrophic scars
in areas of tension. Relieving tension by small surgical scar
incisions to create Z-plasties can synergistically facilitate PDL
efficacy and reduce the need for larger surgical excision proce-
dures [11]. Pruritus is thought to decrease from alterations in
the release of regulatory cytokines with less scar vasculature
[9]. PDL is used to treat immature thin hypertrophic scars
with less than 1 cm thickness, vascular erythema, areas of
minimal tension and pruritus. These lasers do not treat scar
structure or result in collagen remodeling like AFR lasers [10].

PDL vs. fCO2 AFR

Although PDL lasers decrease pruritus, hypertrophy and ery-
thema, advances in the development of fractional resurfacing
lasers have added enhanced rehabilitation. Some believe they
may decrease scar excision entirely, adding the additional ben-
efit of decreased donor site morbidity [10]. AFR lasers reduce
scar burden size and restore collagen architecture to a more
organized array by vaporizing scars in grid structure patterns
[12]. Combining AFR resurfacing with reconstructive surgical
procedures has become an efficacious treatment modality
[6]. AFR can manage symptoms and reduce the amount of
surgical procedures. However, it does not replace the need
for surgical scar release once mature scarring has formed.
They have been found to reduce postoperative morbidity and
improve overall outcomes [6]. The PDL mechanism works
best to reduce vascularity, erythema, tenderness and pruritus
for immature newer scars. PDL enhances and complements
reconstructive procedures by minimizing tension and reduc-
ing scar thickness. Alternatively, the fCO2 or AFR laser mech-
anism serves to increase dermis pliability, improve abnormal
texture, reduce thickness and rehabilitate mature older scars.
Both mechanisms can be combined to synergistically treat
hypertrophic burn scars [33–36].

Optimal timing for laser therapy

It was once thought that lasers should be used only after
the scar had reached full maturation. Recent data suggest
early initiation with a vascular device, NAFR, or AFR in
the months following burn or surgical injury may decrease
symptoms, decrease contractures, and increase mobility, to
improve the overall rehabilitation process [10,37]. The best
timing to initiate laser therapy is still unclear. Most strategies
have depended on scar maturation characteristics. This takes
into consideration the patient’s age, skin type, type of scar
and comorbidities. Treatments can be divided into 1–9 treat-
ments ranging from 4 weeks to 3 months between treatment
intervals [6,36]. Following surgical excision, PDL, NAFR and
AFR lasers have been used on the day of suture removal
or weeks following suture removal with safe and effective
results in preventing scar reformation [38–40]. Karmisholt
et al. used a NAFR laser 1 day prior to surgery and during
the early phase of wound healing. There were detectable
improvements between those receiving the intervention from
those not receiving lasers with scar formation. The authors
concluded that early laser treatment has the potential to
minimize scar formation with full-thickness wounds [41].
Initiating laser and light therapy as early as possible following
surgical excision when sutures are first removed is reasonable
to reduce recurrent scar formation [2].

Settings

We use the Syneron Candela PDL machine at the Johns
Hopkins Burn Center. PDL utilizes a wavelength of 595 nm
and we prefer a pulse width of 1.5 ms for most patients.
Depending on the amount of skin pigmentation, the energy
fluence or number of particles is adjusted to prevent skin
trauma. Patients with Fitzpatrick I and II skin types are
administered a fluence of 6 J/cm2, Fitzpatrick III and IV skin
types are administered a fluence of 5 J/cm2 and Fitzpatrick
V and VI skin types are administered a fluence of 4 J/cm2.
The spot size is standardized to a diameter of 10 mm, with
20–30% overlap to ensure complete coverage. Each pulse of
PDL is followed by sprayed cryogen to cool the targeted area,
within 20–30 ms. The total surface area and number of pulses
are measured and recorded for each patient.

The UltraPulse® Lumenis is an fCO2 AFR machine with
three hand-piece options, ActiveFXTM, DeepFXTM and
SCAAR FXTM. ActiveFXTM has the lowest energy and
highest density. SCAAR FXTM has the highest energy and
lowest density. We prefer DeepFXTM because there is a
balance between energy and density. DeepFXTM is started
at an energy level of 30 mJ per beam, a density of 5% and a
cycle time of 300 Hz, resulting in depth of penetration of 0.5–
1.5 mm. For safety, the energy level is started low at 30 mJ and
titrated up to 50 mJ. It is important that the 50 mJ energy level
is not exceeded. The noncollimated beam spot size is stan-
dardized to cover a diameter of 0.12 mm. If the skin blisters
during application, the energy level should be reduced. For
thicker scars, SCAAR FXTM may be used for deeper scar pen-
etration. SCAAR FXTM is started at 60 mJ and 3% density



4 Burns & Trauma, 2020, Vol. 8, tkz002

Figure 1. Case 1, a 4-year-old boy sustained superficial partial thickness scald burns to his right buttock and thigh, before treatment (a), and after treatment (b)

and titrated to a maximum energy of 90 mJ and 1% density.
The beams cover a square size of 10 mm × 10 mm or 1 cm2.
The pattern should appear as a contiguous square grid with
no overlap, unlike PDL. If the skin is charred, the char should
be left in place, not removed. After fCO2 AFR, we apply
topical triamcinolone over the treated areas as a method of
laser-assisted drug delivery, to a maximum dose of 80 mg, or
1 mg/kg. Full-field CO2 is absolutely contraindicated in the
treatment of burn scars because it results in a secondary burn
injury that cannot re-epithelialize, except from the periphery.

Perioperative considerations

The patient’s age, scar characteristics, psychiatric conditions,
neuropathic pain, chronic pain medications and views on
pain and procedures should be considered. This will often
determine the level of pain management and the need for
either topical anesthesia or sedation under full anesthesia
[6]. The PDL has the benefit of not requiring anesthesia;
however, the target area must be cooled following treatment
to prevent epidermal damage and new scar formation.
Immature hypertrophic scars have reduced skin stability
when compared to normal skin. Special caution should
be taken to minimize damage to immature hypertrophic
scars [42]. Lasers are usually well tolerated for treating
hypertrophic scars. The most common postoperative findings
following laser treatments are erythema, edema, bleeding,
serous drainage and skin exfoliation lasting up to several
days. It is important to choose the appropriate laser setting
based on the target location of the body and Fitzpatrick
skin type. A more conservative approach can minimize laser-
induced damage. Laser light is transferred into heat and can
cause burns if set at too high a level. Scars may also become

worse if the setting is too high. It is important that only
specialists with experience in treating hypertrophic burn scars
and using lasers perform these procedures [6].

Fractional and nonfractional ablative lasers can also be
used synergistically as a method of delivering medications
into scar tissue [43–45]. Intralesional injections of corticos-
teroids and 5-fluorouracil (5-FU) may result in the accu-
mulation of the medication in one location of the scar. If
laser therapy is performed prior to applying topical corticos-
teroids or 5-FU, the uniform vaporized tissue columns allow
application of an even distribution of the medications and
increase the bioavailability at the scar site [46–48]. This also
allows for the administration of lower doses of medications to
prevent unwanted adverse effects [49]. Most laser procedures
are complimented with topical medications as part of care
[30,43,50].

A prospective study by Waibel et al. evaluated the efficacy
of fCO2 laser therapy with either applying a topical corticos-
teroid or 5-FU. Topical medications were applied directly over
the treated area with equal efficacy on reducing scar size and
recurrence. However, patients treated with 5-FU had signifi-
cantly less dermal atrophy and telangiectasia adverse effects
compared to corticosteroids [45]. This evidence may support
using topical 5-FU with AFR lasers prior to corticosteroids.

Immediately after treatment, a petrolatum-based ointment
should be applied several times daily until the site is
completely epithelialized. This takes approximately 2–3 days.
Once epithelialization has taken place, a daily moisturizer
should be applied for a week, containing sunscreen [6]. A
day following the procedure, patients may shower and gently
clean the area. Some physicians recommend applying vinegar-
based compresses to the affected area. Pain is often minimal
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Figure 2. Case 2, an 8-year-old boy sustained deep partial thickness contact

burns to his right forearm

following laser treatment, lasting 1–2 days. Pruritus can last
from days to weeks. Infection is uncommon, reported in < 1%
of cases [10,37]. Preoperative antibiotics should be avoided
unless the patient has a specific indication. Patients with a
history of frequent perioral herpes infections should receive
antiviral prophylaxis for head and neck laser procedures. In
patients with higher Fitzpatrick skin types or more skin pig-
mentation, transient postinflammatory hyperpigmentation
can occur from greater responses in melanin and fibroblasts
[6,51,52]. Decreasing the fluence for higher Fitzpatrick skin
types helps to minimize damage with PDL. Normal activity
may begin following treatment. Patients should be educated
to avoid exposing the area to high-intensity light early during
the postoperative period. Sun protection with sun-blocking
agents and compression garments can be applied after 2–
3 days once the epithelial layer is restored [6]. Sunscreen
should be continued indefinitely, to prevent long-term
ultraviolet (UV) damage and permanent hyperpigmentation
changes.

Recurrence remains a problem with pathological keloid
and hypertrophic burn scars. Inflicting trauma to the skin
has the potential to reinitiate the pathological process of
scar formation, especially for keloid scars. Following AFR
CO2 laser therapy, scar recurrence has been reported as early
as 2 weeks and up to 3 years [53,54]. Following Er:YAG
laser therapy, scar recurrence has been reported in 22% of
scars at 8 months [43]. Following IPL Nd:YAG laser therapy,
scar recurrence has been reported from 25% to 52.9% at
6 months, depending on the anatomical location of the scar
[55]. Limitations in all studies relate to the lack of long-term
follow-up beyond 12 months. Although these studies primar-
ily evaluated keloid scars, recurrences have been reported
following hypertrophic burn scars [25]. Long-term studies are
needed for determining proper follow-up intervals.

Case experience

The following cases outline our experience treating hyper-
trophic burn scars using different combinations of lasers.
Combining PDL and fCO2 lasers either concurrently or
sequentially can synergistically increase the efficacy of

treatment. Determining what laser to use depends on the
characteristics of each individual scar.

Case 1 A 4-year-old boy sustained superficial partial thick-
ness scald burns to his right buttock and thigh (Fig. 1). He
was treated with debridement and xenografting, followed by
autografting. Early hypervascular scars developed at the right
buttock and thigh (Fig. 1a). The early hypervascular scars
were first treated using PDL for 2 sessions. Upon follow-
up, PDL was switched to fCO2 for 3 sessions due to scar
maturation. Combining both PDL and fCO2 lasers resulted
in successful scar treatment as the scar characteristics evolved
over time (Fig. 1b).

Case 2 An 8-year-old boy sustained deep partial thickness
contact burns to his right forearm. He was treated with tan-
gential excision and meshed autologous skin grafting (Fig. 2).
Moderate hypertrophic scars developed at the location of the
meshed graft. The early scar was treated with PDL for 4
treatment sessions. Following PDL sessions, the mature scar
was successfully treated with fCO2 for 2 treatment sessions.

Case 3 A 15-year-old girl sustained deep partial thickness
grease burns to her lower extremities (Figure 3). Burns were
more extensive at the location of the left leg. She was treated
with tangential excision and split thickness skin grafting
(Fig. 3a). Hyperemic scars developed on both lower extremi-
ties, which were successfully treated with PDL for 3 treatment
sessions to the central portion of the scars and fCO2 for 3
treatment sessions to the periphery of the scars (Fig. 3b). Both
PDL and fCO2 treatments were performed concurrently.

Case 4 A 36-year-old female cardiac ICU nurse sustained
deep partial burns to her head and neck from a house fire.
The burned areas were allowed to heal by secondary re-
epithelialization (Fig. 4). Hyperemic scars developed in areas
of the face. She underwent PDL for 4 treatment sessions. This
was followed by fCO2 for 4 treatment sessions to improve the
remaining scar thickness and stiffness. Successful treatment
was achieved by tailoring different laser therapies to scar
characteristics (Fig. 5).

Conclusions

Laser and light therapies offer a minimally invasive, low-risk
approach to treatment, with a short postoperative recovery
period. As laser technology developed, studies have shown
decreased scar thickness, neuropathic pain and need for
surgical excision, as well as improved scar pigmentation,
erythema, pliability, texture, height and pruritus. In this
review, we presented the evolution of laser therapy for
hypertrophic burn scars, how different types of lasers work,
indications, perioperative considerations and guidelines for
practice management.
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Figure 3. Case 3, a 15-year-old girl sustained deep partial thickness grease burns to her lower extremities, before treatment (a), after treatment (b)

Figure 4. Case 4, a 36-year-old female sustained deep partial burns to her head and neck from a house fire. Oblique view (a) and lateral view (b) before treatment
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Figure 5. Case 4, a 36-year-old female sustained deep partial burns to her head and neck from a house fire. Oblique view (a) and lateral view (b) after treatment
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