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Abstract

Independent component analysis (ICA) is widely used in the field of functional neuroimaging

to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has

found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of

large-scale data sets have become publicly available that consist of rs-fMRI scans from

thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased

number of subjects are required. To address this problem, we propose a two-stage likeli-

hood-based algorithm for performing group ICA, which we denote Parallel Group Indepen-

dent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and

parallel computing techniques, we are able to efficiently analyze data sets from large num-

bers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and

is freely available through the Comprehensive R Archive Network, through simulation stud-

ies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301

and 779 subjects respectively.

1 Introduction

Independent component analysis (ICA) is a blind source separation technique [1] that assumes

the observed signals are linear mixings of independent underlying sources. A framework for

using ICA to make group inferences from functional Magnetic Resonance Imaging (fMRI)

data was first introduced by [2]. A major methodological contribution of this work was the cir-

cumvention of the permutation ambiguity of ICA by eliminating the requirement to match

components across subjects. Since its introduction, ICA has become an extremely popular

approach to analyzing fMRI data, as it does not require the a priori definition of a hemody-

namic response function or seed regions of interest and is able to capture both spatial and tem-

poral inter-subject variability [3–7]. Several algorithms have been developed to estimate

parameters in ICA [8, 9], but most existing algorithms require data to be concatenated across

PLOS ONE | DOI:10.1371/journal.pone.0173496 March 9, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Chen S, Huang L, Qiu H, Nebel MB,

Mostofsky SH, Pekar JJ, et al. (2017) Parallel

group independent component analysis for

massive fMRI data sets. PLoS ONE 12(3):

e0173496. doi:10.1371/journal.pone.0173496

Editor: Satoru Hayasaka, University of Texas at

Austin, UNITED STATES

Received: September 6, 2016

Accepted: February 21, 2017

Published: March 9, 2017

Copyright: © 2017 Chen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files are

available from the 1000 functional connectome

database (https://www.nitrc.org/projects/fcon_

1000/).

Funding: This work was supported by NIH grant

RO1 EB012547 from the National Institute of

Biomedical Imaging And Bioengineering (BC); NIH

grant RO1 NS060910 from the National Institute of

Neurological Disorders and Stroke (BC); and NIH

grant P41 EB015909 from the National Institute of

Biomedical Imaging And Bioengineering (BC). The

funders had no role in study design, data collection

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173496&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173496&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173496&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173496&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173496&domain=pdf&date_stamp=2017-03-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173496&domain=pdf&date_stamp=2017-03-09
http://creativecommons.org/licenses/by/4.0/
https://www.nitrc.org/projects/fcon_1000/
https://www.nitrc.org/projects/fcon_1000/


subjects and then reduced via principal component analysis to a set of spatial eigenvectors rep-

resentative of the group. A single run of ICA is then performed on these group-level principal

components after which subject-specific spatial maps (SMs) and time courses (TCs) are esti-

mated using various back-projection techniques. At the group-level ICA step, different ICA

algorithms such as Infomax and FastICA can be used to estimate group-level ICs. Infomax is

the default setting in the widely used Group ICA toolbox (GIFT) toolbox due to its reliability

[10]. Following the estimation of group-level ICs, a wide variety of methods can be used to

then reconstruct subject-specific independent components, such as GICA 1, GICA 2, GICA 3,

dual regression and Group Information Guided ICA (GIG-ICA). Both dual regression and

GIG-ICA have great scalability [5–7]. However, concerns have recently been raised about the

scalability of the (first step) group-level ICA methods [11]. With the neuroscience community

taking cues from the the crowdsourcing model of labor and encouraging the public distribu-

tion of large collections of data including thousands of subjects collected at multiple sites, the

development of algorithms for analyzing such high dimensional data is imperative.

A common starting point for most group ICA approaches is the principal component anal-

ysis (PCA), or the singular value decomposition (SVD). While the PCA/SVD is a means for

avoiding the estimation of an overdetermined system, it is also the means for throwing away

massive amounts of data through repeated application [11]. Scalable PCA/SVD algorithms are

required to handle large data efficiently in group ICA. Multiple efficient methods have been

proposed, such as the block-lanczos [12], Multi power iteration (MPOWIT) [13], small mem-

ory iterated group PCA (SMIG) and MELODIC’s incremental group PCA (MIGP) [11]. There

are also three data reduction methods which can be used to obtain an approximate PCA sub-

space efficiently in GIFT [10].

A notable exception is the work by [14], which does not require repeated SVD steps to be

scalable. Gaussian distributional assumptions can provide little insight to further explore the

data, and we are motivated to search for components that are as non-Gaussian as possible. The

densities of the underlying components in the algorithm proposed by [14] are approximated

with finite mixtures of smooth densities, while the time courses for each subject are updated

using a gradient-based optimization algorithm. A Quasi-Newton algorithm is used for optimi-

zation to estimate the parameters in the mixing matrix.

In this paper, we propose a more direct solution to the scalability issue described by [11] by

building upon the two-stage likelihood-based algorithm proposed by [14] and use parallel

computing techniques to improve algorithmic performance for large groups of observations.

The algorithm proposed by [14], is scalable, but performs calculations serially. We decompose

the problem into computationally unrelated tasks and then distribute them over a parallel

computing system. The proposed Parallel Group Independent Component Analysis (PGICA)

is different from fastICA and JADE in that the algorithm is likelihood-based and uses maxi-

mum likelihood estimation (MLE) for parameter estimation. Compared to the ML implemen-

tation of ICA by [15], PGICA does not require a highly restricted likelihood. Instead, flexible

mixtures of Gaussian densities are used to approximate the densities of the underlying compo-

nents. Another advantage of PGICA is its ability to analyze massive data. Current group ICA

algorithms have limited power for scaling to analyze large data sets, especially in the field of

resting state fMRI analysis because they require data to first be concatenated across subjects

and reduced via PCA prior to estimation of group-level independent components. The current

standard is thus to throw away massive amounts of data with repeated applications of the SVD

[11]. PGICA can handle hundreds to thousands of subjects simultaneously with the help of

parallel computing. Many parallel programming environments exist that provide basic tools,

language features and application programming interfaces (APIs) needed to construct a paral-

lel program. Widely used environments include: OpenMP (thread-level parallelization), MPI
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(cluster-level) and CUDA / OpenCL (GPGPU-level). The RSGE package in the R software pro-

vides an interface to perform cluster-level parallel programming on Sun Grid Engines (SGE)

[16] and the SNOW package can be used for thread-level parallel computing [17]. In newer

versions of R (�2.14.0), the package parallel is included in its core, which provides drop-in

replacements for most of the functionalities of snow. The R package we built for this work is

based on package parallel. At the end, we illustrate the performance of PGICA by applying it

to rs-fMRI data from two large multi-subject data sets. The first is a collection of 301 adults,

while the second is a set of 779 fMRI scans, consisting of 379 with autism spectrum disorder

(ASD) and 400 typically developing controls.

2 Materials and methods

2.1 The ICA model

A general term that indexes a broad class of models, ICA has several algorithmic implementa-

tions and theoretical foundations, but the linear factor analytic model with the assumption of

independent underlying factors is the primary commonality of all ICA algorithms [18]. In this

paper, we focus on noise-free ICA, a version of ICA which only requires an “unmixing” of the

input data matrix. (Thus, the noise in the data is absorbed into the estimated independent

components.)

Suppose that for each subject i, i = 1, . . ., I, a T ×V dimensional matrix is observed. In the

neuroimaging context, the rows represent time points and the columns represent voxels. Let

Xi(t, v) represent row t, column v of Xi. (The same notational convention applies to other vec-

tors and matrices.) The noise-free group ICA decomposition model can be expressed as follows.

Xiðt; vÞ ¼
XQ

q¼1

Aiðt; qÞSðq; vÞ; ð1Þ

for i = 1, . . ., I. This model assumes that the spatio-temporal process, Xi(t, v), for each subject, i,
can be decomposed into a finite sum of products between subject-specific time series, Ai(t, q),
and subject-independent spatial maps, S(q, v). Let X ¼ ½XT

1
:::XT

I �
T

and A ¼ ½AT
1
:::AT

I �
T

be the

IT ×V and IT ×Qmatrices obtained by stacking the Xi and Ai respectively, then the above

model is equivalent to X = AS. In the fMRI context, one often interprets S(q, �) as brain net-

works and Ai as subject specific temporal mixing matrices [2].

As a technical consideration, Eq (1) maybe overdetermined. So we first preprocess the data

at subject level via an singular value decomposition (SVD) on the observed matrices and retains

only the firstQ components for each subject. This first-step dimension reduction on the tempo-

ral domain via SVD is unavoidable. After the first-step dimension reduction, the new T is gener-

ally a lot smaller than the original number of scans. Henceforth, we assume that the time points

after dimension reduction is equal to the number of components to estimate, i.e. T =Q. The

data are whitened before PGICA is applied, so the square matrices Ai are orthogonal and one

can define their inverses as Wi ¼ A� 1

i and the densities of the underlying components as f1, . . .,

fQ. Thus, for a given q, fSðq; vÞgVv¼1
can be considered as V iid draws from fq.

2.2 Parameter estimation

The likelihood of the above model can be written as

LðW; fÞ ¼
YI

i¼1

YV

v¼1

YQ

q¼1

fq
XQ

l¼1

wiqlxilv

 !

jdetðWiÞj; ð2Þ

Parallel group independent component analysis for massive fMRI data sets

PLOS ONE | DOI:10.1371/journal.pone.0173496 March 9, 2017 3 / 17



If the fq were known, any optimization algorithm could be used to obtain the maximum likeli-

hood estimation (MLE) of Wi. However, since the densities of the underlying components are

unknown, an iterative algorithm must be implemented that alternates between density estima-

tion and estimation of the Wi. This manuscript uses mixture density estimates (MDE) intro-

duced by [19]. Specifically, we parameterize the densities as:

fqðsÞ ¼
XJq

j¼1

yqj
1

sq
�
s � mqj

sq

 !

; ð3Þ

where ϕ(�) is the standard normal density function. The number of densities in the mixture

Jq ¼ 1þ b2
3

RangevfSðq; vÞgc is chosen empirically. Note that although this Jq performs well in

practice, there are other summary statistics (such as percentiles) that are more robust to the

skewed distribution of S(q, v), which should be tried in later versions of the algorithm. Simi-

larly, mqj ¼ minvSðq; vÞ þ
j� 1

Jq � 1
RangevfSðq; vÞg for j = 1, � � �, Jq. The underlying rationale behind

this is to set the means μqj as an equally spaced grid between the extremes of the data so that

the distance between the means decreases as Jq increases and to set s2
q such that σq decreases as

Jq increases. Denote MJq
¼ fmq1 < ::: < mqJqg. The value of Jq is allowed to vary in different

iterations; as Jq increases, the set MJqþ1 is constructed by adding the median of one of the

intervals [μq,j, μq,j−1]. More details on the choice of the mean sequence and the variance are

presented by [19].

Since the underlying independent components are the same for all subjects, the length of

the vector S(q, �) depends only on the number of non-background voxels. In most fMRI stud-

ies S(q, �) has a large sample size (�70,000 voxels for example), hence nonparametric estima-

tion of the density can be problematic. To address this issue, [14] proposed a binning

algorithm for the density estimation, essentially looking at the approximation to the histogram

of the data. With this binning procedure, the weights of the mixture densities in Eq (3) given

by (θq1, . . ., θqJq) are estimated using a constrained EM algorithm. The resulting density esti-

mates satisfy the moment constraints required for full identifiability of the model by E[S(q, �)]
= 0, E[S(q, �)2] = 1, 0< E[S(1, �)3]< . . .< E[S(Q, �)3], for q = 1, � � �, Q. Given the density esti-

mation above as f̂ 1; � � � ; f̂ Q, the log likelihood function of matrix W can be constructed as

LðW; f̂ Þ ¼
XI

i¼1

XV

v¼1

XQ

q¼1

f̂ q
XQ

l¼1

wiqlxilv

 !" #

þ VlogjdetWij

( )

; ð4Þ

where f̂ qðsÞ ¼
PJq

j¼1

ŷqj
1

sq
�

s� mqj
sq

� �
: The maximum of Eq (4) can be found by Quasi-Newton algo-

rithm. The algorithm proceeds by iterating between the estimation of f̂ and W until conver-

gence. The complete algorithm pseudo code for fitting PGICA is given below and the work

flow of PGICA is shown in Fig 1.

PGICA

For each iterationM

1. Let SðMÞi ¼WðM � 1Þ
i Xi, for each i = 1, . . ., I.

2. For each Independent Component q construct the set of midpointsMq1, . . .,Mqp. of the

bins and the corresponding counts cq1, cq2, . . ., cqp.

Parallel group independent component analysis for massive fMRI data sets
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3. For each q = 1, . . ., Q, construct the set of means MJ ðMÞq
�MJqðM � 1Þ and the variance com-

ponent σq.

4. Estimate ðy
ðMÞ
q1 ; : . . . y

ðMÞ
qJ ðMÞq
Þ using MDE.

5. For each i = 1, . . ., I, compute the gradient L0ðcWi
ðMÞÞ and hessian matrix L00ðcWi

ðMÞÞ in

parallel.

6. For each i = 1, . . ., I, update the unmixing matrix

cWi
ðMþ1Þ ¼ cWi

M � L00ðcWi
ðMÞÞ

� 1L0ðcWi
ðMÞÞ.

7. d ¼ max jcWi
ðMþ1Þ � cWi

M j: If d > � return to step 1.

In each iteration, the average of all Simatrices are taken as S to estimate source density

function. In this algorithm, Step 5 is the most time-consuming. Fortunately, the structure of

the likelihood in Eq (4) makes it possible to simplify computations. Note that the likelihood is

a product of the likelihoods of multiple subjects. Thus after taking logs, the gradients for differ-

entWi s do not depend on each other. As a consequence, one can calculate the gradients and

Hessians in parallel. According to Amdahl’s law [20], the theoretical speedup obtainable using

parallelization is speedup ¼ 1
P
NþS

, where P is the parallel proportion of the computations, S is

serial proportion of the computations and N is the number of processors. Here P and S differ

when the sizes of input data differ. The parallel proportion increases with the number of sub-

jects. It encompasses more than 90% of the theoretical time for 300 or more subjects. Of

course, the practical speedup will not be exactly the same as the theoretical one due to many

factors such as messages passing overhead; see Section 5 for more information.

3 Simulation set-ups and data description

3.1 Simulation set-ups

To demonstrate the validity of the proposed method and compare the accuracy of the parame-

ter estimates with the commonly used fastICA algorithm we considered simulated data using

two different simulation scenarios. We considered various shapes in the underlying indepen-

dent components to estimate the accuracy of prediction of the brain networks in the imaging

context. The first four shapes shown in Fig 2 are used in the first scenario, while all 8 underly-

ing signals are used for the second simulation. The fastICA method [21] is used as a compari-

son. The mixing matrices for each subject are predefined in each simulation example. The

Fig 1. The work flow of PGICA. PCA is first applied to each subject for dimension reduction, then the

dimension-reduced matrices are stacked together and PGICA is applied; as a comparison, a second

dimension reduction step is usually required by fastICA algorithm. PGICA can potentially be used in

combination with any of the existing back reconstruction methods such as dual regression and GIG-ICA.

doi:10.1371/journal.pone.0173496.g001
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underlying sources are generated for 100 simulation runs as described below. The observed

matrices for each subject are then computed and fastICA and PGICA are used to estimate the

mixing matrices for each subject and the underlying sources. Finally, the correlations of each

component with the true underlying sources are calculated. Ideally, these correlations should

be equal to 1 if the networks are perfectly estimated. For each example, we averaged the corre-

lations for all the underlying components for each of the simulation runs and presented the

boxplots of logarithms of the correlations for better visualization for each method in each sim-

ulation scenario to compare the results. The goal of the simulation studies is to compare the

parameter estimates in high dimensional settings and demonstrate the performance of the pro-

posed method in estimating the parameters. The real data examples show the power of the pro-

posed method to perform group ICA in settings where other algorithms would fail because of

the dimensionality of the data.

Simulation 1: Suppose there are 4 subjects and 4 underlying sources, i.e. I = 4 and Q = 4.

Only 4 subjects are included in this simulation study so that all model generating parameters

can be included in the paper for reproducibility. The data are generated from the group ICA

model Xi = AiS, with T = Q = 4 and V = 2500 where the independent components are the first

4 signals in Fig 2. The four mixing matrices are defined as follows.

A1 ¼

2 1 2 3

3 3 1 :5

1 2 2 4

4 3 2 1

0

B
B
B
B
@

1

C
C
C
C
A
; A2 ¼

2 3 2 1

3 4 1 :5

3 2 3 4

2 3 3 1

0

B
B
B
B
@

1

C
C
C
C
A

A3 ¼

1 2 2 1

3 4 1 :5

3 � 1 3 4

2 1 3 1

0

B
B
B
B
@

1

C
C
C
C
A
; A4 ¼

3 2 2 � 1

3 3 2 1

3 1 1 4

1 1 4 :5

0

B
B
B
B
@

1

C
C
C
C
A
:

Fig 2. True signals for the simulation examples. Each component is a two dimensional array where the

pixels in a square have higher intensities than the rest of the array. A random noise is added to each of the

components at all pixels.

doi:10.1371/journal.pone.0173496.g002
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Simulation 2: In this example, we assume that the number of subjects is 50 while the num-

ber of underlying components is 8, I = 50, Q = 8. The data are, again, generated from the

group ICA model Xi = AiS, with T = Q = 8 and V = 2500 where the independent components

are the signals in Fig 2. Here, the components #4 and #6 were generated such that the “acti-

vated” regions in the two components are spatially overlapping, while the signals are still statis-

tically independent.

The above simplified simulations demonstrate the estimation accuracy of PGICA algorithm

compared with other commonly used estimation methods. In a more complex simulation

experiment we simulate the variability of individual components and additional noises to

examine the robustness of the algorithm. The SimTB toolbox in MATLAB is a very convenient

tool for such analysis. Simulation 3 is performed using SimTB to test the algorithm’s perfor-

mance with different individual components and noise vectors.

Simulation 3: In this simulation, N = 30 experiments were performed. In each experiment,

three methods (fastICA, InfoMax ICA and PGICA) are applied to analyze the simulation data.

The accuracies of estimated independent components from all three methods are compared

using a paired t-test. The simulation data for each experiment is generated with the SimTB

toolbox. The simulation configurations are: in each experiment, nC = 10 components are ran-

domly chosen from the 30 available sources;M = 5 subjects; nV × nV = 2500 voxels; nT = 100

time points; a Rician noise is always added. The same accuracy measure is used as in the above

two simulations. A map of the 30 underlying sources are shown in Fig 3. Once again, some of

the sources were designed to spatially overlap while their signals are still statistically

independent.

Fig 3. Map of available source in simulation 3.

doi:10.1371/journal.pone.0173496.g003
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3.2 1,000 functional connectomes project data

First, PGICA was applied to data from the 1,000 Functional Connectomes Project, which con-

sists of thousands of resting state scans combined across multiple sites with the goal of facilitat-

ing discovery and analysis of brain networks [22]. The quality and scanning parameters vary

across sites. Thus, we focus on data from two sites that each provided a large number of scans:

Cambridge and Oulu. We include 301 subjects in the analyses presented below, 198 are from

Cambridge and 103 from Oulu. As discussed above, directly applying currently used group

ICA methods to data of this size is computationally infeasible for regular computers due to

limitations of memory and running time. As such, it provides an important test case for

PGICA.

Scanning parameters used to acquire the data from each site are detailed elsewhere (for

complete information see http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html). Each

subject’s data consisted of either 119 time points collected every 3 s or 245 time points col-

lected every 1.8 s. Note that even though the number of time points varies across subjects, the

algorithm can still be applied, as the first PCA step reduces the dimensions of each dataset to

be the same. However, the variance related consequences of including data with varying scan

lengths and sampling frequencies remain an open topic. All scans were collected using a 3T

scanner. The data were preprocessed using the processing scripts available on the NITRC web-

site (www.nitrc.org/projects/fcon_1000/). Anatomical images were de-obliqued, reoriented,

and skull stripped, while the functional scans were de-obliqued, reoriented, motion corrected,

skull stripped, grand mean scaled, temporal bandpass filtered, and de-trended (linear and qua-

dratic). Functional scans were registered to anatomical scans using FLIRT in FSL [23]. The

structural scans were registered to the Montreal Neurological Institute (MNI) space using

FLIRT and the transformation was subsequently applied to the functional scans. A mask based

on the MNI template is used to separate the background of the images. For each time point,

the 3D array is vectorized to obtain a V dimensional vector of intensities that are then

concatenated over time. Hence we obtain a T × V dimensional matrix Xi for each subject. PCA

is applied to each matrix and reduces the temporal dimension T to Q = 20. PGICA is then

applied to these Xi matrices.

3.3 Autism brain imaging data exchange

Next, PGICA was applied to data from the Autism Brain Imaging Data Exchange (ABIDE)

consortium, a collaboration between 17 imaging centers to openly share existing resting state

fMRI scans with corresponding structural MRI and phenotypic information. In total, the data-

base consists of 539 individuals with autism spectrum disorder (ASD) and 573 age-matched

typical controls [24]. Site-specific protocols for recruitment and image acquisition are available

online (http://fcon_1000.projects.nitrc.org/indi/abide); in short, 5 to 10 minutes of rs-fMRI

data collected using repetition times (TR) between 1.5 s and 3 s were shared for each subject.

The first 10 s of each resting state scan were ignored to allow for magnetization stabilization.

Resting state scans were then slice-time adjusted using the slice acquired in the middle of the

TR, and rigid body realignment parameters were estimated with respect to the first (stabilized)

functional volume. An iterative process previously described by [25] was used to coregister

and normalize the structural and functional images to MNI space. Each resting state scan was

then temporally detrended on a voxel-wise basis and spatially smoothed (2-mm FWHM

Gaussian kernel). Finally, each resting state scan was downsampled by randomly sampling

67,749 of the 229,263 non-background voxels to reduce computation demands. Downsam-

pling the voxels is only performed to estimate starting values of the parameters for

Parallel group independent component analysis for massive fMRI data sets
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initialization of the algorithm, but is not necessary for the algorithm itself. The FSL package

was used to smooth the original NIFTI images [23].

As opposed to the first application presented in this paper, we found that a much larger sub-

set of the data can be used for simultaneous analysis due to the data quality and consistency

across the sites. Because they made up a low percentage of the total number of subjects

(*10%), girls were excluded from the analysis. Age was restricted to individuals between 6

and 40 years old. Individuals with framewise displacement more than two standard deviations

away from the mean were also excluded from the analysis. The data collected at the Kennedy

Krieger site was also excluded from the analysis for comparison of the results in future studies.

As a result, scans for 779 subjects are analyzed in this application, 400 typical controls, 379

individuals with ASD. The histograms of age, the intelligence quotient (IQ), and the social

responsiveness scores (SRS) are shown in Fig 4.

4 Results

4.1 Simulation result

Simulation 1 Result: The boxplots of the average correlations across four independent compo-

nents for each of the 100 simulation runs are shown in Fig 5 while the summary statistics of

the estimated correlations are presented in Table 1. The two methods perform similarly to

each other with PGICA performing marginally better than fastICA.

Simulation 2 Result: The results of the 100 simulation examples shown in Fig 5 and Table 1

demonstrate that the correlations of the estimated components with the true underlying sig-

nals using the proposed PGICA method are significantly better than those estimated using the

conventional fastICA algorithm.

Simulation 3 Result: The comparison of three ICA algorithm is summarized in Table 2. A

paired t-test was used to compare the performance of PGICA and InfoMax, the difference is

0.01 with a p-value of 1.6e−6. Similarly, comparison between PGICA and fastICA has

Fig 4. Histograms of age (left), IQ (middle), and SRS (right) for participants in ABIDE plotted and colored by

disease diagnosis and overlaid, where blue corresponds to typically developed (TD) controls and red

corresponds to ASD individuals.

doi:10.1371/journal.pone.0173496.g004
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difference of 0.01 and p-value of 1.8e−6. This simulation shows that PGICA gives more accu-

rate estimation accuracies with varying underlying sources and noises. The improvement in

accuracy when using PGICA is small relative to both Infomax and fastICA, but statistically

significant.

4.2 1,000 functional connectomes project result

Following the design of group ICA analysis described by [22], group ICA was used to obtain

Q = 20 components for the 301 subjects in the 1,000 Functional Connectomes Project Dataset.

Fig 6 shows axial, sagittal, and frontal planes of four of the estimated networks by PGICA:

auditory, control, default mode, and visual. The estimated networks are thresholded at (5%)

and the map is overlaid on a grayscale template MNI image. The networks shown in this exam-

ple were identified visually as a proof of concept exercise. 10 out of the 20 networks are

Fig 5. Boxplots (for both fastICA and PGICA) of the average correlations (log-transformed) of the true

signals with the estimated signals from simulation 1 on the left and simulation 2 on the right.

doi:10.1371/journal.pone.0173496.g005

Table 1. Summary measures of the correlations in the two simulation examples.

min 1st quantile median 3rd quantile max

Sim 1 fastICA 0.9953 0.9977 0.9981 0.9985 0.9992

PGICA 0.9944 0.9985 0.9990 0.9992 0.9998

Sim 2 fastICA 0.9243 0.9895 0.9924 0.9938 0.9960

PGICA 0.9359 0.9952 0.9966 0.9972 0.9984

doi:10.1371/journal.pone.0173496.t001

Table 2. Compare fastICA/InfoMax ICA/PGICA accuracies.

min 1st quantile median mean 3rd quantile max

fastICA 0.5713 0.7378 0.7809 0.7901 0.8761 0.9802

InfoMax 0.5699 0.7387 0.7814 0.7903 0.8764 0.9802

PGICA 0.5730 0.7474 0.8003 0.8008 0.8879 0.9840

doi:10.1371/journal.pone.0173496.t002
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identified as noise-related. The estimated networks have clear edges and less noise in the areas

that are not a part of the networks showing the importance of estimating the networks using

larger datasets. Fig 7 shows three dimensional renderings of the same networks shown in Fig 6

colored in red and overlaid on an opaque template image confirming that the estimated net-

works are more noise-free.

The increase in speed when using PGICA as compared to non-parallel version of the algo-

rithm called HDICA (high dimensional ICA) as the number of subjects increases is shown in

Table 3. The memory usage of HDICA increases linearly with the number of subjects (memory

usage = number of subjects × single subject), while the memory usage of PGICA remains con-

stant as the number of subjects increases (memory usage = single subject). For PGICA, each

Fig 6. Axial, sagittal, and frontal (left to right) planes of the auditory, control, default mode and visual

networks (from top) estimated using 301 fMRI scans from the 1,000 Functional Connectomes Project

dataset. The thresholded maps are overlaid on a greyscale MNI template brain. The 90th slice is shown from

the MNI template in each of the plots. The colors correspond to the intensities in the estimated brain networks

where white: high intensity to red: low intensities.

doi:10.1371/journal.pone.0173496.g006
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slave computer only calculates the gradient and Hessian for a single subject, as long as we have

enough slave computers. In practice, total memory usage is several times higher than just the

input data. Thus memory usage of HDICA quickly goes beyond the ability of even super com-

puters, making it incapable of dealing with large groups of observations.

In this example, 15 computing clusters were used for estimation using the PGICA on a Sun

Grid Engine (SGE). All computations are performed on clusters with the same or very similar

hardware properties such as speed and age.

4.3 Autism brain imaging data exchange result

Similar to the data analysis performed for the 1000 FCP data in Section 4.2, we estimated

Q = 20 components using the fMRI scans for 779 participants in the ABIDE sample. We used

Fig 7. 3D view of auditory, control, default mode and visual networks (from top).

doi:10.1371/journal.pone.0173496.g007

Table 3. Speed increase of PGICA.

# of subjects 1 10 50 150 300

Non-Parallel GICA time (min) 20 400 4000 12000 NA

PGICA time (min) 20 80 592 2000 4100

doi:10.1371/journal.pone.0173496.t003
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a semi-automated method to classify estimated ICs as signal or noise and to assign functional

labels to signal components. First, we calculated the spatial correlation between each of our 20

group-level ICs and a publicly available set of 75 ICs that were estimated from resting state

data collected from healthy adults and have already been classified as resting state networks or

noise by a group of experts [26]. We then manually inspected all ICs to ensure that they were

correctly classified. Using this two-stage method, we classified 11 ICs as noise and 9 as signal.

Examples of the 9 signal components are shown in Fig 8. The clear edges of the estimated sig-

nal components further demonstrate the ability of the proposed method to estimate ICs for

such high dimensional data.

This example is one of the few direct runs of group ICA for rs-fMRI in the literature for

such high dimensional data. One of the largest group ICA runs we identified in the literature is

presented by [26] and is based on rs-fMRI data for 603 healthy adolescents and adults. Before

[26] could run group ICA, they first had to reduced their data to 75 principal components

using the expectation-maximization algorithm included in GIFT to avoid “otherwise prohibi-

tive memory requirements”. The uniqueness of the proposed algorithm is the application to

the whole dataset directly which can provide new insights for group comparisons without the

necessity of splitting the groups into parts. In addition, the algorithm can be applied to data

with even larger numbers of subjects barring any issues with data quality.

Fig 8. Axial, sagittal, and frontal (left to right) planes of the default mode, auditory and visual

networks (from top) estimated using 779 fMRI scans from the ABIDE dataset. The thresholded maps are

overlaid on a greyscale MNI template brain. The colors correspond to the intensities in the estimated brain

networks where white: high intensity to red: low intensities.

doi:10.1371/journal.pone.0173496.g008
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5 Discussion

In this paper, we extended the group ICA algorithm of [14] using high-performance comput-

ing. The new PGICA algorithm can analyze large-scale data efficiently. Essentially, the sequen-

tial nature of the algorithm turns a memory-intensive, constant-time computing problem into

a constant-memory, time-intensive problem, and then uses parallel computing to turn the

resulting time-intensive problem into a constant time problem. With this algorithm, two large

resting-state fMRI datasets were analyzed. An interesting byproduct of this work is a compre-

hensive brain network atlas from over 300 healthy adults and another based on 779 scans

which include both ASD individuals and control subjects.

Although the method of [14] is theoretically scalable in terms of its memory requirements,

the approach requires the serial calculation of gradients to optimize parameter estimation,

which can be very slow for high-dimensional data to the point where it would still be practi-

cally infeasible in terms of computation time. Computing the gradients for different subjects

in parallel could potentially speed up the algorithm dramatically, provided the cost is much

lower than the necessary data transfer time. Parallel programming has been widely utilized in

scientific computing since the 1950s [27]. According to Flynn’s taxonomy [28], most current

computers are Multiple Instruction Multiple Data (MIMD) systems. MIMD computers are

typically categorized as shared-memory, distributed-memory or hybrid systems. In a shared-

memory system, all processes share addressable memory and communicate via shared vari-

ables. In distributed-memory systems, such as supercomputers and clusters, one process com-

municate with others through message passing. A supercomputer’s processors and the

network infrastructure are tightly coupled and specialized for parallelization. In contrast, clus-

ters are composed of off-the-shelf computers connected by an off-the-shelf network. Recently,

General-purpose computing on graphics processing units, or GPGPU, is developing fast and

provides a new scheme for parallel computing. In this work, the PGICA algorithm is per-

formed on both shared-memory and distributed-memory systems. It can be implemented to

fit other parallel computing schemes in the future. One limitation of the proposed algorithm is

that its performance depends on the available parallel computing capacity. The running speed

will be limited if one doesn’t have the required computing power. As a comparison, commonly

used ICA methods which require a group-level dimension reduction preprocessing step are

mainly limited by memory size. As the memory requirement is quadratic, it will run out

quickly as the data grow.

We used an extensive simulation study to validate the accuracy of the proposed algorithm

in high dimensional settings. The simulation studies show that the proposed PGICA algorithm

performs as well as commonly used methods. Using the measure of correlation between esti-

mated and true signal, it is performing better than the compared methods (the outperfor-

mance is small, but statistically significant). The information provided on the computation

time gain is presented using the real data example as the purpose of the simulation studies was

to assess accuracy rather than required computation time. In principle, given enough nodes

the algorithm can be applied to a dataset with any number of subjects and the simulation

results indicate that the accuracy of the results will improve with the increased number of sub-

jects under the assumption of no biologically irrelevant systematic differences between sub-

groups in the data.

Large, freely available multisite datasets such as the 1000 FCP and ABIDE are invaluable for

a number of reasons including accelerating neuroimaging discovery science and providing a

means to validate neuroimaging findings through replication. However, these datasets also

contain some inherent limitations. Each participating data collection site was motivated by its

own research questions, leading to potentially large inconsistencies in acquisition parameters,
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subject populations, and research protocols across sites that may limit our ability to estimate

networks and our sensitivity to detect biologically meaningful group differences. We did not

analyze the 1000 Functional Connectome Project dataset in its entirety, as there are site-spe-

cific variations, which plague the quality of results. In this paper, we focused on two sites to

minimize the influence of site-specific effects. The work presented in this paper shows that

estimating networks using data from a large number of subjects can result in highly precise

estimates of the networks. However, if the variability between the scans for the subjects in the

data is very high (especially due to biologically unrelated reasons), it can obscure the results

instead of improving the estimates. Developing statistically principled approaches to removing

technical variability from resting state fMRI data collected from multiple sites is an important

avenue of future work.

The functional imaging scans in the ABIDE dataset, while still collected in various data col-

lection sites, was more homogeneous when analyzing the data together. We analyzed a subset

of 779 fMRI scans simultaneously in this paper. The networks identified in this example can

be used as a powerful tool for exploring possible differences in network engagement over time

between the two groups: ASD and TD, using the second level analyses as described by [29].

The ICs we estimated from the ABIDE assume common spatial maps for all subjects in the

study including those with ASD and their TD peers. A question still remains whether the spa-

tial networks are the same between the two groups or whether the proposed method can be

used to test the hypothesis of significant differences between spatial networks of each group. In

this example, we used a downsampling approach to estimate the starting values of the parame-

ters for our model. While not implicitly stated by the proposed method, the voxel intensities in

the observed images are assumed to be statistically independent. The assumption may be vio-

lated when the voxel sizes are very small and the correlations between neighboring voxels may

not be small enough to be ignored. Hence, as the spatial resolution of images improves a more

thorough investigation of the effect of spatial correlations on the parameter estimates will be

necessary. It is interesting to note that the regions comprising networks defined using ABIDE

are generally more diffuse than those defined using the 1000 FCP set. This can be seen more

strikingly for the DMN and visual networks, which could suggest differences between ASD

and TD children. The networks identified using the proposed method can be used to investi-

gate these questions further.
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