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Long-range, through-lattice coupling improves 
predictions of microtubule catastrophe

ABSTRACT Microtubules are cylindrical polymers of αβ-tubulin that play critical roles in fun-
damental processes such as chromosome segregation and vesicular transport. Microtubules 
display dynamic instability, switching stochastically between growth and rapid shrinking as a 
consequence of GTPase activity in the lattice. The molecular mechanisms behind microtubule 
catastrophe, the switch from growth to rapid shrinking, remain poorly defined. Indeed, two-
state stochastic models that seek to describe microtubule dynamics purely in terms of the 
biochemical properties of GTP- and GDP-bound αβ-tubulin predict the concentration depen-
dence of microtubule catastrophe incorrectly. Recent studies provide evidence for three 
distinct conformations of αβ-tubulin in the lattice that likely correspond to GTP, GDP.Pi, and 
GDP. The incommensurate lattices observed for these different conformations raise the pos-
sibility that in a mixed nucleotide state lattice, neighboring tubulin dimers might modulate 
each other’s conformations and hence each other’s biochemistry. We explored whether incor-
porating a GDP.Pi state or the likely effects of conformational accommodation can improve 
predictions of catastrophe. Adding a GDP.Pi intermediate did not improve the model. In 
contrast, adding neighbor-dependent modulation of tubulin biochemistry improved predic-
tions of catastrophe. Because this conformational accommodation should propagate beyond 
nearest-neighbor contacts, our modeling suggests that long-range, through-lattice effects 
are important determinants of microtubule catastrophe.

INTRODUCTION
Microtubules (MTs) are hollow cylindrical polymers of αβ-tubulin 
that have essential roles segregating chromosomes during cell divi-
sion, organizing the cytoplasm, establishing cellular polarity, and 
more (Desai and Mitchison, 1997). These fundamental activities 
depend critically on dynamic instability, the stochastic switching of 
MTs between phases of growth and rapid shrinking (Mitchison 
and Kirschner, 1984). Dynamic instability is itself a consequence of 
αβ-tubulin GTPase activity and how it affects interactions between 
αβ-tubulin in the lattice and at the microtubule end. Although 
predictive molecular understanding of catastrophe remains elusive, 
the broad outlines of an understanding have been established 

(Mitchison and Kirschner, 1984; VanBuren et al., 2002; Gardner 
et al., 2011b; Bowne-Anderson et al., 2013; Brouhard, 2015; 
Brouhard and Rice, 2018; Duellberg et al., 2016). Unpolymerized, 
GTP-bound αβ-tubulin subunits readily associate at the growing tips 
of the MTs. Once they are incorporated into the lattice, αβ-tubulin 
GTPase activity is accelerated. The assembly dependence of 
GTPase activity results in a “stabilizing cap” of GTP- or GDP.Pi-
bound αβ-tubulin near the ends of the growing microtubules. Loss 
of this stabilizing cap triggers catastrophe, the switch from growth to 
rapid shrinking, because it exposes the more labile GDP-bound mi-
crotubule lattice.

Two broad classes of computational models have been devel-
oped as part of longstanding efforts to understand in quantitative 
terms the connections between the properties of individual αβ-
tubulins and the polymerization dynamics they collectively generate. 
“Biochemical” models attempt to recapitulate microtubule dynam-
ics purely in terms of discrete elementary molecular reactions such 
as association, dissociation, and GTPase activity (Chen and Hill, 
1983, 1985; Bayley et al., 1989, 1990; Martin et al., 1993; VanBuren 
et al., 2002; Gardner et al., 2011b; Margolin et al., 2012; Piedra 
et al., 2016). “Mechanochemical”’ models (Molodtsov et al., 2005; 
VanBuren et al., 2005; Coombes et al., 2013; Zakharov et al., 2015; 
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McIntosh et al., 2018) use additional springlike energies to account 
for conformational strain inside individual αβ-tubulins and for the 
effect of the resulting mechanical stress on interactions with other 
αβ-tubulins in the lattice. A third class of “phenomenological” mod-
els (Flyvbjerg et al., 1994; Brun et al., 2009; Bowne-Anderson et al., 
2013; Duellberg et al., 2016) use simplifying assumptions that ob-
scure the relationship between tubulin biochemistry and observable 
MT behavior, so we do not consider them further here. Biochemical 
and mechanochemical models can each recapitulate microtubule 
growing and shrinking, and in both kinds of model, catastrophe 
emerges naturally as a consequence of GTPase activity.

Biochemical models are computationally inexpensive and rela-
tively simple to interpret because they only contain a small number 
of adjustable parameters. In principle, all parameters could repre-
sent measurable quantities accessible to testing/perturbation using 
site-directed mutagenesis. A limitation of these models is that they 
fail to capture the correct concentration dependence and other as-
pects of catastrophe (e.g., VanBuren et al., 2002; Bowne-Anderson 
et al., 2013; Piedra et al., 2016). Mechanochemical models are com-
putationally expensive and more complicated to interpret because 
they are more parameter-intensive. Some of the parameters de-
scribing the springlike properties of αβ-tubulin might also be hard 
to validate experimentally. However, the mechanochemical models 
better recapitulate the concentration dependence and other as-
pects of catastrophe where biochemical models fail (Coombes 
et al., 2013; Zakharov et al., 2015). Why mechanochemical models 
better capture the concentration dependence of MT catastrophe 
remains unclear.

In both biochemical and mechanochemical models, only two 
nucleotide states are used: GTP and GDP. However, recent struc-
tural studies (Alushin et al., 2014; Zhang et al., 2015; Manka and 
Moores, 2018) have revealed three mutually incommensurate 
conformations of αβ-tubulin in the body of MT: an “expanded” form 
that corresponds to an all-GTP lattice, a “compacted” form that cor-
respond to an all-GDP lattice, and an intermediate “compact-
twisted” form that correspond to an all-GDP.Pi lattice. Because each 
conformation prefers a different lattice geometry, they must pre-
sumably accommodate each other in mixed-nucleotide regions of 
the microtubule lattice. Reconstitution and structural studies of plus 
end–tracking EB proteins (Maurer et al., 2011, 2012, 2014; Zhang 
et al., 2015) support a role for these conformations in MT dynamics 
and regulation. Experiments with a slow-shrinking “conformation 
cycle” mutant of yeast αβ-tubulin (Geyer et al., 2015) that in the 
GDP state apparently does not relax all the way to the compacted 
conformation provided evidence that the αβ-tubulin conformation 
cycle contributes directly to microtubule shrinking rate and catastro-
phe frequency. It seemed plausible to us that not accounting for a 
GDP.Pi intermediate, or for the likely modulating influence of con-
formational accommodation in a mixed nucleotide state lattice 
(Brouhard and Rice, 2018), might explain why biochemical models 
fail to capture the concentration dependence of catastrophe.

In the present study, we asked whether incorporating various 
candidates for “missing state/biochemistry” into a computational 
model would improve predictions about the concentration depen-
dence of microtubule catastrophe. We elaborated a Monte Carlo–
based algorithm developed in the lab (Ayaz et al., 2014; Piedra 
et al., 2016; Mickolajczyk et al., 2018) to test whether incorporating 
a GDP.Pi state or long-range coupling (reflecting conformational 
accommodation) improved predictions of microtubule catastrophe. 
We incorporated the GDP.Pi state and conformational coupling 
separately for simplicity and to be able to assess the effect of each 
change in isolation. We did not explicitly incorporate mechano-

chemistry into the model because our goal was to identify minimal 
additions to biochemical models that improve their performance 
with respect to predicting catastrophe.

Our simulations revealed that incorporating a GDP.Pi interme-
diate state does very little to improve the predicted concentration 
dependence of catastrophe frequency. Long-range, through- lattice 
conformational accommodation, acting to modulate GTPase rate 
or dissociation rates, did improve the prediction of catastrophe 
and its concentration dependence. Artificially restricting this mod-
ulation to short range abrogated the previously observed improve-
ment. Thus, it seems that long-range, through-lattice interactions 
are important for recapitulating the concentration dependence of 
catastrophe in biochemical models. Because mechanochemical 
models effectively distribute strain throughout the lattice, the 
long-range coupling intrinsic to mechanochemical models may 
explain why they have been more successful at predicting catas-
trophe. By highlighting the importance of long-range, through-
lattice effects, our computational experiments suggest that 
cooperative effects at the microtubule end are important determi-
nants of microtubule catastrophe.

RESULTS
A two-state model for microtubule dynamics fails to capture 
the weak concentration dependence of catastrophe 
frequency
We refined our prior algorithm (Ayaz et al., 2014; Piedra et al., 2016; 
Mickolajczyk et al., 2018) that used a kinetic Monte Carlo algorithm 
(Gillespie, 1976; Gibson and Bruck, 2000) to simulate microtubule 
dynamics. The algorithm simulates one biochemical event (dimer 
association, dissociation, or GTP hydrolysis) at a time and therefore 
provides a “movie”’ of microtubule dynamics. As is commonly done 
(Chen and Hill, 1985; VanBuren et al., 2002; Molodtsov et al., 2005; 
Gardner et al., 2011a; Margolin et al., 2012; Zakharov et al., 2015), 
our model uses a two-dimensional representation of the microtu-
bule lattice to track different kinds of binding environments or 
neighbor states (Figure 1A). To minimize the number of adjustable 
parameters in the model, we initially adopted a very simple param-
eterization that does not explicitly account for different conforma-
tions of αβ-tubulin (reviewed in Brouhard and Rice, 2014) and that 
also does not attempt to describe “mechanical” properties of αβ-
tubulin and microtubules such as springlike conformational strain 
(reviewed in Brouhard and Rice, 2018; Figure 1A). The assumptions 
of this minimalist parameterization are that 1) there are only two 
nucleotide states (GTP and GDP); 2) nucleotide is trans-acting 
(Figure 1B), meaning that the strength of the longitudinal interface 
between dimers (and thus the dimer-binding affinity at the MT tip) is 
determined by the nucleotide located at the interface (Rice et al., 
2008; Piedra et al., 2016); 3) the αβ-tubulin dissociation rate for a 
given subunit is determined by the total sum of free energies of all 
longitudinal and lateral interdimer interactions with other subunits; 
4) the association rate for a given site does not depend on the local 
tip configuration; and 5) GTP hydrolysis occurs at the interdimer in-
terface, meaning that GTP cannot be hydrolyzed on the most termi-
nal subunit of any protofilament. In these kinds of models, catastro-
phe and rescue occur naturally (Figure 1C) in a way that depends on 
the specific parameters used. Our algorithm is constructed in a 
highly modular way that makes it easy to implement different bio-
chemical assumptions (Piedra et al., 2016; Mickolajczyk et al., 2018). 
Later in the paper, we relax the minimalistic assumptions of the two-
state model to test whether more complicated models that incorpo-
rate other states or kinds of biochemistry better predict the concen-
tration dependence of catastrophe.
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To obtain model parameters that could recapitulate MT elon-
gation and shrinking rates and approximate the frequency of 
catastrophe, we followed the divide-and-conquer approach out-
lined previously (VanBuren et al., 2002; Piedra et al., 2016). We 
trained our model against a classic benchmark data set that is one 
of the only ones to report growth rates, shrinking rates, and catas-
trophe frequencies at multiple tubulin concentrations under 
consistent conditions (Walker et al., 1988). First, we used GTP-only 
simulations to search for parameters that recapitulated MT growth 
rates over a range of αβ-tubulin concentrations (Figure 1D). With 
those parameters fixed, we optimized the weakening effect of 
GDP on the longitudinal interface by tuning it to make all-GDP 
microtubules depolymerize at the observed average rate of 
postcatastrophe shrinking (Figure 1E). With that new parameter 
also fixed, we refined the GTPase rate to produce the correct fre-
quency of catastrophe (Figure 1F). These parameters are not per-
fectly independent, so we applied this approach iteratively (this 
process resulted in a slightly higher affinity corner interaction than 
we had obtained in a prior study, Piedra et al., 2016; see Materials 
and Methods). For generality, we wanted to train our model 
against a second data set where the growth rates, shrinking rates, 
and catastrophe frequencies were somewhat different than in 
Walker et al. (1988) (Supplemental Figure 1). To our knowledge, 
however, besides Walker et al. (1988) there is not another study 
that reports microtubule growth rates, shrinking rates, and catas-

trophe frequencies at multiple tubulin concentrations under identi-
cal buffer conditions. Thus, we constructed a hybrid data set 
consisting of growth rates and catastrophe frequencies from 
Gardner et al. (2011b) and the shrinking rate from Lawrence et al. 
(2018). As observed in earlier studies, in fits to both data sets, the 
predicted catastrophe frequency varies much more strongly with 
tubulin concentration than has been observed in experiments 
(VanBuren et al., 2002; Bowne-Anderson et al., 2013; Piedra et al., 
2016). For example, the model predicts a nearly 210-fold change 
in catastrophe frequency from 9.5 to 13.5 µM αβ-tubulin, while the 
Walker et al. (1988) data show only a 2.5-fold change in catastro-
phe frequency over the same range (Figure 1F). A similar discrep-
ancy was observed in our fits to the alternative data set (Supple-
mental Figure 1A). Because the model could not recapitulate the 
concentration dependence of catastrophe, we chose 12 µM (the 
median concentration) for Walker et al. (1988) and 10 µM for 
Gardner et al. (2011b) and Lawrence et al. (2018) as the reference 
concentrations for determining GTPase rate. The parameters we 
obtain from training our models to the experimental data are listed 
in Supplemental Table 1 for Walker et al. (1988) and in Supplemen-
tal Table 2 for Gardner et al. (2011b) and Lawrence et al. (2018). 
The parameters are comparable between the two data sets and 
consistent with the differences between them: the differences in 
tubulin binding affinities are less than 1 kBT, and the difference in 
GTPase rates is within an order of magnitude.

FIGURE 1: Simulations of a two-state biochemical model for microtubule dynamics. (A) Cartoon representation of a 
typical growing MT tip during a simulation. αβ-tubulin dimers are represented as pink and green circles; solid black and 
dashed gray outlines indicate GTP and GDP states, respectively. Dissociation rates depend on the number of lateral 
neighbors and the identity of the nucleotide at the longitudinal interface (vertical white arrows indicate trans-acting 
nucleotides; see B). (B) Illustration of trans-acting nucleotide. αβ-tubulins with GTP at the longitudinal interface 
dissociate more slowly than αβ-tubulins with GDP at the longitudinal interface. (C) Representative plot showing 
simulated MT length vs time at 12 µM αβ-tubulin. The simulation parameters are listed elsewhere (see D, E). 
Catastrophes occur naturally as a consequence of the biochemical rules. (D) Comparison between measured (black 
circles) and predicted (line) growth rates. Experimental data are taken from Walker et al. (1988). (E) Comparison 
between measured and predicted shrinking rates. (F) Comparison between measured (black circles) and predicted (line) 
catastrophe frequencies at different αβ-tubulin concentrations. The two-state model cannot recapitulate the measured 
concentration dependence of the catastrophe frequency. The y-axis is linear in the larger plot. The smaller inset graph 
displays the same data, but the y-axis is on log scale.
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Incorporating a GDP-Pi intermediate state into the model 
does not improve prediction of the concentration 
dependence of catastrophe
The overly steep concentration dependence of catastrophe pre-
dicted by the two-state model might occur because the model does 
not account for a state or kind of interaction that is important for 
catastrophe. We added a GDP.Pi intermediate between GTP and 
GDP to test whether a three-state model would better predict the 
concentration dependence of catastrophe than a two-state model. 
We made the following additional assumptions when implementing 
the GDP.Pi state (Figure 2A): 1) Pi (phosphate) release from the body 
of the lattice is a first-order process, like GTPase, and 2) the phos-
phate dissociates instantaneously when exposed at the tip. These 
new assumptions in the GDP.Pi model require two additional param-
eters: one that describes the strength of a longitudinal contact when 
GDP.Pi is at the interface, and the other that describes the rate of Pi 
release (Figure 2A).

We first examined how varying the strength of longitudinal con-
tacts at the GDP.Pi interface affects the predicted frequency of ca-
tastrophe as a function of αβ-tubulin concentration. We varied the 
strength of the GDP.Pi interface from high (equivalent to the GTP 
interface) to intermediate (halfway between the GTP and GDP inter-
faces) to low (equivalent to the GDP interface), keeping the ratio of 
the GTPase rate and the Pi release rate constant. Note that setting 
the strength of the GDP.Pi interface to be identical to that of the 
GDP interface is effectively a control experiment because it yields a 

model that is functionally identical to the two-state model. Because 
increasing the strength of the GDP.Pi interface reduces the catastro-
phe frequency (by effectively reducing the rate of some subunit dis-
sociations from the microtubule end), we retrained the GTPase rate 
to match the catastrophe frequency at the reference concentration 
(12 µM) for the high- and intermediate-strength GDP.Pi interface 
(Supplemental Table 1B). We kept the Pi release rate identical to the 
new GTPase rates, as stated above. Changing the GTPase rate or 
the strength of the GDP.Pi interface had little effect on the predicted 
growth rates (Figure 2B). Whereas in the two-state model the ratio 
of predicted catastrophe frequency between 9.5- and 13.5-µM con-
centrations was 210, for the model containing a GDP.Pi state the 
ratio was 170, still far from the experimentally observed ratio of 2.5 
(Figure 2C). Thus, the predicted concentration dependence of ca-
tastrophe frequency did not improve substantially in response to 
these initial changes in the model.

We then used a grid search approach to explore how changing 
the ratio between the GTPase rate and the phosphate release rates 
affects the concentration dependence of catastrophe. We fixed the 
rate of phosphate release to be 10 times higher or lower than the 
rate of GTPase and varied the strength of the GDP.Pi interface (with 
retraining of the GTPase rate) as before. In both cases, these 
changes exacerbated the problems with the model: the predicted 
concentration dependence of catastrophe frequency actually in-
creased (Figure 2D). We observed similar trends in fits to the other 
data set that we trained our model against (Gardner et al., 2011b; 

FIGURE 2: Three-state model that contains a GDP.Pi intermediate. (A) Cartoons illustrating the differences between 
models without (top) and with (bottom) a GDP.Pi intermediate. The GDP.Pi intermediate requires two additional 
parameters: a rate constant for Pi release and another for the strength of the longitudinal interaction when GDP.Pi is at 
the interface. Vertical white arrows indicate trans-acting nucleotides. (B) Comparison between measured (black circles) 
and predicted (lines; red, black correspond to GDP.Pi interfaces having the same strength as GTP and GDP interfaces, 
respectively; brown corresponds to GDP.Pi interfaces having intermediate strength) growth rates. All three scenarios can 
recapitulate observed growth rates. In this plot the ratio between the hydrolysis rate and the phosphate release rates 
has been set to 1:1. (C) Predicted catastrophe frequency as a function of concentration for different values for the 
strength of the GDP.Pi longitudinal interface. Varying the strength of the GDP-Pi interface has a limited effect on the 
concentration dependence of the catastrophe frequency. The ratio between the hydrolysis rate and the phosphate 
release rates has been set to 1:1. The y-axis is linear in the larger plot. The smaller inset graph displays the same data, 
but the y-axis is on log scale. (D) Contour plot of the predicted concentration dependence of catastrophe. The 
concentration dependence is defined as the ratio of catastrophe frequencies at 9.5 and 13.5 µM. The concentration 
dependence of the catastrophe frequency is lowest when the ratio between hydrolysis and release is 1:1 and the 
longitudinal interface with GDP-Pi is as strong as the interface with GTP.
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Lawrence et al., 2018; Supplemental Figure 3B). The predicted 
concentration dependence of catastrophe was lowest when the 
GTPase rate and the phosphate release rate were the same and the 
GDP.Pi interface was as strong as the interface with GTP. However, 
this best case scenario for incorporating a GDP.Pi state did not sub-
stantially improve prediction of the concentration dependence of 
catastrophe.

Nearest-neighbor conformational accommodation improves 
predictions of the concentration dependence of catastrophe 
when GTPase, but not αβ-tubulin dissociation, is modulated
The expanded conformation (seen in the all-GTP lattice) and the 
compacted conformation (seen in the all-GDP lattice) make lattices 
with different spacing of the lateral interfaces and other changes 
(Alushin et al., 2014; Zhang et al., 2015; Manka and Moores, 2018). 
How αβ-tubulins accommodate incommensurate GTP- and GDP-
bound conformations in a mixed–nucleotide state lattice, as must 
occur near the tip of the growing MT, is not understood (reviewed in 
Brouhard and Rice, 2018). We speculated that this conformational 
mismatch might modulate the strength of lateral interactions be-
tween αβ-tubulins in different nucleotide states, or that it might 
modulate the rate of GTPase activity. We focused on lateral interac-
tions because it seemed that those interfaces are where the mis-
match between expanded and compacted conformations must be 
resolved. This would mean that a GTP- or GDP-tubulin would be-
have differently depending on the nucleotide state(s) of its 
neighbor(s), a kind of effect that is not captured in simple two-state 
models such as the one we described above. We implemented 
these two ideas (modulation of affinity or GTPase activity) into the 
model separately to test whether this kind of nearest-neighbor 

conformational accommodation could improve the predicted con-
centration dependence of catastrophe.

To implement neighbor-based modulation of lateral interactions, 
we assumed that the conformational mismatch/accommodation 
weakens the interaction (increases the dissociation rate). In other 
words, αβ-tubulin with a lateral neighbor that is in a different nucleo-
tide state (conformation) dissociates more quickly than it would 
were the nucleotide states the same (Figure 3A). Owing to these 
changes, the “‘nearest-neighbor affinity modulation” model has 
only one additional parameter: the fold-faster dissociation rate for 
αβ-tubulin with a lateral nearest neighbor with differing nucleotide 
state. To examine how varying the new parameter affects the con-
centration dependence of catastrophe frequency in simulations, we 
set the αβ-tubulin with a lateral neighbor with a different nucleotide 
to dissociate faster by factors of 1, 4.5, 20, and 90 (these values cor-
respond to free-energy changes of 0, 1.5, 3, and 4.5 kBT, respec-
tively, chosen so that the maximum parameter value of 90 remains 
less than the GDP weakening factor, which is 300 for this data set). 
We also tried a factor of 400 (6 kBT), but we did not observe further 
improvement. Setting the fold increase in dissociation rate to 1 is 
effectively a control experiment because in that case the model be-
haves identically to the two-state model. We observed similar trends 
in fits to the other data set we trained our model against (Gardner 
et al., 2011b; Lawrence et al., 2018; Supplemental Figure 4A). The 
new parameter (the fold-faster dissociation rate) only modestly af-
fected the predicted growth rates (Figure 3B), so we retained the 
affinities and GDP weakening factor from the two-state model. 
Keeping the other model parameters fixed, we adjusted the GTPase 
rate to obtain the correct catastrophe frequency at the reference 
concentration (see also Supplemental Table 1C). Compared with the 

FIGURE 3: Model that incorporates nearest-neighbor modulation of the strength of lattice contacts. (A) Cartoons 
illustrating the differences between models without (top) and with (bottom) nearest-neighbor αβ-tubulin affinity 
modulation. Allowing αβ-tubulin affinity modulation requires one additional parameter: a fold increase in the αβ-tubulin 
dissociation rate due to the nearest-neighbor influence. Vertical white arrows indicate trans-acting nucleotides; the 
horizontal white arrow indicates the nearest-neighbor effect on affinity modulation. (B) Comparison between measured 
(black circles) and predicted (the blackest line corresponds to a onefold increase in dissociation rates and the greenest 
corresponds to a 90-fold increase) growth rates. All four scenarios can recapitulate observed growth rates. (C) Predicted 
catastrophe frequency as a function of concentration for different fold increases in αβ-tubulin dissociation rate. The 
y-axis is linear in the larger plot. The smaller inset graph displays the same data, but the y-axis is on log scale. Varying 
the magnitude of αβ-tubulin dissociation modulation has a limited effect on the concentration dependence of the 
catastrophe frequency.
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two-state model, the range of predicted catastrophe frequency over 
the concentration range (9.5 and 13.5 µM) decreased from 210-fold 
to 150-fold (compared with a 2.5-fold change in the target data; 
Figure 3C). Thus, in contrast to incorporating a GDP.Pi intermediate, 
allowing interdimer interaction to be modulated by neighboring 
nucleotide state somewhat improved the predicted concentration 
dependence of catastrophe frequency.

To implement neighbor-based modulation of GTPase activity, 
we assumed that αβ-tubulin with GTP next to αβ-tubulin bound to 
GDP hydrolyzes GTP more quickly (Figure 4A). In essence, this as-
sumption is equivalent to saying that the GTPase rate is activated, 
and that αβ-tubulin adopting the accommodating intermediate 
conformation is the activating event. This nearest-neighbor 
GTPase stimulation model has one additional parameter: the fold 
increase in hydrolysis rate. We set this neighbor-dependent 
GTPase modulation to increase the rate by factors of 1, 10, 100, 
and 1000. Setting the fold increase in GTPase rate to 1 is effec-
tively a control experiment, because that model is functionally 
identical to the two-state model. We adjusted the basal GTPase 
rate to maintain the correct catastrophe frequency at the reference 
concentration (Supplemental. Table 1D); other model parameters 
were kept fixed because the new parameter did not substantially 
affect predicted growth or shrinking rates (Figure 4B). Whereas in 
the two-state model the ratio of predicted catastrophe frequency 

at the low (9.5 µM) and high (13.5 µM) concentrations was 210, for 
this model with modulated GTPase the ratio was 21, substantially 
closer to the experimentally observed ratio of 2.5 (Figure 4B). We 
observed similar trends in fits to the other data set we trained our 
model against (Gardner et al., 2011b; Lawrence et al., 2018; Sup-
plemental Figure 5, A and B).

Why did this nearest-neighbor GTPase stimulation model im-
prove predictions of the concentration dependence of catastrophe 
more substantially? Looking at the biochemical “movies” generated 
by the simulation, even though we implemented this as a nearest-
neighbor effect, we observed that the GTP hydrolysis propagated 
through the lattice, like a wave (unpublished data). The wave of GTP 
hydrolysis starts from a random GTP hydrolysis in a locally all-GTP 
lattice, where hydrolysis is relatively slow, according to this model. 
Hydrolysis of one GTP to GDP effectively starts a local chain reaction 
because the nearest-neighbor αβ-tubulins gain increased GTPase 
activity. GTP hydrolysis at this second site then stimulates its neigh-
bor to increased GTPase activity, and so on. Thus, although we con-
structed the model to have only nearest-neighbor effects, the result-
ing behavior showed longer-range propagation. The value of the 
high GTPase rate was restrained to ensure that the “wave” of 
GTPase was slower than the elongation rate—this avoids a scenario 
where a single GTPase event anywhere in the cap would be suffi-
cient to cause catastrophe.

FIGURE 4: Model that incorporates nearest-neighbor modulation of GTPase activity. (A) Cartoons illustrating the 
differences between models without (top) and with (bottom) nearest-neighbor GTPase modulation. Allowing GTPase 
rate modulation requires one additional parameter: the fold increase in GTPase rate due to the nearest-neighbor 
influence. (B) Comparison between measured (black circles) and predicted (the blackest line corresponds to a onefold 
increase in GTPase rates and the bluest corresponds to a 1000-fold increase) growth rates. All four scenarios can 
recapitulate observed growth rates (left plot). Predicted catastrophe frequency as a function of concentration for 
different fold increases in GTPase rate (right plot). Varying the magnitude of GTPase rate modulation has a significant 
effect on the concentration dependence of the catastrophe frequency. The y-axis is linear in the larger plot. The smaller 
inset graph displays the same data, but the y-axis is on log scale. (C) Comparison between measured (black circles) and 
predicted (the blackest line corresponds to a onefold increase in GTPase rates and the bluest corresponds to a 
1000-fold increase) growth rates in the propagation-limited GTPase model. All four scenarios can recapitulate observed 
growth rates (left plot). Predicted catastrophe frequency as a function of concentration for different fold increases in 
GTPase rate in the propagation-limited GTPase model (right plot). Artificially limiting the propagation of wavelike 
GTPase activity reverts the changes in predicted concentration dependence of catastrophe frequency observed in the 
original nearest-neighbor GTPase modulation model. The y-axis is linear in the larger plot. The smaller inset graph 
displays the same data, but the y-axis is on log-scale.
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Was it the local change in GTPase rate or the longer-range prop-
agation of GTP hydrolysis that was more important for improving 
the predicted concentration dependence of catastrophe? We 
examined this question by modifying the nearest-neighbor GTPase 
stimulation model so that the wave of GTP hydrolysis would be arti-
ficially prevented from propagating too far. To accomplish this, we 
disallowed across-seam interactions from stimulating GTPase activ-
ity. As before, we set the neighbor-dependent GTPase stimulation 
to increase by factors of 1, 10, 100, and 1000 and retrained the basal 
GTPase rate to match the catastrophe frequency at the reference 
concentration. Limiting the propagation of the nearest-neighbor 
stimulation of GTPase degraded the model’s ability to predict the 
concentration dependence of catastrophe (Figure 4C). Some of the 
predictive power gained in the untruncated version of the GTPase 
stimulation model was lost in the truncated version: where the un-
truncated model showed only a 21-fold change in catastrophe 
frequency over the measured concentration range, the truncated 
propagation version showed a 66-fold change, further from the 2.5-
fold change observed experimentally. We observed similar trends in 
fits to the other data set we trained our model against (Supplemen-
tal Figure 5D).

In summary, nearest-neighbor modulation of the αβ-tubulin dis-
sociation rate had a limited effect on the predicted concentration 
dependence of catastrophe. In contrast, nearest-neighbor stimula-
tion of GTPase activity yielded a substantial improvement. The 
activation of GTPase propagated through the lattice, and this 
long-range propagation was required for improved predictions of 
catastrophe.

Incorporating long-range, through-lattice modulation of the 
strength of tubulin–tubulin interactions can also improve 
predictions of catastrophe
In the nearest-neighbor GTPase stimulation model, the wavelike 
propagation of GTP hydrolysis effectively allowed the nucleotide 
state at one site to indirectly affect the biochemistry of distant 
(beyond nearest-neighbor) αβ-tubulins. We wondered whether 
long-range, through-lattice modulation of αβ-tubulin:αβ-tubulin 
binding affinity could also improve the predicted concentration 
dependence of catastrophe.

Previously, in the nearest-neighbor affinity modulation model, 
we assumed for simplicity that the destabilizing interdimer interac-
tion was limited to nearest neighbors. However, it stands to reason 
that if one subunit influences the conformation of its neighbor, then 
that neighbor should influence the conformation of its neighbor, 
and so on. In other words, the conformational accommodation 
should propagate beyond nearest-neighbor contacts. As a simple 
way to test whether beyond–nearest neighbor effects would be im-
portant, we implemented a model where the accommodation mod-
ulates the strength of lattice contacts over some specified distance 
(number of αβ-tubulin subunits). Basically, this entailed modifying 
the affinity model so that the nucleotide state of one tubulin affects 
the dissociation rate of other tubulins farther away. This time, we 
kept the modulated dissociation rate at 90, the highest value tried 
for the original nearest-neighbor affinity-modulation model. Then 
we varied the maximum range of modulation (Figure 5A). When the 
range is set to 0, the model is identical to the two-state model, 
while if the range is set to 1, the model is identical to the original 

FIGURE 5: Model that incorporates long-range modulation of the strength of lattice contacts. (A) Cartoons illustrating 
the differences between models without (top) and with (bottom) the long-range αβ-tubulin affinity modulation. Allowing 
the αβ-tubulin affinity modulation requires two additional parameters: the fold increase in αβ-tubulin dissociation rate 
due to the nearest-neighbor influence and the maximum range of modulation. Vertical white arrows indicate trans-
acting nucleotides; the horizontal white arrow indicates the beyond–nearest neighbor effect on affinity modulation. 
(B) Comparison between measured (black circles) and predicted (the blackest line corresponds to the modulation range 
of 0 and the greenest corresponds to the modulation range of 7) growth rates. All five scenarios can recapitulate 
observed growth rates. In this plot the dissociation rate of the modulated αβ-tubulin is increased 90-fold. (C) Predicted 
catastrophe frequency as a function of concentration for different maximum ranges of modulation. Varying the 
maximum range of modulation has a significant effect on the concentration dependence of the predicted catastrophe 
frequency. The dissociation rate of the modulated αβ-tubulin is increased 90-fold. The y-axis is linear in the larger plot. 
The smaller inset graph displays the same data, but the y-axis is on log scale.
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nearest-neighbor affinity model. When the range is an integer 
greater than one, a given subunit affects that many of its neighbors 
to the left and to the right. To keep the model as simple as possible, 
we did not implement a distance-dependent fall-off in the strength 
of modulation, nor did we implement a counting scheme to account 
for the possible effects of mixed nucleotide state along the range of 
modulation. For each range of modulation, the GTPase rate was 
retrained to match the catastrophe frequency at the reference con-
centration. For increasing maximum ranges of through-lattice mod-
ulation of interdimer interaction, the predicted catastrophe fre-
quency became substantially less sensitive to αβ-tubulin 
concentration (Figure 5C). Allowing long-range effects yielded a 
predicted catastrophe frequency that changed only 2.3-fold over 
the concentration range, nearly matching the experimentally ob-
served a 2.5-fold change. We observed similar trends in fits to the 
other data set we trained our model against (Gardner et al., 2011b; 
Lawrence et al., 2018; Supplemental Figure 4D).

In summary, incorporating long-range, through-lattice modula-
tion of tubulin–tubulin interactions improved predictions of the con-
centration dependence of catastrophe. Short-range (nearest-neigh-
bor) modulation was much less effective. Incorporating a third state 
in the form of GDP.Pi also did not improve predictions of the con-
centration dependence of catastrophe. Thus, long-range, through-
lattice effects, whether modulating GTPase or αβ-tubulin dissocia-
tion, may represent a missing ingredient required for biochemical 
models to recapitulate the concentration dependence of 
catastrophe.

An empirical decomposition of catastrophe frequency 
reveals differences in frequency of pausing and commitment 
to catastrophe between the models
To better understand why incorporating through-lattice, long-range 
modulation improved predictions of the concentration dependence 
of catastrophe, we took a closer look at the sequence of events that 
led to catastrophe in our different models. In all models, MT growth 
always paused (defined as a transient growth rate less than 25% of 
the average MT elongation rate) for a short time before undergoing 
a catastrophe (Figure 6A). Similar pausing/slowdown has been ob-
served in experiments (Maurer et al., 2014). As we showed previ-
ously (Piedra et al., 2016), terminal GDP exposure can cause this 
slowing of elongation by transiently poisoning individual protofila-
ments. This transient pausing in turn accelerates erosion of the sta-
bilizing cap, and the consequent complete loss of the cap leads to 
catastrophe. However, not all pausing episodes led to catastrophe 
in our simulations. If the GDP exposure can be overcome before the 
stabilizing cap erodes completely, the MT can resume growing at a 
normal rate (Figure 6B). We quantified the “growth-to-pause” fre-
quency and the “pause-to-catastrophe” probability from simulation 
outputs of the two-state model (see Materials and Methods). The 
product of these two quantities faithfully reproduced the frequency 
of catastrophe (Figure 6C), indicating that catastrophe can be de-
composed into two separate steps and that transient pausing is an 
obligate intermediate.

FIGURE 6: Microtubule catastrophe can be decomposed into two 
separate steps. (A) The plot of MT length vs. time (top panel) and the 
corresponding plot of terminal GDP-tubulin vs. time (bottom panel). 
The exposure of GDP-tubulins at the ends of some protofilaments 
(blue arrows) leads to transient pausing. The exposure at the end of 
all protofilaments can follow partial loss of the GTP stabilizing cap 
(orange arrows), leading to transient pausing followed by catastrophe. 
(B) Diagram of transient pausing and catastrophe as elementary 
processes (top). Growth-to-pause frequencies and pause-to-
catastrophe probability defined in terms of the reaction rates to the 
elementary processes (bottom). (C) Plot of growth-to-pause 
frequencies (left), pause-to-catastrophe probabilities (middle), and the 
catastrophe frequencies (right) as functions of αβ-tubulin 
concentrations in two-state model. The multiplicative product (black 
line, bottom plot) of the growth-to-pause frequencies and the 

pause-to-catastrophe probabilities match the value of the predicted 
catastrophe frequency (gray dashed line, bottom plot). (D) The 
concentration dependencies of the growth-to-pause frequencies and 
the pause-to-catastrophe probabilities of different models normalized 
to the two-state model. Here, we defined the concentration 
dependence as the ratio of the growth-to-pause frequencies or the 
pause-to-catastrophe probabilities at 9.5 over 13.5 µM.
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If the catastrophe frequency is the product of the growth- 
to-pause frequency and the pause-to-catastrophe probability, then 
the concentration dependence of the catastrophe frequency must 
also stem from the concentration dependence of these two compo-
nents. To determine whether the concentration dependence can 
be attributed to the growth-to-pause frequency, the pause-to- 
catastrophe probability, or both, we first characterized the growth-
to-pause frequency and the pause-to-catastrophe probability as 
functions of tubulin concentration in the two-state model. Both the 
growth-to-pause frequency and the pause-to-catastrophe probabil-
ity depended strongly on αβ-tubulin concentration (Figure 6C).

We then examined how different models affected the concentra-
tion dependencies of growth-to-pause frequencies and pause-to-
catastrophe probabilities relative to the baseline provided by the 
two-state model (Figure 6D). Compared with the two-state model, 
all models showed substantial changes to the concentration depen-
dence of growth-to-pause frequency and pause-to-catastrophe 
probability. In the models that did not allow long-range effects, the 
concentration dependence of the two components of catastrophe 
moved in opposite directions, effectively canceling each other, so 
that there was little improvement in the concentration dependence 
of the catastrophe. In contrast, in the models that allowed long-
range effects, the concentration dependence of the two compo-
nents of catastrophe moved in concert with each other, explaining 
why these long-range models better predicted catastrophe.

DISCUSSION
Simple two-state biochemical models fail to predict the weak con-
centration dependence of the catastrophe frequency. The studies 
described here were motivated by the hypothesis that this failure 
occurs because two-state models oversimplify the biochemistry, and 
sought to use modeling to get insight into what might be missing. 
The new kinds of biochemistry we tested were inspired by recent 
structural experiments (Alushin et al., 2014; Zhang et al., 2015; 
Manka and Moores, 2018) that revealed three distinct and appar-
ently mutually incommensurate conformations of αβ-tubulin in the 
GTP, GDP.Pi, and GDP-bound microtubule lattices. These structural 
findings, along with results from reconstitution studies of EB pro-
teins (Maurer et al., 2011, 2014), imply that models for microtubule 
dynamics might need to contain a third biochemical state (GDP.Pi), 
and/or that they might need to account for the likely effects of in-
commensurate conformations of αβ-tubulin that must modulate the 
properties of GTP- or GDP-tubulin in a context-dependent way 
(conformational coupling). We implemented different candidates 
for missing states or kinds of interactions in the simplest way possi-
ble, so that we would avoid a large increase in the number of model 
parameters. For the same reason, while a third state and conforma-
tional coupling might be required simultaneously, for simplicity in 
this work we chose to examine the two separately.

Adding a third state did little if anything to improve predictions 
of catastrophe, even though that model contained an extra adjust-
able parameter. In contrast, allowing conformational coupling to 
modulate either GTPase rate or lattice-binding affinity noticeably 
improved predictions of the concentration dependence of catastro-
phe, with modulation of affinity giving better performance. Because 
conformational coupling should propagate beyond nearest-neigh-
bor interactions, our computational findings provide evidence that 
cooperative, through-lattice effects may be important determinants 
of microtubule catastrophe. The models we examined do not cap-
ture all aspects of catastrophe—some only partially improve the 
concentration dependence, and none recapitulates the “age- 
dependence” that has been observed experimentally (Odde et al., 

1995; Gardner et al., 2011b; Duellberg et al., 2016). This should not 
be surprising, because we intentionally chose the simplest (least 
parameter-intensive) ways to examine the possible consequences of 
candidate missing biochemistries, such as a GDP.Pi state or the cou-
pling that arises from conformational accommodation.

Why does incorporating long-range effects improve predictions 
about the concentration dependence of catastrophe? In our model, 
catastrophes occur after the microtubule end becomes transiently 
“poisoned” by the exposure of multiple GDP-terminated protofila-
ments (Figures 6A and 7). This GDP exposure causes catastrophe 
because it stalls growth (induces a pause), leading to erosion of 
the stabilizing cap (Piedra et al., 2016). In the two-state model, 
exposure of GDP on the ends of multiple protofilaments is rare be-
cause the GTPase rate is constrained to be low in order to maintain 
a large enough stabilizing cap. Conversion from pause to catastro-
phe also shows substantial concentration dependence, because 
competing events such as association of new tubulins are them-
selves concentration-dependent. The essence of the two long-
range models we explored is that they both amplify the impact of 
GTP hydrolysis near the microtubule end, allowing the first-order 
nature of GTPase to become more dominant in determining the 
overall concentration dependence of catastrophe: neighbor-based 
stimulation of GTPase makes it more likely to develop a patch of 
GDP-terminated protofilaments (Figure 7B), and neighbor-based 
change in binding affinity increases the impact of a single GDP-ter-
minated protofilament (Figure 7C). Both changes make it harder to 
cover the GDP than in the two-state model.

Mechanochemical models have outperformed biochemical 
models where catastrophe is concerned: mechanochemical models 
better recapitulate both the concentration and age dependence of 
microtubule catastrophe (Coombes et al., 2013; Zakharov et al., 
2015). The mechanochemical models are more parameter-intensive 
because they also account for multiple features that the biochemical 
models do not: curved–straight conformational changes on the mi-
crotubule end, the partially curved conformations that occur at/near 
the microtubule end, different strengths for the same interface that 
result from allowing stretching of longitudinal and lateral bonds, and 
more. Consequently, precisely why these mechanochemical models 
predict the concentration dependence of catastrophe better than 
biochemical models has so far not been clear.

The work described here may begin to explain why mechano-
chemical models have been more successful at predicting catastro-
phe. Indeed, our simulations indicate that long-range, through-lat-
tice coupling is required for improved predictions of catastrophe in 
biochemical models. Because of the way that they allow mechanical 
strain to be distributed through the lattice, this kind of long-range 
coupling is built into the mechanochemical models. In light of our 
results, it seems likely that incorporating long-range coupling into 
the lattice is one reason that mechanochemical models have been 
more successful in predicting microtubule catastrophe.

What we have described based on our modeling is a kind of 
cooperativity that operates within the microtubule. This resonates 
with a view of microtubule dynamics (Kueh and Mitchison, 2009; 
Brouhard and Rice, 2018) in which different conformations of αβ-
tubulin can modulate or even override the nucleotide state in dictat-
ing biochemical interactions and rates in the lattice. Detecting such 
cooperativity experimentally and determining whether it operates 
on GTPase and/or the strength of lattice contacts are important chal-
lenges for future work. The recently introduced ability to work with 
tubulins from different species (Drummond et al., 2011; Widlund 
et al., 2012; Chaaban et al., 2018), to purify single isotypes and site- 
directed mutants (Drummond et al., 2011; Johnson et al., 2011; 
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Minoura et al., 2013; Geyer et al., 2015, 2018; Pamula et al., 2016; 
Ti et al., 2016; Vemu et al., 2016, 2017), and to measure αβ-
tubulin:microtubule interactions at the single-molecule level 
(Mickolajczyk et al., 2018) has the potential to accomplish this, and 
promises to provide new kinds of data that will drive a deeper 
understanding of microtubule catastrophe.

In summary, our computational experiments indicate that be-
yond–nearest neighbor, through-lattice effects can make important 
contributions to microtubule catastrophe. The combination of this 
allosteric conformational coupling with the extended microtubule 
lattice has the potential to generate abrupt, switchlike changes (re-
viewed in Bray, 2013, for other systems) that could give rise to 
threshold-type behavior wherein the switch only happens upon 
reaching some critical percentage of GTP hydrolysis (or some other 
property). Interestingly, the onset of rapid shrinking has been ob-
served to occur after a threshold loss of the stabilizing cap is ex-
ceeded (Maurer et al., 2014). A number of microtubule-associated 
proteins have recently been shown to alter the microtubule lattice 
upon binding (Zhang et al., 2015, 2017, 2018; Howes et al., 2017; 
von Loeffelholz et al., 2017; Peet et al., 2018; Shima et al., 2018), 
and these binding-induced conformational changes might also 
modulate properties of the lattice at greater distance. At least one 
study has proposed that EB proteins might influence the activity of 
XMAP215-family microtubule polymerases via long-range, through-
lattice effects (Zanic et al., 2013), but the underlying mechanism was 
not specified. The apparent importance of long-range cooperative/
allosteric effects suggests that material-like properties of the micro-
tubule are important for catastrophe and may be targeted by regu-
latory factors.

MATERIALS AND METHODS
Computational simulation of the models
We created a computer program (coded in Fortran) to perform ki-
netic Monte Carlo simulations of MT plus ends. The model is similar 
to one we used previously (Ayaz et al., 2014; Piedra et al., 2016; 

Mickolajczyk et al., 2018), and was inspired by an earlier implemen-
tation by others (VanBuren et al., 2002). Briefly, the microtubule lat-
tice is represented by a two-dimensional array with a periodic 
boundary condition to mimic the cylindrical wall of the microtubule. 
MT dynamics is simulated one biochemical reaction (αβ-tubulin sub-
unit association or dissociation, and GTP hydrolysis) at a time. In a 
prior study we reported that the rate of GDP-to-GTP exchange at 
the microtubule end could modulate the frequency of catastrophe 
(Piedra et al., 2016). That reaction did not improve the predicted 
concentration dependence of catastrophe (Piedra et al., 2016), so 
for simplicity we did not include it in the models described here. For 
the two-state model, the association can happen at the tip of each 
protofilament, and the association rate is given by kon × [αβ-tubulin], 
where kon denotes the on rate constant. The terminal subunits can 
dissociate from the MT lattice at a rate given by kon × KD, where KD 
is the affinity determined by the sum of all interdimer interactions 
and the entropy cost of binding to MT. The strengths of the longitu-
dinal and lateral interactions are different, but they are isotropic oth-
erwise. As described previously (Piedra et al., 2016), our parameter-
ization assumes that the nucleotide (GTP or GDP) acts in-trans to 
affect the strength of longitudinal contacts such that GTP contacts 
are stronger than GDP ones. GTP hydrolysis is modeled for all non-
terminal subunits with rate constant khyd.

Automated analysis of simulations
We created custom MATLAB routines to analyze the output from 
the simulations. These routines determine the instantaneous 
growth/shrinking rates by looking at the change in the total number 
of subunits over a 5-s time period. If the instantaneous growth rate 
falls below 25% of the average growth rate during the growth phase, 
the simulated MTs are considered to have paused for the duration 
of the slower growth. The pause episodes are left out of the growth/
shrinking rate calculations and are used to determine how frequently 
the simulation pauses. The MATLAB routine automatically detects 
MT catastrophe using the following definition: the simulated MT 

FIGURE 7: Cartoon illustrating some consequences of the different models. (A) In the two-state model, multiple 
protofilaments with exposed terminal GDP-tubulin tend to be required for MT pausing and catastrophe. Individual 
GDP-terminated protofilaments can be covered by subsequent associations of GTP-tubulins above and adjacent to the 
GDP-site (unpublished data), so the exposure of multiple GDP-terminated protofilaments typically requires multiple 
steps (black arrows) and is concentration-dependent. In these cartoons the size of the GTP-cap is represented by darker 
shading and becomes smaller in the paused state. (B) In the neighbor-stimulated GTPase model, the local amplification 
of GTPase makes developing a patch of GDP-terminated protofilaments more likely, and consequently it can occur in 
fewer concentration-dependent steps (fewer arrows than in A). (C) In the long-range affinity-modulation model, a single 
GDP-terminated protofilament is harder to cover (indicated by a white asterisk) because of the longer-range effect on 
sites adjacent to the capping site. This amplification of the impact of an individual GDP-terminated protofilament also 
reduces concentration dependence.
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must persistently be shrinking at a high rate (shrinking rate greater 
than 75% of the mode of shrinking rate distribution) for an extended 
period of time (at least 15 s). In the two-step decomposition of 
catastrophe, the frequency of pausing is tabulated to obtain the 
growth-to-pause frequency, and the likelihood of catastrophe fol-
lowing transient pausing gives the pause-to-catastrophe probability. 
We calculated these values for the simulation models trained to 
(Walker et al., 1988). We used the ratios between values at 9.5 and 
13.5 µM as a measurement of the concentration dependencies of 
the growth-to-pause frequency and the pause-to-catastrophe prob-
ability. These ratios (the concentration dependencies) were normal-
ized to the concentration decencies of the two-state models for 
model-to-model comparisons.

The parameterization of the two-state computational model
To parameterize the two-state model, we first assumed a value for 
kon of 2 tubulin·s-1·µM-1 per protofilament for the data that we fit in 
the main text (Walker et al., 1988) and 1.5 tubulin·s-1·µM-1 per pro-
tofilament for the alternative data that we fit in the Supplemental 
Material (Gardner et al., 2011b; Lawrence et al., 2018). Then the 
strengths of the longitudinal (at the GTP-interface) and lateral inter-
action were determined by fitting the model predictions of growth 
rates (during the growth phase) to the experimental values. The 
strength of the longitudinal interaction at the GDP interface was 
determined by fitting the model predictions of shrinking rates 
(during the shrinking phase) to the experimental values. Then the 
GTPase rate was determined by fitting the model predictions on the 
catastrophe frequency at a single reference concentration (10 µM 
for the data [Gardner et al., 2011b; Lawrence et al., 2018] in the 
main text and 12 µM for the alternative set [Walker et al., 1988] in 
the Supplemental Material). Growth rates decrease in the presence 
of GTPase activity, and catastrophe frequency depends on growth 
rates. We therefore optimized the parameters iteratively. Owing in 
part to the use of this iterative approach, the model parameters for 
GTP–tubulin binding affinity (1 µM instead of 4 µM for corners) and 
GDP weakening factor (300 instead of 50) are different from what we 
previously reported (Piedra et al., 2016).

The GDP.Pi model
We incorporated a third intermediate state into our model, includ-
ing GDP.Pi. This GDP.Pi model inherits the two-state model’s proper-
ties described above with some modifications. In this model, GTP is 
first hydrolyzed to GDP.Pi; then the Pi is released at a set rate to form 
GDP. We assumed that the Pi is released immediately when ex-
posed at the tip of the MT, and that the strength of the longitudinal 
interface with GDP.Pi is different from that of those with GTP or GDP. 
This model has two additional parameters: the rate of Pi release and 
the strength of the longitudinal interface with GDP.Pi. We explored 
the parameter space of the additional adjustable parameters in a 
3-by-3 grid pattern: setting the rate of Pi release to 0.1, 1, and 10-
fold of the GTPase rate, and setting the strength of the longitudinal 
interface with GDP.Pi to high (GTP-like), intermediate, and low 
(GDP-like). Then, in order to maintain the correct frequency of catas-
trophe at the reference concentration, we retrained the GTPase 
rate. We kept the αβ-tubulin binding affinities the same as in the 
two-state model because we did not want to introduce confounding 
variation. Changes in growth and shrinking rates due to the modifi-
cation were negligible.

The affinity modulation models
As before, the affinity modulation models inherit the two-state mod-
el’s properties described above, with some modifications. In the 

nearest-neighbor affinity modulation model, we assumed that the 
rate of αβ-tubulin dissociation is higher if the nucleotide state of the 
longitudinal interface of the nearest neighbor is different. This model 
has one new adjustable parameter: the energy cost of being next to 
a tubulin with different nucleotide. We explored the parameter 
space by setting the energy cost to different values and retraining 
the GTPase. As described above, we kept the αβ-tubulin binding 
affinities the same as in the two-state model. In the long-range affin-
ity modulation model, the range of influence for the affinity modula-
tion is an additional adjustable parameter. When the range is set to 
0, the model behaves identically to the two-state model, and when 
the range is set to 1, the model behaves identically to the nearest-
neighbor affinity modulation model; for values greater than 1, it 
gives beyond–nearest neighbor effects. For this model, we set the 
energy cost to the maximum value we used for the nearest-neighbor 
affinity modulation model and varied the range from 0 to 7.

The GTPase stimulation model
In the nearest-neighbor GTPase stimulation model, αβ-tubulin with 
GTP laterally next to αβ-tubulin bound to GDP hydrolyzes GTP 
faster. This model has one additional parameter: the context-de-
pendent fold increase in GTPase rate. We set the fold increase to 1, 
10, 100, and 1000 and retrained the basal GTPase rate, as before. 
This context-dependent increase in GTPase rate leads to a wavelike 
propagation of GTP hydrolysis. In all our simulations, the propaga-
tion speed of the wave of GTP hydrolysis was below the lowest 
growth rate experimental data. In the propagation-limited GTPase 
modulation model, we limited the wavelike propagation of the GTP 
hydrolysis by preventing GTPase modulation across the MT seam.

We created a similar model where the GTPase rate is stimulated 
by longitudinal neighbors, but these models predict catastrophe 
frequency more sensitive to the concentration than in the two-state 
model.

Code availability
Simulation codes will be shared upon request.
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