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Abstract

Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and
population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent
phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene
and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes.
Characterizing patterns of genomic change where putative functions and interactions of system components are rela-
tively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary tra-
jectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories
can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolu-
tionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relation-
ships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may
relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication
and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar
and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how
genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study
system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how
functional constraints on different components of biological systems govern their evolutionary trajectories.
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Introduction
The concept of constraints in evolutionary biology encom-
passes a diverse array of interpretations and terminologies
shaped by the approaches of different research fields
(Antonovics and van Tienderen 1991). In general terms, con-
straints can be described as factors that limit or direct the
process of natural selection leading to outcomes representing
only a fraction of all theoretically possible scenarios.
Constraints may impact the capacity to generate new var-
iants as well as how selection either limits or promotes con-
sequent phenotypic change, often considered in
developmental biology (Richardson and Chipman 2003)
and population genetics (Hoffmann 2013) contexts.
Comparative genomics also recognizes the role of constraints,
in shaping the evolution of gene and genome architectures,
sequence evolutionary rates, and gene gains and losses, as well
as on the molecular phenotypes governed by their functional
products (Koonin and Wolf 2010). For example, protein se-
quence evolution is constrained by requirements for main-
taining proper protein structure and function, including
during folding and interactions with other macromolecules
(Worth et al. 2009). Functional constraints also impact the

evolution of gene families, for example, families of paralogs
with or without essential genes exhibit dramatically different
evolutionary regimes in terms of sequence divergence and
duplication rates (Shakhnovich and Koonin 2006). These
likely influence observed trends across the gene duplication
spectrum that show a dichotomy of constrained single-copy
control versus a multi-copy license for greatly relaxed copy-
number restrictions (Waterhouse et al. 2011). Integrative
analyses of evolutionary and functional constraints point to
emergent properties such as a gene family’s “importance” or
“status” characterized by low sequence divergence and pro-
pensity for gene loss with high expression levels, protein
interactions, and essentiality; or a family’s “adaptability” man-
ifested by high duplication levels, many genetic interaction
partners, and a tendency of genes to be nonessential; or a
family’s “reactivity” with high gain/loss and expression levels
but low sequence divergence, a paucity of essential genes, and
few physical or genetic interactions (Wolf et al. 2006). If such
constraints limit the realm of possibilities in terms of allowed
gene evolutionary trajectories then recurring patterns should
be observable for genes evolving under similar constraints.
Characterizing these patterns in the context of a relatively
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well-studied system, where putative functional roles and
interactions of member genes are well described, offers an
opportunity to explore whether genes with similar or analo-
gous functions exhibit similar evolutionary trajectories, possi-
bly governed by common constraints.

The insect innate immune system is relatively well charac-
terized with respect to the functional roles and evolutionary
histories of key implicated pathways and component gene
families. It confers remarkable resilience to encountered
pathogens through the activation of powerful responses to
neutralize and clear infections (Rolff and Reynolds 2009;
Ligoxygakis 2017). The immune system comprises both hu-
moral and cellular responses with components dedicated to
recognizing signs of infection, signaling cascades to activate
primary defenses and induce transcriptional responses, mod-
ulators that control the intensity and direction of responses,
and effector proteins and biomolecules for pathogen killing.
Many of the genes and their protein products implicated in
these complex processes were first identified in the fruit fly,
Drosophila melanogaster (Lemaitre and Hoffmann 2007; Imler
2014). Classical receptor proteins that recognize pathogen-
associated molecular patterns include peptidoglycan recogni-
tion proteins (PGRPs) (Wang et al. 2019) and b-1,3-glucan
recognition or gram-negative bacteria-binding proteins
(GNBPs) (Rao et al. 2018). Pathogen recognition may then
trigger immune signaling through the Toll (Valanne et al.
2011), Imd (Myllym€aki et al. 2014), or the JAnus kinase protein
(JAK)/signal transducer and activator of transcription (STAT)
(Myllym€aki and R€amet 2014) pathways. Their activation leads
to the translocation of transcription factors to the nucleus
where the expression of effector genes such as those encoding
antimicrobial peptides (AMPs) (Lazzaro et al. 2020) is upregu-
lated. Defense responses are mediated by various cells and
tissues including hemocytes, the fat body, and the midgut,
and pathogen killing can occur via processes such as melani-
zation, phagocytosis, lysis, autophagy, and apoptosis (Hillyer
2016; King 2020), with RNA interference (RNAi) facilitating
major antiviral defenses (Mussabekova et al. 2017). These com-
plex interactions collectively offer insects protection from a
vast array of viruses, bacteria, fungi, protozoa, and nematodes.

Sequencing the D. melanogaster and Anopheles gambiae
genomes provided the first opportunity for comparative ge-
nomic analysis of immune-related genes in insects
(Christophides et al. 2002). Advances in genome sequencing
technologies have facilitated an increasingly dense sampling of
species to explore insect gene repertoires and perform cross-
species comparisons to trace gene evolutionary histories
(Waterhouse 2015). This has allowed comparisons beyond
Diptera to include Hymenoptera (Evans et al. 2006; Brucker
et al. 2012; Barribeau et al. 2015), Coleoptera (Zou et al. 2007),
Lepidoptera (Tanaka et al. 2008), and Hemiptera (Gerardo
et al. 2010), as well as expanded sampling of flies and mosqui-
toes (Sackton et al. 2007; Waterhouse et al. 2007; Bartholomay
et al. 2010; Sackton et al. 2017). These comparative studies
generally focused on the canonical immune-related gene rep-
ertoire, comprising genes that have been directly implicated in
immune responses through experimental research, or

indirectly linked to immunity through homology to known
immune proteins (Bartholomay and Michel 2018; Waterhouse
et al. 2020). Emerging patterns pointed to distinct evolutionary
dynamics that characterize different immune phases: (1) gene
and domain gains or losses (turnover) can create diversity in
recognition modules; (2) core signaling pathway members are
almost always maintained as single-copy orthologs often with
elevated levels of sequence divergence; (3) modulators appear
to form lineage-restricted units with members picked from
large families often with high gene turnover rates; and (4)
effectors like AMPs show dynamic gains and losses or are
lineage-restricted whereas oxidative defense effectors are wide-
spread with low levels of sequence divergence. These observa-
tions provide specific examples and strong expectations of
types of genes with similar functions that exhibit similar evo-
lutionary trajectories, within the established framework of in-
sect innate immunity that classifies genes and families into
broad functional categories of recognition, signal transduction,
modulation, and effector components.

These trends are based on observations from cross-species
comparisons of insect immune gene repertoires. Here we hy-
pothesize that comprehensive quantitative multispecies and
multifeature characterization of gene family evolutionary his-
tories can define distinct dynamics associated with different
functional roles in immune responses. Such detailed evolution-
ary profiling can then be used to address the question of
whether gene families involved in common immune func-
tional categories, modules, or processes exhibit similar evolu-
tionary trajectories possibly driven by shared constraints. We
take advantage of genomic resources available for 22 mosquito
species (Holt et al. 2002; Nene et al. 2007; Arensburger et al.
2010; Lawniczak et al. 2010; Marinotti et al. 2013; Jiang et al.
2014; Chen et al. 2015; Neafsey et al. 2015; Matthews et al.
2018; Ruzzante et al. 2019) and 46 other insects to (1) develop
a suite of metrics that quantify gene and gene family evolu-
tionary histories, (2) employ these metrics to characterize the
evolutionary features of mosquito and fly immune gene rep-
ertoires, and (3) explore the relationships between gene family
evolutionary profiles and their functional roles in immunity to
understand how different constraints may relate to distinct
dynamics. The resolution afforded by multispecies compara-
tive analyses and our suite of gene sequence and copy-number
evolutionary metrics reveals the evolutionary features that
most clearly distinguish each family, and highlights similar
and contrasting patterns across all immune gene families.
Complementing knowledge-based functional categorizations
with gene coexpression analyses identifies immune families
that function in concert, revealing evolutionary-functional cor-
respondences where most prominently, families involved in
mosquito complement system responses show both high evo-
lutionary similarities and high expression similarities.

Results and Discussion

A Suite of Metrics to Quantify Gene and Gene Family
Evolutionary Histories
The developed set of evolutionary feature metrics is designed
to capture a broad spectrum of gene evolutionary dynamics
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including taxonomic spread, copy-number changes, protein-
and DNA-level sequence divergence, conservation, and con-
straint, as well as genomic organization, and population-level
sequence variation (table 1). The 18 metrics are computed
using gene orthology delineated across 43 insect species (21
mosquitoes, 15 other dipterans, and 2 outgroup representa-
tives each for Lepidoptera, Coleoptera, Hymenoptera, and
Exopterygota), sets of whole genome alignments with 22
mosquitoes or with 36 Drosophila, or polymorphism data
from An. gambiae (see Materials and Methods).
Orthologous groups (OGs) comprised all genes descended
from a single gene in the last common ancestor of the set
of the extant species under consideration. As such they form
the principal unit for which the suite of metrics is computed.
OG compositions are used directly to quantify features such
as universality (UNI; the proportion of species present in an
OG) or duplicability (DUP; the proportion of species that
have multicopy orthologs). They are used as inputs for gene
copy-number turnover analysis to quantify gain (expansion)
and loss (contraction) events. Their aligned sequences are

used to compute protein- and DNA-level divergence metrics
per OG. Nucleotide-level measurements from whole genome
alignment or population variation data are computed over
each gene’s coding-sequence length and averaged over multi-
copy orthologs in an OG. Compositions of families range from
just a single OG for prophenoloxidases (PPO, 9 An. gambiae
genes, 3 D. melanogaster genes), to 23 OGs with 28
An. gambiae genes for small regulatory RNA pathway mem-
bers (SRRP) or 29 OGs with 37 D. melanogaster genes for C-
type lectins (CTL) (table 2). The suite of metrics represents a
comprehensive quantitative framework to enable detailed
evolutionary feature profiling analyses, here applied to 298
OGs containing 420 An. gambiae immune-related genes and
276 OGs with 354 D. melanogaster immunity genes.

The Evolutionary Feature Landscape of Mosquito
Immunity
Profiles built from the 18 quantified evolutionary features
successfully delineate key similarities and differences amongst
the catalog of 36 canonical mosquito immune-related gene

Table 1. Evolutionary Feature Metric Descriptions.

Evolutionary feature Acronym Description Data source

Taxonomic age AGE Age of the last common ancestor of species in an OG, in terms of
millions of years since divergence, computed from the ultra-
metric species phylogeny

43-insect orthology

Universality UNI The proportion of the total species present in an OG (all species,
UNI 5 1)

43-insect orthology

Duplicability DUP The proportion of species present in an OG that have multicopy
orthologs

43-insect orthology

Average copy number ACN The average (mean) ortholog copy number across all species
present in an OG

43-insect orthology

Copy number variation CNV The standard deviation of ortholog counts per species present in
an OG divided by the ACN

43-insect orthology

Expansions EXP CAFE quantified proportions of gene gain nodes for an OG 43-insect orthology
Contractions CON CAFE quantified proportions of gene loss nodes for an OG 43-insect orthology
Stability STA CAFE quantified proportions of no copy-number change nodes

for an OG
43-insect orthology

Synteny SYN The proportion of orthologs in an OG that maintains their
orthologous neighbors in the genomes of the other species

43-insect orthology

Evolutionary rate EVR The average rate of protein sequence divergence normalized by
the distance (% identity) between each pair of species as
computed by OrthoDB

43-insect orthology

PAML’s dS PDS The number of synonymous substitutions per synonymous site
as computed by PAML

19-Anopheles orthology

PAML’s dN PDN The number of nonsynonymous substitutions per nonsynony-
mous site as computed by PAML

19-Anopheles orthology

PAML’s dN/dS SEL The nonsynonymous to synonymous substitution ratio (dN/dS)
as computed by PAML

19-Anopheles orthology

Nonsynonymous SNP proportion NSP The proportion of all coding-sequence SNPs that were nonsy-
nonymous (averaged over genes per OG)

An. gambiae variation

Nonsynonymous SNP density NSD The density of nonsynonymous SNPs over a gene’s coding-se-
quence length (averaged over genes per OG)

An. gambiae variation

Synonymous SNP density SSD The density of synonymous SNPs over a gene’s coding-sequence
length (averaged over genes per OG)

An. gambiae variation

Whole genome alignability WGA The number of species aligned, per nucleotide from the whole-
genome alignment, averaged over coding-sequence length
(averaged over genes per OG)

22 mosquitoes
36 Drosophila

PhastCons constraint PHC PhastCons quantified constraint scores, per nucleotide from the
whole-genome alignment, averaged over coding-sequence
length (averaged over genes per PG)

22 mosquitoes
36 Drosophila

NOTE.—For each evolutionary feature, the metric name, acronym, description, and source data are presented (see Materials and Methods for details).
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Table 2. The Anopheles gambiae and Drosophila melanogaster Immunity Gene Catalogs.

Acronym Summary description An. gambiae D. melanogaster

Genes OGs Genes OGs

GALE Galectins bind specifically to b-galactoside sugars and can function as pattern
recognition receptors in innate immunity

9 6 6 5

GNBP Gram-negative binding proteins (or b-1,3-glucan-binding proteins) are a family
of carbohydrate-binding pattern recognition receptors

7 3 3 3

PGRP Peptidoglycan recognition proteins are pattern recognition receptors capable
of recognizing the peptidoglycan from bacterial cell walls

7 5 12 6

SCRA Scavenger receptors are made up of different classes that function as pattern
recognition receptors for a broad range of ligands including from pathogens

5 5 5 4
SCRB 13 10 14 9
CTL C-type lectins are carbohydrate-binding proteins with roles in pathogen

opsonization, encapsulation, and melanization, as well as immune signaling
cascades

25 20 37 29

FREP Fibrinogen-related proteins (also known as FBNs) are a family of pattern rec-
ognition receptors with homology to the C terminus of the fibrinogen b and c

chains

38 15 13 6

LRIM Leucine-rich repeat immune proteins are mosquito immune factors that ac-
tivate complement-like defense responses against pathogens

24 20 0 0

ML MD-2-like proteins, also known as Niemann-Pick Type C-2 proteins, possess
myeloid-differentiation-2-related lipid-recognition domains involved in
recognizing lipopolysaccharide

16 7 8 5

NIMROD Nimrods have been shown to bind bacteria leading to their phagocytosis by
hemocytes, they contain epidermal growth factor-like domains

3 3 12 8

TEP Thioester-containing proteins are related to vertebrate complement factors
and a2-macroglobulin protease inhibitors, their activation through pro-
teolytic cleavage leads to phagocytosis or killing of pathogens

10 5 5 5

IMDSIG The immune deficiency pathway is characterized by peptidoglycan recognition
protein receptors, intracellular signal transducers (IMDSIG) and modulators
(IMDMOD), and the NF-jB transcription factor Relish

9 9 10 10
IMDMOD 6 6 6 6

JASTSIG The JAK and the STAT are two core components of the JAK/STAT pathway,
with signal transducers (JASTSIG) and modulators (JASTMOD) involved in
cellular responses to stress or injury

3 3 6 6
JASTMOD 3 3 4 4

TOLLSIG The intracellular components of the Toll pathway are homologous to the toll-
like receptor innate immune pathway in mammals, with signal transducers
(TOLLSIG) and modulators (TOLLMOD) culminating in activation of the NF-
jB transcription factors Dorsal

5 5 6 6
TOLLMOD 8 8 8 8

CASP Caspases are cysteine-aspartic proteases involved in immune signaling cascades
and apoptosis

15 6 7 5

CLIPA Subfamilies of CLIP-domain serine proteases are defined by patterns of cysteine
residues, several CLIPs have roles as activators or modulators of immune
signaling cascades

20 13 12 10
CLIPB 27 20 15 13
CLIPC 8 6 7 7
CLIPD 9 8 10 10
CLIPE 9 7 3 3
IAP Inhibitors of apoptosis are important in antiviral responses and are involved in

regulating immune signaling and suppressing apoptotic cell death
8 5 4 4

SRPN Serine protease inhibitors, or serpins, modulate many signaling cascades; they
act as suicide substrates to inhibit their target proteases

18 16 30 20

AMP Antimicrobial peptides are the classical effector molecules of innate immunity;
they include defensins, cecropins, and attacins that are involved in bacterial
killing by disrupting their membranes

9 8 10 5

LYS Lysozymes are key effector enzymes that hydrolyze peptidoglycans present in
the cell walls of many bacteria, causing cell lysis

7 1 17 3

PPO Prophenoloxidases are key enzymes in the melanization cascade that helps to
kill invading pathogens and is important for wound healing

9 1 3 1

GPX Glutathione, heme, and thioredoxin peroxidases are enzymes involved in the
metabolism of reactive oxygen species that are toxic to pathogens

2 2 2 2
HPX 15 10 10 9
TPX 5 5 6 6
SOD Superoxide dismutases are antioxidant enzymes involved in the metabolism of

toxic superoxide into oxygen or hydrogen peroxide
4 4 4 4

APHAG Autophagy-related genes participate in a form of cell death characterized by
the formation of an internal autophagosome where pathogens are degraded

19 19 22 22

SRRP 28 23 22 20

(continued)
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families and subfamilies (fig. 1). The evolutionary feature pro-
files for all families are visualized by averaging the metrics over
all OGs with genes belonging to each family. Contrasting the
profile of a given family against the profiles of all other
immune-related families reveals the evolutionary features
that most clearly distinguish each family (fig. 1; supplemen-
tary fig. S1, Supplementary Material online). This is clearly
illustrated by the leucine-rich repeat immune genes (LRIMs)
comprising 24 An. gambiae genes from 20 OGs, members of
which interact with thioester-containing proteins (TEPs) to
activate complement-like responses against pathogens
(Povelones et al. 2009; Levashina and Baxter 2018). Their tax-
onomic age (AGE) and UNI are significantly lower, consistent
with there being no detectable LRIM orthologs beyond mos-
quitoes (Waterhouse et al. 2010). They also exhibit fairly typ-
ical low DUP, average copy-number (ACN), and copy-
number variation (CNV), reflecting their mostly single-copy
ortholog status across mosquitoes. These metrics describe the
family as a whole although allowing for differences amongst
members, for example, the gene duplications that gave rise to
three APL1/LRIM2 paralogs in one lineage of African
Anopheles (Mitri et al. 2020). Estimates of nonsynonymous
substitutions per nonsynonymous site (PDN) are higher than
for other families, and significantly so. They are not as ex-
treme, but still significantly higher than other families, for
synonymous substitutions per synonymous site (PDS).
Together this produces PDN:PDS ratios (SEL, i.e. dN/dS ratios)
that are significantly higher than other families, consistent
with positive selection or relaxed constraint as observed in
previous genus-wide analyses (Neafsey et al. 2015).

Gene gain/loss estimates for the LRIMs show significantly
fewer expansions (EXP) and significantly more contractions
(CON), but overall stability (STA) close to the mean, in agree-
ment with the copy-number metrics. Conservation of geno-
mic neighborhood, or synteny (SYN), is slightly lower than
average for LRIMs, although they notably show the most ex-
treme significantly elevated protein sequence evolutionary
divergence (EVR). Single nucleotide polymorphism (SNP)
data also show a significantly elevated proportion of non-
synonymous SNPs (NSP) and significantly above average non-
synonymous SNP density (NSD), with synonymous SNP
density (SSD) slightly below the mean. The family as a whole

thus appears to reflect the natural diversity and polymor-
phism observed for some family members (Rottschaefer
et al. 2011; Holm et al. 2012). Finally, whole genome alignment
data show that LRIMs are significantly less alignable (whole
genome alignability [WGA]) and significantly less constrained
(per-nucleotide levels of constraint [PHC]) than other im-
mune gene families, reflecting the patterns observed with
protein- and DNA-based measures of sequence divergence.

Family profiles highlight the extent to which each family
deviates from or matches the typical metric values for each
evolutionary feature. GNBPs are characterized by high values
for metrics capturing gene duplications (DUP and ACN) with
high alignability across mosquito genomes (WGA), consistent
with the birth of the B-type GNBP subfamily in the mosquito
ancestor (Bartholomay et al. 2010). In contrast, Imd pathway
signaling genes (IMDSIGs) are characterized as being relatively
ancient (high AGE and UNI) and copy-number stable (low
CON and high STA) with nevertheless a high protein se-
quence evolutionary rate (EVR), in agreement with previously
observed evolutionary dynamics of immune signaling path-
way members (Waterhouse et al. 2007). The subfamilies of
CLIP-domain serine proteases are characteristically young
(low AGE and UNI), except for CLIPDs which are older and
significantly more taxonomically widespread (UNI), a contrast
also reflected by several other evolutionary features.
Differences amongst CLIP subfamilies could relate to the roles
of catalytic and noncatalytic members in modulatory cas-
cades and their hierarchies (El Moussawi et al. 2019).

The autophagy (APHAG) and SRRPs share many features
that are significantly different from the mean: They are an-
cient (high AGE and UNI), stable (low CON and high STA),
and constrained (low SEL, EVR, NSP, NSD with high WGA and
PHC). However they differ markedly with respect to estimates
of dN and dS with both PDN and PDS being significantly
lower for APHAGs and significantly higher for SRRPs. Their
overall conservation and stability is consistent with both
autophagy and RNAi being ancient cellular processes with
roles beyond immunity, although their contrasting levels of
substitutions could reflect different structural constraints on
protein–protein versus protein–RNA interactions. The SRRPs
do show above average DUP and ACN values, but not signif-
icantly so, consistent with reported single-copy orthologs of

Table 2. Continued

Acronym Summary description An. gambiae D. melanogaster

Genes OGs Genes OGs

Small regulatory RNA pathway members are involved in RNA interference and
include argonautes, dicers, piwis, and helicases

SPZ Spaetzle-like proteins contain a cysteine knot domain, the cleavage of Spaetzle
results in binding of the product to the Toll receptor and subsequent acti-
vation of the Toll pathway

5 5 6 6

TOLL Toll receptors connect extracellular pathogen recognition to intracellular Toll
pathway signaling and activation of immune defense responses

12 6 9 6

Totals: 420 298 354 276

NOTE.—Brief descriptions of immune gene families or pathway components are presented along with counts of the numbers of genes and OGs for the mosquito and fly catalogs.

Functional Constraints and Evolution of Insect Innate Immunity . doi:10.1093/molbev/msab352 MBE

5

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab352#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab352#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab352#supplementary-data


Argonautes 1 and 2 and duplications of Piwi/Aubergine in
mosquitoes (Lewis et al. 2016). Indeed previous analyses of
SRRPs suggested faster evolution in Aedes and Culex rather
than Anopheles mosquitoes (Campbell et al. 2008), so con-
servative patterns observed here could be driven by the data
set consisting mainly of anophelines.

The distributions of computed OG metrics for all of the
mosquito immune gene families for each evolutionary feature
are presented in supplementary additional file 1,
Supplementary Material online together with statistical
assessments of the significance of deviations from the typical
metric values. The trends and significant differences observed
across the suite of quantified features facilitate evolutionary
profiling that recovers previous mostly qualitative observa-
tions and highlights similar and contrasting patterns across all
immune gene families (table 3).

Families with Similar Functional Roles Exhibit Similar
Evolutionary Profiles
Several bootstrap-supported groupings of families and sub-
sets of features are revealed when hierarchical clustering is
applied to the matrix of evolutionary feature profiles of all
mosquito immune gene families (fig. 2). Clustering aims to
objectively delineate the hierarchical similarities amongst
families and features to identify subsets of features that
vary in concert, and groups of evolutionarily similar families
(see Materials and Methods). Employing family median (fig. 2)
and mean (supplementary fig. S2, Supplementary Material
online) metric values to build a dissimilarity matrix with
Pearson’s correlation distances and performing bootstrapped
clustering with the average linkage method results in several
well-supported subsets and groupings. Using Pearson’s corre-
lation distances for clustering aims to give weight to the
metric directionalities rather than their magnitudes or ranks
(Kassambara 2017), to identify families with similar evolution-
ary feature profiles. Nevertheless, clustering with alternative
distance functions (Spearman’s and Kendall’s correlation, and
Euclidean distances) and additional agglomerative clustering
methods (Single, Complete, and Median linkage) confirms
support for many of the observed hierarchical similarities
(supplementary figs. S3–S6, additional file 2, Supplementary
Material online). Furthermore, clustering using principal com-
ponents instead of the metric values themselves also identi-
fies several of the observed family groupings (supplementary
fig. S7, Supplementary Material online). Overall, there are four
main subsets of evolutionary features that consistently cluster
together and somewhat more variable groupings of gene
families depending on the combinations of metrics and
methods applied.

First, with respect to evolutionary features (see table 1
for feature summary descriptions), four subsets of features
are repeatedly and robustly recovered: (i) PAML’s dN,
PAML’s dN/dS (SEL), the proportion of nonsynonymous
SNPs, CON (gene losses), and evolutionary rate (protein
sequence divergence); (ii) densities of synonymous and
nonsynonymous SNPs; (iii) ACN, EXP, duplications, and
CNV, often also including SYN as in figure 2; and (iv)
age, universality, constraint, and alignability, often also
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FIG. 1. Evolutionary feature profiles of mosquito immune gene fam-
ilies. Evolutionary profiling highlights similar and contrasting patterns
across all 36 immune gene families or subfamilies (rows). Deviations
from the typical metric values for the suite of 18 evolutionary feature
metrics (columns) are computed as the difference between the family
mean and the average over all OGs from other immune-related gene
families (D�x). For visualization, values of D�x are scaled by the absolute
maximum D�x per metric, that is, for each metric the distribution is
transformed by dividing all values by the absolute maximum D�x.
Values therefore range from a minimum of –1 for metrics where
the largest deviation is below the mean, that is lower than other
families, and the maximum of 1 for metrics where the largest devia-
tion is above the mean, that is higher than other families. The signif-
icance of the difference of the distribution of metric values (no
scaling) for each family compared with all other families was assessed
using the Wilcoxon rank-sum (Mann–Whitney U) test and a permu-
tation test (asterisks correspond to the lower P value from these two
tests; ***P� 0.01, **P� 0.05, *P� 0.1). Feature acronyms are defined
in table 1. Family acronyms are defined in table 2 and are colored
according to categories defined based on their putative roles in the
principal immune phases: classical recognition (red), other recogni-
tion (blue), pathway signaling (bright green), pathway modulation
(purple), cascade modulation (orange), antimicrobial effectors (pink),
effector enzymes (olive green), autophagy (dark cyan), RNAi (black),
cytokines (brown), and toll receptors (dark green). See text for defi-
nitions of evolutionary feature acronyms: taxonomic spread and
copy-number features in blue; sequence-based features in red.
Evolutionary feature profiles of mosquito immune gene families
with median differences (D�x) are presented in supplementary figure
S1, Supplementary Material online.
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Table 3. Characteristic Evolutionary Features of Immune Gene Families and Subfamilies.

Family Significantly higher Significantly lower Interpretation summary

GALE – – No extreme features
GNBP DUP, ACN, SYN, WGA – Duplications, maintained neighborhood, widely alignable
PGRP EXP, NSD, SSD – Duplications, population variation
SCRA AGE CON Ancient, stable copy-number
SCRB AGE, UNI, WGA, PHC PDN, SEL, CON, NSD Ancient, widespread, widely alignable, constrained sequence, con-

strained substitutions, stable copy-number, population
conservation

CTL SEL, CON, SYN UNI, SSD, WGA, PHC Relaxed substitutions, losses, maintained neighborhood, widespread,
population conservation, sparsely alignable, relaxed sequence

FREP ACN, SEL, CON, NSP AGE, UNI, STA, SYN, WGA,
PHC

Duplications, relaxed substitutions, losses, amino acid divergence,
young, sparse, unstable copy-number, shuffled neighborhood,
sparsely alignable, relaxed sequence

LRIM PDN, PDS, SEL, CON, EVR,
NSP, NSD

AGE, UNI, EXP, WGA, PHC Relaxed substitutions, losses, amino acid divergence, population
variation, young, sparse, stable copy-number, sparsely alignable,
relaxed sequence

ML DUP, ACN, EXP, SYN PDS, STA Duplications, maintained neighborhood, constrained substitutions,
unstable copy-number

NIMROD – SYN Shuffled neighborhood
TEP EVR, NSD, SSD WGA, PHC Amino acid divergence, population variation, sparsely alignable, re-

laxed sequence
IMDSIG AGE, UNI, STA, SYN, EVR CON Ancient, widespread, stable copy-number, maintained neighbor-

hood, amino acid divergence
JASTSIG EVR, SSD SYN Amino acid divergence, population variation, shuffled neighborhood
TOLLSIG STA CON, WGA Stable copy-number, sparsely alignable
IMDMOD AGE, UNI, PDS, SSD, PHC CON, EVR, NSP Ancient, widespread, relaxed synonymous substitutions, population

variation, constrained sequence, stable copy-number, amino acid
conservation

JASTMOD – – No extreme features
TOLLMOD AGE, UNI, STA, PHC PDN, SEL, CON, EVR, NSP,

NSD
Ancient, widespread, stable copy-number, constrained sequence,

relaxed substitutions, amino acid divergence, population variation
CASP DUP, ACN, CNV, CON SSD Duplications, losses, population conservation
CLIPA – AGE, UNI, SYN Young, sparse, shuffled neighborhood
CLIPB PDN, SEL, CON, EVR, NSP AGE, UNI, PDS, STA, SSD,

WGA, PHC
Relaxed substitutions, losses, amino acid divergence, young, sparse,

constrained synonymous substitutions, unstable copy-number,
population conservation, sparsely alignable, relaxed sequence

CLIPC DUP, ACN, CNV, CON, EVR UNI, STA, PHC Duplications, losses, amino acid divergence, sparse, unstable copy-
number, relaxed sequence

CLIPD UNI CON, EVR Widespread, stable copy-number, amino acid conservation
CLIPE EVR, NSP AGE, UNI, PHC Amino acid divergence, young, sparse, relaxed sequence
IAP SEL WGA Relaxed substitutions, sparsely alignable
SRPN CNV, EVR, NSD SYN Duplications, amino acid divergence, shuffled neighborhood
AMP CON, NSD AGE, UNI, STA, WGA Losses, amino acid divergence, young, sparse, unstable copy-number,

sparsely alignable
LYS DUP, ACN, CNV, EXP, SYN STA Duplications, maintained neighborhood, unstable copy-number
PPO DUP, ACN, CNV, EXP STA Duplications, unstable copy-number
GPX EXP, PHC STA Duplications, constrained sequence, unstable copy-number
HPX UNI, STA, WGA SEL, CON, EVR Widespread, stable copy-number, widely alignable, relaxed substi-

tutions, amino acid conservation
TPX AGE, UNI, STA, WGA, PHC PDN, SEL, CON, EVR, NSP,

SSD
Ancient, widespread, stable copy-number, widely alignable, con-

strained sequence, constrained substitutions, amino acid conser-
vation, population conservation

SOD WGA, PHC PDN, SEL, EVR Widely alignable, constrained sequence, constrained substitutions,
amino acid conservation

APHAG AGE, UNI, STA, WGA, PHC ACN, CNV, PDN, PDS, SEL,
CON, EVR, NSP, NSD

Ancient, widespread, stable copy-number, widely alignable, con-
strained sequence, constrained substitutions, amino acid conser-
vation, population conservation

SRRP AGE, UNI, PDN, PDS, STA,
SYN, WGA, PHC

SEL, CON, EVR, NSP, NSD Ancient, widespread, relaxed substitutions, stable copy-number,
maintained neighborhood, widely alignable, constrained se-
quence, amino acid conservation, population conservation

SPZ STA – Stable copy-number
TOLL AGE, UNI, DUP, ACN, WGA PDN, SEL, CON Ancient, widespread, duplications, widely alignable, constrained

substitutions

NOTE.—For each immune-related immune family, evolutionary features with significantly higher or significantly lower metrics compared with other immune families are listed
with summarized interpretations.
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including stability as in figure 2. These subsets are also
recovered when clustering using metric means rather
than medians, with the exception of PAML’s dS (supple-
mentary fig. S2, Supplementary Material online). Principal
component analysis (PCA) of both the median and mean

metrics supports three major groupings of the four subsets,
with PC1 dominated by set (iii) features contrasted by sta-
bility, and with PC2 clearly separating set (i) from set (iv)
features (fig. 2; supplementary figs. S2 and S8,
Supplementary Material online).
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FIG. 2. Clustering heatmap and dendrograms of immune families and their evolutionary features. Groupings of families and subsets of features
delineated by hierarchical clustering using the matrix of evolutionary feature profiles of all immune gene families. Hierarchical clustering results are
visualized for the immune families (n ¼ 36) and evolutionary features (n ¼ 18) using scaled median metrics with a Pearson’s correlation-based
distance matrix and average linkage agglomerative clustering. The heatmap displays the relative values of the scaled metrics from low in blue to
high in red. The dendrograms show the quantified distances (similarities) between each of the families, and between each of the features, and their
groupings, determined by the clustering algorithm and distance method. Support for each node of the two dendrograms is shown with green-filled
circles, using multiscale bootstrap resampling to estimate AU support values. PCA supports three major groupings of the four subsets of
evolutionary features with PC1 and PC2 capturing 78.2% of the variance. Feature acronyms are defined in table 1. Family acronyms are defined
in table 2 and are colored according to categories defined based on their putative roles in the principal immune phases: classical recognition (red),
other recognition (blue), pathway signaling (bright green), pathway modulation (purple), cascade modulation (orange), antimicrobial effectors
(pink), effector enzymes (olive green), autophagy (dark cyan), RNAi (black), cytokines (brown), and toll receptors (dark green). See text for
definitions of evolutionary feature acronyms, colored according to groupings in the dendrogram and PCA. Clustering heatmap and dendrograms
of immune families and their evolutionary features using mean metrics are presented in supplementary figure S2, Supplementary Material online.
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Set (i) captures both gene losses and several features re-
lated to protein sequence divergence. PAML’s dN and dN/dS
are computed from codon analysis of multiple protein se-
quence alignments, and the evolutionary rates are computed
from amino acid similarities from all-against-all protein align-
ments, thus they are expected to vary in concert. The ob-
served grouping of the proportion of nonsynonymous SNPs
with these protein-alignment-based metrics suggests that
long-term divergence over millions of years of mosquito evo-
lution is reflected in population-level polymorphism today.
The grouping of gene losses with these sequence divergence
and diversity features may appear less intuitive; however,
correlations between the propensity for gene loss and se-
quence evolutionary rates have been observed previously
from analyses of orthologs from seven distantly related eukar-
yotes (Krylov 2003). Here with a larger set of more closely
related species (43 insects but mostly mosquitoes and other
dipterans) this pattern is recovered while focusing exclusively
on immune-related genes. Set (ii) groups together the
expected correlated densities of genome-wide synonymous
and nonsynonymous SNPs.

Set (iii) captures all the copy-number features related to
gene birth, linked to local genomic organization (SYN). Gene
duplications lead to higher and often more variable copy-
numbers that are identified by computational analysis of
gene family evolution (CAFE) as EXP, so these metrics should
define different aspects of these features arising from the
same underlying process and hence are expected to vary in
concert. The link with maintained SYN suggests that dupli-
cated genes often also maintain their local genomic neighbor-
hoods. However, this phenomenon is driven by only a small
subset of families with both elevated DUP and SYN metrics:
GNBPs, MD-2-like proteins (MLs), and particularly lysozymes
(LYSs; fig. 1). For these immune genes it appears that retaining
their relative genomic locations played an important role in
maintaining their functionalities after duplicating in the mos-
quito or anopheline ancestor. Set (iv) captures the taxonomic
spread features together with DNA-level sequence conserva-
tion and constraint, linked to gene family copy-number sta-
bility. This grouping clearly connects conservation at whole-
gene and nucleotide levels, with older widespread immunity
genes generally showing signs of greater constraints. In gen-
eral, older genes do appear to evolve more slowly than youn-
ger ones (Alb�a and Castresana 2005); they are also longer,
more highly expressed, and subject to stronger purifying se-
lection (Wolf et al. 2009). In addition to constrained sequence
evolution, genes functionally characterized as essential are
more likely to be ancient and widespread (Waterhouse
et al. 2011). This highlights the ancient origins and essential
roles of several core components of the insect immune sys-
tem that have been maintained over millions of years of
evolution.

Clustering with a subset of 12 evolutionary features after
excluding PAML-based (dN, dS) and variation-based (SNPs)
metrics recovers sets (i), (iii), and (iv) observed with the full
suite of metrics (supplementary figs. S9 and S10,
Supplementary Material online). Thus the associations be-
tween gene loss and protein sequence divergence, between

DUP and SYN, and between taxonomic spread and DNA-
level sequence conservation, are identifiable using this subset
of features. Performing the same clustering analyses with the
D. melanogaster immune gene catalog also recovers the links
between gene loss and protein sequence divergence, and be-
tween taxonomic spread and DNA-level sequence conserva-
tion (supplementary figs. S11 and S12, Supplementary
Material online). However, despite MLs and LYSs showing
the same trend as for An. gambiae, SYN is no longer associ-
ated with copy-number features related to gene birth, indi-
cating that maintaining genomic neighborhoods after gene
duplication events is a family-dependent phenomenon rather
than a global trend. The GNBPs offer a specific example,
where the birth of the B-type GNBPs in the mosquito ances-
tor produced a new subfamily with members showing ele-
vated conservation of their genomic neighborhoods.

The evolutionary profiles describe contrasting features of
gene families and pathway members implicated in immune
responses. The suite of features covers a wide spectrum of
gene family evolutionary dynamics that can be broadly sum-
marized by three main axes delineated by the major PCA
groupings: axis 1, DUP and SYN; axis 2, maintenance/stability
and sequence conservation; and axis 3, loss and sequence
divergence. Axis 1 might be driven by only a subset of families,
but the pattern is intuitive when considering the advantage of
maintaining expression regulatory coordination across sets of
duplicated genes. Axes 2 and 3 appear to reflect global trends
in gene evolutionary dynamics observed in different taxa and
over different timescales, suggesting that a broadly common
set of rules also applies to the evolution of components of the
immune system.

With respect to gene families (see table 2 for family sum-
mary descriptions), several groupings of different sizes are
recovered: from top to bottom in figure 2 (a) AMPs and
glutathione peroxidases; (b) cysteine-aspartic and CLIPC pro-
teases with serine protease inhibitors; (c) LRIMs, TEPs, CLIPA
protease homologs, CLIPB&E proteases, CTL, and fibrinogen-
related and Nimrod proteins; (d) GNBPs, MLs, lysozymes, and
PPOs; (e) PGRPs and galectins; (f) Toll, Imd, and JAK/STAT
signaling proteins; and (g) a large set comprising autophagy
and RNAi-related proteins, Toll, Imd, and JAK/STAT pathway
modulators, toll receptors, scavenger receptors A and B,
CLIPD proteases, superoxide dismutases, as well as heme
and thioredoxin peroxidases. Clustering with metric means
rather than medians results in different hierarchies but with
several broadly similar groupings including: LRIMs, CLIPA pro-
tease homologs, CLIPB&E proteases, and fibrinogen-related
proteins; cysteine-aspartic and CLIPC proteases; GNBPs,
MLs, lysozymes, and PPOs; and a large set comprising autoph-
agy and RNAi-related proteins, Toll, Imd, and JAK/STAT path-
way modulators, toll receptors and galectins, scavenger
receptors A and B, CLIPD proteases, superoxide dismutases,
as well as heme and thioredoxin peroxidases (supplementary
fig. S2, Supplementary Material online). Similar variations of
these groupings are obtained when clustering means or
medians using alternative distance-clustering method combi-
nations (supplementary additional file 2, Supplementary
Material online). Combining this variation with results from
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bootstrapping provides a measure of evolutionary profile sim-
ilarity between all pairs of families (see Materials and
Methods). The families that most frequently cluster together
using metric means (supplementary fig. S5, Supplementary
Material online) or medians (supplementary fig. S6,
Supplementary Material online) include: PGRPs, galectins,
GNBPs, MLs, lysozymes, and PPOs; cysteine-aspartic and
CLIPC proteases; LRIMs, TEPs, CLIPA protease homologs,
CLIPB&E proteases, and fibrinogen-related proteins; and a
large set comprising autophagy and RNAi-related proteins,
Toll, Imd, and JAK/STAT pathway modulators, toll receptors,
scavenger receptors A and B, CLIPD proteases, superoxide
dismutases, as well as heme and thioredoxin peroxidases.
Thus, although the gene family groupings are more variable
across different distance-clustering method combinations
than those of the evolutionary features, the results identify
families with consistently similar evolutionary profiles.

Evolutionary profile clustering identifies features that are
shared by genes and families within each of the major im-
mune phases. Pairs of recognition protein families with similar
profiles include PGRPs and galectins, A- and B-type scavenger
receptors, and GNBPs and MLs, also indicating that MLs more
closely resemble classical than other recognition families,
thereby warranting their reclassification (fig. 2). PGRPs can
bind bacterial cell wall Dap- or Lys-type peptidoglycans
(Wang et al. 2019), whereas galectins can bind surface b-
galactosides (Vasta 2020). Similarly, GNBPs can recognize b-
1,3-glucans that make up structural polysaccharides of yeast
cell walls (Rao et al. 2018), whereas MLs can bind lipopoly-
saccharides from the outer membrane of Gram-negative bac-
teria (Shi et al. 2012). A- and B-type scavenger receptors may
have broader ligand specificities including lipoproteins and
surface molecules of Gram-negative and Gram-positive bac-
teria (Alquraini and El Khoury 2020). As important pattern
recognition receptors in animal immunity, these are all ex-
pectedly old families; however, despite interacting with
pathogens they remain relatively constrained (DNA-level)
and do not show extreme protein sequence divergence
(fig. 2). This apparent lack of evidence for an arms race sce-
nario may in fact reflect the relatively limited structural di-
versity of the main microbial ligands—peptidoglycan, b-1,3-
glucan, lipopolysaccharide—they must bind to or cleave.

Signaling genes of the Toll, Imd, and JAK/STAT pathways
group together, being generally ancient and stable but with
remarkably elevated rates of protein sequence divergence.
Their copy-number stability is possibly a reflection of con-
straints imposed by the large disruptive potential of dupli-
cates on core signal transduction functionality. Their protein
products work together as interacting partners, including the
death-domain-mediated MyD88-Tube-Pelle complex of the
Toll pathway (Valanne et al. 2011), the Imd pathway’s Imd–
Fadd–Dredd, Tab 2–Tak1, and IjB kinase complexes
(Myllym€aki et al. 2014), and the Domeless–Hopscotch com-
plex of the JAK/STAT pathway (Myllym€aki and R€amet 2014).
Their greater sequence divergence could therefore be
explained by the accumulation of compensatory amino
acid changes that maintain key interactions amongst these
partners, and overall pathway functionality. The signaling

pathway modulators are also old and stable, but instead
show constrained sequence evolution. These include several
enzymes, such as ubiquitinases like Effete and Bendless, or E3
ligases like Pellino and Pias, which are under strong con-
straints to maintain their enzymatic activities. They are in-
volved in proteasomal degradation and are therefore also
critical for many other processes beyond immune signaling
(Glickman and Ciechanover 2002). Other enzymes including
the superoxide dismutases as well as the heme and thiore-
doxin peroxidases involved in reactive oxygen species metab-
olism (Hillyer 2016), show similarly conservative evolutionary
profiles (fig. 2). Proteolytically activated PPOs oxidize phenols
in the melanin production process (Nakhleh, El Moussawi,
et al. 2017) and also show similar sequence constraints; how-
ever, multiple gene duplications result in an evolutionary pro-
file that is radically different. Thus although there is some
variation, in general the functional constraints on these types
of enzymes appear to restrict their patterns of molecular
divergence.

Members of ancient pathways controlling RNAi (SRRP)
and autophagy (APHAG) responses group with other conser-
vative evolutionary profiles characterized by low gene turn-
over and low sequence evolutionary rates (fig. 2). In contrast,
much more dynamic evolutionary profiles characterize the
grouping of families of immune cascade modulators like CTL,
CLIPA protease homologs and CLIPB&E proteases, regulators
of melanization responses like serine protease inhibitors, and
key players in mosquito complement-like responses, like TEPs
and LRIMs. Although melanization is conserved across arthro-
pods (Hillyer 2016), the proteolytic cascades that trigger or
dampen melanin production often involve lineage-specific
members of large gene families including these dynamically
evolving modulators (Gulley et al. 2013; Meekins et al. 2017;
Bishnoi et al. 2019; El Moussawi et al. 2019). The complement-
like responses centered on TEPs and LRIMs are specific to
mosquitoes, and are also triggered and regulated by members
of these large and dynamic families (Blandin et al. 2008;
Fraiture et al. 2009; Povelones et al. 2009, 2013, 2016). Based
on understanding molecular functions of only a limited num-
ber of genes from these families, it appears that immune
responses requiring such finely tuned activation, amplifica-
tion, and deactivation processes source components from
dynamically evolving families from which to build functional
modules. The families involved are characterized with evolu-
tionary profiles showing a pattern of younger and less wide-
spread orthologs, with lower-sequence constraints, and often
elevated signatures of selection and population-level varia-
tion. This dynamism is more consistent with an arms race
scenario, where the effectiveness of such functional modules
is continuously being tested by evolving pathogen attacks
and evasion strategies.

Coexpression Analyses Identify Immune Families That
Function in Concert
Analysis of multisample gene expression data shows that
families with the strongest fine-scale or broad-scale expres-
sion similarities include many pairs whose members are
known to function together in vivo (fig. 3; supplementary
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fig. S13, Supplementary Material online). Thus, without pre-
supposing any functional categorizations, the similar expres-
sion profiles highlight families whose members are likely
working together across different conditions. Gene
expression-based quantification of functional similarities
amongst immune gene families provides an alternative ob-
jective classification that complements the classical categori-
zations based on their putative roles in key immune
responses. The VectorBase Expression Map (MacCallum
et al. 2011) defines clusters of genes with similar expression
profiles for 12,672 genes using normalized data across 202
conditions, enabling the quantification of fine-scale or
broad-scale gene expression similarities amongst all pairs of
immune-related families. Pairwise family similarities are

computed as the frequency of co-occurrences of gene family
members in the same region of the map, with significance
assessed taking into account family sizes and expression clus-
ter sizes (see Materials and Methods). Visualizing pairwise
family similarities as a spring model layout network optimized
with the neato tool from the Graphviz package (Gansner and
North 2000; Gansner et al. 2005) identifies subsets of families
with putative roles in common immune processes (fig. 3).
These prominently include a quintet of families with highly
and significantly overlapping expression patterns: LRIMs,
TEPs, FREPs, CLIPAs, and CLIPBs (fig. 3), with members impli-
cated in coordinating and executing mosquito complement
system responses (Povelones et al. 2016; Reyes Ruiz et al.
2019).
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Anopheles gambiae TEP1 forms a stable protein complex
with a heterodimer of LRIM1 and APL1A/B/C (LRIM2 paral-
ogs) in the hemolymph until the complement response is
activated (Fraiture et al. 2009; Povelones et al. 2009; Williams
et al. 2015), so coordinated coexpression of these genes is
important for their functions. Like the LRIMs and TEPs, the
FREPs are also found in the hemolymph, and several members
are infection-responsive and important for defense, for exam-
ple, FREP57/FBN8, FREP13/FBN9, and FREP40/FBN39 (Dong
et al. 2006; Dong and Dimopoulos 2009; Sim~oes et al. 2017).
FREPs themselves might dimerize or oligomerize, but whether
they interact directly with TEPs and/or LRIMs in mosquitoes
remains unknown, although evidence from snails indicates
that FREPs and TEPs do interact (Li et al. 2020), and the
observed expression similarities support at least some func-
tional, if not physical, interaction. CLIPA serine protease
homologs are positive and negative regulators of immune
responses mediated by TEP1, for example, CLIPA8
(Schnitger et al. 2007), SPCLIP1/CLIPA30 (Povelones et al.
2013), CLIPA2 (Yassine et al. 2014), CLIPA14 (Nakhleh,
Christophides, et al. 2017), and CLIPA28 (El Moussawi et al.
2019). These regulatory modules also involve the catalytically
active CLIPBs, for example, CLIPB14 and CLIPB15 (Volz et al.
2005), CLIPB8 (Zhang et al. 2016), and CLIPB10 (Zhang et al.
2021), and together CLIPAs and CLIPBs are also key modu-
lators of melanization responses (Volz et al. 2006). The avail-
able evidence therefore supports the family-level expression
analyses that demonstrate highly and significantly overlap-
ping expression patterns (fig. 3) of members of this quintet
of families that function in concert.

Of this quintet, expression of CLIPA protease homologs is
additionally strongly and significantly similar to that of
CLIPCs, CLIPDs, and SRPNs (serpins, or serine protease inhib-
itors). The CLIPC9 protease has recently been shown to reg-
ulate melanization downstream of SPCLIP1/CLIPA30, CLIPA8,
and CLIPA28, and to be inhibited by SRPN2 (Sousa et al.
2020). CLIPC2 may function together with SRPN7 controlling
the activation of effector mechanisms (Blumberg et al. 2013).
Specific roles for CLIPDs, which show an evolutionary profile
distinct from the other CLIPs (fig. 2), remain largely unknown.
Serpins themselves are most similar in expression to PPOs,
both of which would need to be replenished after being de-
pleted during melanization responses (Gulley et al. 2013;
Nakhleh, El Moussawi, et al. 2017). The PPOs in turn appear
significantly similar to the CTL, which are generally considered
glycan-binding recognition proteins, but at least two mem-
bers—CTL4 and CTLMA2—are key regulators of melaniza-
tion downstream of immune recognition (Schnitger et al.
2009; Bishnoi et al. 2019). The family-level expression similar-
ities (fig. 3) therefore derive from the functional links amongst
the CLIP, CTL, and SRPN family members that modulate the
activation of melanization, and the PPO enzyme effectors of
melanization activity.

Amongst classical recognition proteins, PGRPs and GNBPs
are most similar, and their expression patterns both closely
match those of AMPs and MD-2-like lipid recognition pro-
teins. These similarities are driven by the upregulation of
members of these gene families upon infection or following

a blood meal, which promotes growth of the gut microbiota,
for example, in response to blood-feeding (Dana et al. 2005),
microbes (Aguilar et al. 2005), Plasmodium (Dong et al.
2006), or fungi (Ramirez et al. 2020). They are nevertheless
not as tightly interconnected as components of the comple-
ment and melanization responses, possibly reflecting the
contrast between broad-scope protection of these systems
versus the generally much more pathogen-specific activities
of different families of recognition proteins and antimicrobial
effectors. Indeed feeding into and/or being transcriptionally
activated by different immune signaling pathways means
that these families may be thought of as performing analo-
gous roles rather than functioning in concert per se.
However, learning more about signaling crosstalk and re-
sponse overlap has shifted thinking from traditional func-
tional distinctions amongst immune pathways (Kounatidis
and Ligoxygakis 2012). Thus, these similarities might reflect
somewhat overlapping responses, but also a common read-
iness or priming to face newly perceived threats.

Notably, expression patterns of pathway signaling and
modulation components remain distinct from the recognition
and response families: Imd and JAK/STAT pathway modula-
tors are significantly similar, whereas Toll pathway modulators
group together with Toll and JAK/STAT pathway signaling
members. Genes involved in RNAi (SRRP) and autophagy
(APHAG) responses do not show significant similarities in ex-
pression patterns to other families; however, SRRP and
APHAG genes have highly and significantly overlapping ex-
pression patterns at broad-scale resolution, and are most sim-
ilar to modulators of all three pathways (supplementary fig.
S14, Supplementary Material online). At broad-scale resolu-
tion, the distinction between pathway signaling/modulation
and recognition/response families is accentuated, whereas the
melanization and complement responses become more
closely interlinked. Many of the most similar families also
show substantially overlapping expression patterns when
quantifying similarities across coexpression modules built
from a subset of immune-related experimental conditions
(see Materials and Methods, supplementary figs. S15 and
S16, table S2, additional file 3, Supplementary Material online).
For example, families implicated in complement system
responses again show similar expression patterns (supplemen-
tary fig. S17, Supplementary Material online), and at a broader-
scale resolution become more closely associated with melani-
zation responses (supplementary fig. S18, Supplementary
Material online). At broad-scale resolution pairs of similar rec-
ognition families include GNBPs and PGRPs, GNBPs and MLs,
as well as galectins and B-type scavenger receptors, whereas at
both resolutions Imd and JAK/STAT pathway signaling mem-
bers are highly and significantly similar. Multicondition coex-
pression analysis therefore identifies gene expression
similarities amongst sets of immune-related families with
members that are known or inferred to function in concert.

Complement-Related Families Exhibit Elevated
Evolutionary-Functional Similarities
Immune gene family evolutionary-functional correspond-
ences are revealed by employing quantifications of
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evolutionary similarities based on gene family feature profiling
and of functional similarities based on gene family expression
patterns (fig. 4; supplementary additional file 4,
Supplementary Material online). Most prominently, families
involved in mosquito complement system responses show
both high evolutionary similarities and high fine-scale and
broad-scale expression similarities: recognition family pairs
of LRIMs–TEPs, FREPs–TEPs, and FREPs–LRIMs, as well as
modulator-recognition family pairs of CLIPAs with FREPs
and TEPs, and CLIPBs with FREPs, TEPs, and LRIMs.
Members of these principal complement–response gene fam-
ilies exhibit common expression and evolutionary profiles
suggestive of common constraints. Both TEPs and LRIMs
are also highly evolutionarily similar to CLIPEs, for which
specific roles in complement responses remain largely un-
known, but with which their expression similarity increases
at broad-scale resolution, albeit remaining nonsignificant. The
CLIPA protease homologs and CLIPB proteases form a highly
similar pair, but their strong and significant expression simi-
larity is not maintained at broad-scale resolution, suggesting
tight functional coupling of these key modulators. Conversely,
CLIPB and CLIPE modulators also form a highly similar pair,
but with strong and significant expression similarity only at
broad-scale resolution. In contrast, FREP-NIMROD expression
similarity is maintained at both resolutions and it is amongst
the most significant of all family pairs that also show high
evolutionary similarities. Although a much smaller gene fam-
ily than the FREPs, NIMRODs including draper, nimrod, and
eater, are also infection-responsive and important for defense
(Midega et al. 2013; Est�evez-Lao and Hillyer 2014). Combining
results from evolutionary profiling and knowledge-blind func-
tional clustering therefore identifies families that appear both
evolutionarily and functionally similar. These similarities are
notably pronounced for families with members known to
function in concert to coordinate and execute mosquito
complement system responses (Povelones et al. 2016; Reyes
Ruiz et al. 2019).

Additional families with above average evolutionary and
expression similarities at both resolutions include another
pair of modulators (CLIPA-SRPN), and another modulator-
recognition pair (CLIPE-FREP). Although CLIPAs and SRPNs
are known to function together in cascades regulating mela-
nization (El Moussawi et al. 2019), potential functional inter-
actions between CLIPEs and FREPs remain to be explored.
The melanization modulator-effector pair of SRPNs and PPOs
shows the highest expression similarity at both resolutions,
but with negligible evolutionary similarity, suggesting that
regulating these responses and executing them are subject
to different constraints. Amongst other recognition proteins,
MLs show above average evolutionary and expression simi-
larities to the classical recognition families of galectins
(GALEs) at fine-scale resolution, and PGRPs at broad-scale
resolution with lower but still significant expression similarity
at fine-scale resolution. Compared with galectins or PGRPs,
the MLs are evolutionarily more similar to GNBPs, with which
they show lower, but still significant, expression similarity.
These patterns suggest analogous functionalities—recogni-
tion of foreign—with different specificities for

lipopolysaccharides, b-galactosides, peptidoglycans, or b-1,3-
glucans, that arise depending on the pathogen/microbe com-
munity composition. Common constraints faced by classical
recognition phase families appear to produce similarities
amongst their evolutionary trajectories, with functional sim-
ilarities quantified through gene expression patterns possibly
arising through immune pathway signaling crosstalk and
priming (Kounatidis and Ligoxygakis 2012).

Evolutionarily similar families that only show high expres-
sion similarities at broad-scale resolution include modulators
of the Imd and Toll pathways (IMDMOD-TOLLMOD) and
genes involved in autophagy and RNAi responses (APHAG-
SRRP). At fine-scale resolution, pathway components from
JAK/STAT and Toll signaling (JASTSIG-TOLLSIG), Imd and
JAK/STAT modulation (IMDMOD-JASTMOD), and JAK/
STAT signaling and Toll modulation (JASTSIG-TOLLMOD)
also show above average evolutionary and expression similar-
ities. These pathways and responses play key roles in pro-
cesses other than immunity, including in development and
morphogenesis, so their gene expression-based functional
similarities will vary depending on the conditions examined.
This also means that the functional constraints they experi-
ence are not solely derived from their roles in immune pro-
cesses. Their functional similarities are more stably evident
when the modules are abstracted to analogous phases of
signal input, signal processing, and signal output. Whether
functionally similar or analogous, these immune-related path-
ways and responses exhibit common conservative evolution-
ary profiles that distinguish them from other more
dynamically evolving components of the immune system
(fig. 2). These constrained evolutionary features could result
from the effects of pleiotropy, and possibly the modular
architectures, on the trade-offs during adaptive evolution
producing a limited range of available trajectories (Mauro
and Ghalambor 2020).

Conclusions
Through quantitative evolutionary feature profiling of genes
and gene families, integrated with knowledge- and
expression-based functional categorizations, our multispecies
comparative immunogenomic analyses identified
evolutionary-functional correspondences suggesting that
constraints on genes with similar or analogous functions gov-
ern their evolutionary trajectories. The profiles delineate
whether and how each family deviates from the feature value
distributions of other families, and provide the substrate for
clustering to define similarities amongst families and features.
We employed insect innate immunity as our test case study
system because the key implicated pathways and component
gene families have been well characterized. While acknowl-
edging that responses to infections involve diverse processes
beyond the canonical immune system (Sackton 2019) and
that immune-related genes may also function in other bio-
logical processes, this prior knowledge provided specific
examples and strong expectations of types of genes with
similar functions and distinguishing patterns of evolution,
enabling the interpretation of observed correspondences
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FIG. 4. Pairwise comparisons of immune family expression similarity and evolutionary similarity. Evolutionary similarities (based on feature metric
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within an established framework. Feature analysis within the
limits of our study system identified three main axes of evo-
lutionary trajectories characterized by gene duplication and
SYN, gene maintenance/stability and sequence conservation,
and gene loss and sequence divergence. Clustering
highlighted similar and contrasting patterns across these
axes amongst subsets of immune gene families. For example,
classical recognition families, including the herein reclassified
MLs, showed patterns that can be explained by the limited
structural diversity of the principal microbial ligands with
which they interact. Pathway signaling genes on the other
hand exhibited trajectories that could relate to physical inter-
actions of protein complexes and constraints from the effects
of pleiotropy and disruptive effects of gene duplicates on
signal transduction. Functional similarities defined by coex-
pression analyses recovered sets of immune-related families
with members that are known or inferred to function in
concert. Most prominently, these included families involved
in the complement system and melanization responses, both
of which occur mainly in the hemolymph. Comparing these
with feature-based clustering results identified evolutionary-
functional correspondences that were particularly striking
amongst families with members known to function together
in the coordination and execution of complement system
responses. Our results suggest that where and how different
genes participate in immune defense responses limit the
range of possible evolutionary scenarios that are tolerated
by natural selection. Our test case analyses of insect immunity
that explored approaches to quantify gene evolutionary his-
tories and relate these to gene functions highlight the poten-
tial for future applications to advancing understanding of
functional constraints on evolution. Further developing and
applying such comparative genomics approaches to explore
constraints in evolutionary biology could offer opportunities
to advance the understanding of how functional constraints
on different components of biological systems govern their
evolutionary trajectories.

Materials and Methods

Orthology, Variation, Alignment, and Expression Data
OGs of genes were defined using the OrthoDB (Kriventseva
et al. 2015) orthology delineation procedure across 21 mos-
quitoes and 22 other insects (see supplementary materials,
orthology data, Supplementary Material online). OrthoDB
employs all-against-all protein sequence alignments to first
identify all best reciprocal hits (BRHs) between all genes from
each pair of species (Zdobnov et al. 2017). It then uses a
graph-based clustering procedure that starts with BRH trian-
gulation to progressively build OGs that include all genes
descended from a single gene in the last common ancestor.
SNPs for An. gambiae PEST, including all synonymous and
nonsynonymous SNPs in annotated coding regions, were re-
trieved using the BioMart data mining tool from VectorBase
(Giraldo-Calder�on et al. 2015). The SNPs derive from eight
variation data sets hosted at VectorBase (Neafsey et al. 2010;
White et al. 2011; Weetman et al. 2012; Markianos et al. 2016;
Hammond et al. 2017; Miles et al. 2017; Wiltshire et al. 2018).

Multispecies whole genome alignments were generated from
the assemblies of 22 mosquitoes available from VectorBase
and 36 Drosophila available from The National Center for
Biotechnology Information (supplementary table S1,
Supplementary Material online). The alignment process starts
with pairwise sequence comparisons that are then progres-
sively combined following the species phylogeny using the
MultiZ approach of the Threaded Blockset Aligner
(Blanchette et al. 2004). Expression data for An. gambiae
genes were retrieved from VectorBase (Expression Stats VB-
2019-06) as log2 transformed expression values for 13,201
genes across 291 conditions (mean, variance, and number
of replicates). Immune gene family coexpression analysis
employed these expression statistics using a subset of the
conditions to build coexpression modules. Coexpression anal-
ysis also employed clusters of genes defined by the VectorBase
Expression Map (MacCallum et al. 2011), with gene member-
ship of all clusters/cells retrieved from the AgamP4.11 VB-
2019-02 map (comprising 12,672 genes and based on 202
conditions).

Anopheles gambiae and D. melanogaster Immunity
Gene Catalogs
The catalogs of An. gambiae and D. melanogaster immune-
related genes were built by combining and updating the
results of previous comparative immunogenomics studies
(Christophides et al. 2002; Waterhouse et al. 2007;
Bartholomay et al. 2010; Neafsey et al. 2015). Anopheles gam-
biae and D. melanogaster gene and OG membership for 36
immune-related gene families and subfamilies are summa-
rized in table 2.

Orthology-Based Evolutionary Features
Features were quantified as a suite of 13 orthology-based
evolutionary metrics per OG that included: the evolutionary
age (AGE) of the last common ancestor in terms of millions of
years since divergence from the ultrametric species phylog-
eny; the universality (UNI) computed as the proportion of the
total species present; the duplicability (DUP) computed as
the proportion of species present with multicopy orthologs;
the average ortholog copy number (ACN); the copy number
variation (CNV) computed as the standard deviation of
ortholog counts per species present divided by the ACN.
PAML (Yang 2007) was employed using the M0 model on
the alignments of OG member sequences to compute the
number of synonymous substitutions per synonymous site
(PDS); the number of nonsynonymous substitutions per non-
synonymous site (PDN); and the nonsynonymous to synon-
ymous ratio (SEL). Gene turnover was estimated using the
CAFE (Han et al. 2013) tool in order to quantify proportions
of gene gains (expansions, EXP), gene losses (contractions,
CON), or no copy-number changes (stable, STA). Orthology
data combined with genomic location data were used to
quantify SYN conservation as the proportion of orthologs
that maintain their orthologous neighbors in the genomes
of the other species. Finally, the EVR of each OG corresponds
to the average rate of protein sequence divergence

Functional Constraints and Evolution of Insect Innate Immunity . doi:10.1093/molbev/msab352 MBE

15

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab352#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab352#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab352#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab352#supplementary-data


normalized by the distance between each pair of species as
computed by OrthoDB (Waterhouse et al. 2013).

Variation-Based and Alignment-Based Evolutionary
Features
Five additional evolutionary feature metrics were computed
from polymorphism data and whole genome alignments. The
population genomics data for An. gambiae retrieved from
VectorBase were used to compute per-gene metrics of the
proportion of all coding-sequence SNPs that were nonsynon-
ymous (NSP), as well as the nonsynonymous (NSD) and syn-
onymous (SSD) SNP densities as the number of SNPs divided
by the total coding-sequence length. Multispecies whole ge-
nome alignments were used to compute per-nucleotide met-
rics of conservation and constraint. WGA measures the
proportion of the full set of 22 mosquitoes or 36 Drosophila
that were aligned to the An. gambiae or D. melanogaster ref-
erence genomes, respectively, for each nucleotide. PhastCons
(Siepel et al. 2005) was used to estimate PHC from the whole
genome alignments. Per-nucleotide values were averaged over
the full coding-sequence lengths of all genes to obtain per-
gene metrics. The variation-based and alignment-based per-
gene metrics were averaged over all genes in each OG to
obtain the per-OG values for each of the metrics.

Gene Family Metrics and Comparisons
The canonical immunity gene catalogs define immunity gene
membership of subfamilies (e.g. cecropins, defensins, attacins),
families (e.g. AMPs), and broader categories (e.g. antimicrobial
effectors), and the orthology data sets define gene member-
ship of OGs. Thus, the gene family evolutionary metrics were
computed by averaging values over all OGs containing genes
belonging to each cataloged immune gene family. These
family-level means for each metric were compared with the
means of all other OGs that contain at least one An. gambiae
immune gene to quantify the extent to which the metrics of
the OGs of a given immune gene family differ from all other
immune gene containing OGs, that is, delta-mean (D�x). For
graphical visualization, D�x values were scaled by dividing by
the absolute maximum D�x per evolutionary feature and plot-
ted with the color-blind safe RdYlBu palette from the
RColorBrewer package from R (R Core Team 2021). The
Wilcoxon rank-sum (Mann–Whitney U) test implemented
in the wilcox.test function in R (default two-sided test) was
used to test the significance of the difference of the distribu-
tion of each family’s OGs metric values (no scaling) compared
with all other immune-related OGs for all metrics and each
family. As several families contain few OGs, a permutation test
implemented in R was also used to test the significance of the
difference of the metric distributions. Observed D�x was com-
pared with D�x from permutations of all OG metric values
randomly assigned to size-matched sets. The number of per-
mutation differences that were greater than the observed dif-
ference, divided by the total number of permutations provides
an empirical estimate of the probability of obtaining a D�x
greater than the observed D�x by chance.

Clustering of Gene Family Metrics
To assess and quantify the similarities of the evolutionary
feature profiles, hierarchical clustering of the evolutionary
features and families was performed with the hclust function
in R. For the An. gambiae analyses these comprised 18 fea-
tures and 36 families, whereas for the mosquito-fly compar-
isons these comprised a common subset of 12 features and 35
families. For all evolutionary feature metrics, both the means
and the medians of all OGs per family were assessed. Prior to
clustering, the scale function in R was used to normalize all
metric values by subtracting the means and then dividing the
(centered) values by their standard deviations. Dissimilarity
matrices were computed with the normalized metric values
using three correlation-based distance methods and the
Euclidean distance method in R. Clustering with hclust was
performed with all dissimilarity matrices using single, com-
plete, average, and median linkage agglomeration methods.
To estimate statistical support for the clustering of families
and features, 10,000 bootstrap replicates were performed
with the pvclust R package. In pvclust, the approximately un-
biased (AU) P values are computed using multiscale boot-
strap resampling (Suzuki and Shimodaira 2006), and provide a
confidence measure for each node of the cluster dendro-
grams of families and evolutionary features. The robustness
of gene family clustering across all 16 tested distance–method
combinations was further assessed by quantifying the co-
occurrence of all pairs of families within subtrees of all
160,000 pvclust bootstrap replicates. This evolutionary profile
similarity score (family subtree co-occurrence score) was
computed and normalized as follows: (2 � co-occurrence
of Family 1 and Family 2)/(co-occurrence of Family 1 with
any Family þ co-occurrence of Family 2 with any Family).
Normalized scores of zero indicate that these pairs of families
never appear in the same subtree and scores of one would
indicate that they occur as sister lineages in all bootstrap
samples from all distance–method combinations. Based on
these assessments of clustering stability, the dissimilarity ma-
trix from Pearson’s correlation method with the average link-
age agglomeration method was selected. Specifically, the
bootstrap replication analysis showed that the Pearson’s cor-
relation distances with the average linkage method produced
the fewest poorly supported nodes (based on AU P values)
across immune families and evolutionary features (see sup-
plementary methods, figs. S3 and S4, Supplementary Material
online). The hierarchical clustering results were visualized as
heatmaps with corresponding family and evolutionary fea-
ture dendrograms showing AU support, plotted with the
gplots and dendextend (Galili 2015) R packages. PCA of the
family by feature matrices of both median and mean metrics
were performed with the prcomp function from the stats
package in R. As well as producing well-supported nodes,
the Pearson.Average distance–method approach on the
scaled metrics produces similar family groupings to using
the top ten principal components with the standard
Euclidean-Ward.D2 distance–method approach (supplemen-
tary fig. S7, Supplementary Material online), that is, when
applying standard clustering techniques after transforming
the correlated metrics into principal components.
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Gene and Family Coexpression Analyses
Gene expression similarities amongst all pairs of An. gambiae
immune-related families were quantified using the gene ex-
pression data and Expression Map (MacCallum et al. 2011)
retrieved from VectorBase (Giraldo-Calder�on et al. 2015). The
map was analyzed to quantify co-occurrences of gene family
members in the same cell on the map (fine-scale resolution of
gene coexpression), and in the same supercell, the cell and its
immediate eight neighboring cells on the map including to-
roidal neighbors (broader-scale resolution of gene coexpres-
sion). Pairwise family cell/supercell co-occurrence scores
(expression similarity scores) were computed as the intersec-
tion, Family 1 n Family 2, divided by the union, Family 1 U
Family 2 (i.e. number of cells with at least one gene from both
Family 1 and Family 2/number of cells with at least one gene
from either Family 1 or Family 2). A score of zero: the pair of
families have no member genes that cluster in the same cell/
supercell. A score of one: all member genes from both families
always cluster in cells/supercells with at least one member of
the other family. Statistical significance of the family cell/
supercell co-occurrence scores was assessed with a permuta-
tion test: scores were recomputed after gene to cell assign-
ments were randomly shuffled (10,000 permutations)
preserving the total number of cells and families, and the
number of genes in each cell and each family. These were
used to calculate an empirical estimate of the probability (P
value) of obtaining a co-occurrence score greater than the
observed co-occurrence score by chance: the number of per-
mutation scores that were greater than the observed score,
divided by the total number of permutations.
Complementary assessments of gene expression clustering
were performed using the weighted correlation network anal-
ysis approach (Langfelder and Horvath 2008) on a subset of
24 conditions selected from the VectorBase gene expression
data set including blood feeding experiments and tissues
from Marinotti et al. (2006), Neira Oviedo et al. (2008), and
Baker et al. (2011). Expression similarities of pairs of immune
gene families and the significance of their co-occurrences
were computed as for the Expression Map but using module
membership rather than cell/supercell membership.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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