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Abstract: The present work is devoted to the study of the electric properties: electric dipole moment,
electric quadrupole moment, electric field gradients and electric dipole polarizability of molecule
Zr2Fe on base of the full relativistic theory with basis set 3–21G. The electric dipole moment of Zr2Fe
is symmetrical to the axis of C2V—the vector sum of two projections for two chemical bond FeZr
(3.2883 Å), based on when there is charge distribution. The force constant k2 is directly connected
with electric field gradients.
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1. Introduction

Zr2Fe was supposed to be an important choice for hydrogen storage materials due to its large
hydrogen absorption capacity and extremely low hydrogen pressure equilibrium at room temperature
and has important applications in the field of tritium recovery in fusion reactors [1–3]. Due to its harsh
working environment in the fusion reactor, it is necessary to conduct a detailed study of its various
aspects [4–6]. At present, a good deal of research on its hydrogen absorption performance has been
carried out experimentally, but the nature of electricity has not been reported. Among them, electrical
properties are one of the important properties of molecules, and some of its early experimental and
theoretical work, especially the pioneering research of P. Debye [7,8] is very meaningful. From electrical
properties such as dipole moment, quadrupole moment, electric field gradient and polarizability,
the symmetry of the molecule, the volume and the electrostatic force within the molecule can be
determined. There are two types of methods for expanding the multipole moments of a molecule,
namely the plane wave method and the irreducible tensor operators (ITO). The interacting boson
approximation model (IBM) play an important role [9,10]. The ITO method can not only directly
derive the selection rules of electronic state transitions, but also easily calculates directly using the
Wigner–Eckart theorem. The group theory method can only give the selection rule of the electronic
state transition, and the ITO method has more advantages. The multipole moment spread of the charge
distribution by the ITO method is [11]

Qk
q = e[

4π

(2k + 1)
]1/2rkYk

q (θe, φe) = erkCk
q(θe, φe) (1)
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Ck
q(θ, φ) is Racah’s normalized spherical harmonic operator, which is related to the spherical

harmonic function.
Ck

q(θ, φ) = [
4π

(2k + 1)
]1/2Yk

q (θ, φ) (2)

Qk
q is tensor operator. When k = 0, 1, 2, 3, ...., it is called electric monopole moment, electric dipole

moment, electric quadrupole moment, electric eight pole moment, etc.
When k = 1, it is the electric dipole moment, and its q = 1, 0, −1, which are respectively

Y1
1 = −( 3

8π
)1/2 χ + iy

r
; Y1

0 = (
1

4π
)1/2 z

r
; Y1
−1 = (

3
8π

)1/2 χ− iy
r

(3)

For the diatomic molecule, the molecular axis is the z-axis, and the electric dipole moment vector
coincides with the molecular axis. Therefore, only the z component (Qk

q = Q1
0 = µ1

0 = ez) of the electric
dipole moment is not zero.

For such a diatomic molecule, the electric quadrupole moment is the second-order tensor, and its
component is

Y2
2 (θ, φ), Y2

1 (θ, φ), Y2
0 (θ, φ), Y2

−1(θ, φ), and Y2
−2(θ, φ)

It can be shown that only the three components on the main diagonal, i.e., Qxx, Qyy, and Qyy are
not zero.

For the polarization rate α, it is also a second-order tensor. But by the formula

µ = α
⇀
E (4)

It is known that the electrode formation rate α is the electric dipole moment at the unit electric

field intensity
⇀
E , and dimensional analysis indicates that the dimension of the electrode formation rate

is volume, so the electrode polarization rate α is actually a quantity.
The time differential perturbed angular correlation study of electric field gradients and their

temperature variation were performed at a 183Ta radioactive probe in the temperature range 20
K-1173 K [12] and found that only one strong asymmetric quadrupole interaction was observed, of
which coupling constant is equal to 1039(8) MHz with asymmetry parameter η = 0.82. In addition,
the measurement results show a linear dependence of electric field gradient in contrast to the T3/2.
The measurement method of atomic and molecular interferometry has been developed, which can
be used to assess the reliability of different results from different calculation methods [13]. The
electric-field gradient (EFG) at the nucleus for each nonequivalent site of the crystalline compounds
Zr2Fe were calculated using both the standard first-principles linear muffin-tin orbital method (LMTO)
and their developed real-space scheme by Helena M. Petrilli and Sonia Frota-Pessoa [14]. The
nonrelativistic method is capable of calculating the dipole moment, the quadrupole moment, and the
polarizability [15]. However, the non-relativity theory fails to consider the relativistic effects of heavy
elements, and the effects on the electric field gradient and the frequency versus polarization are not yet
calculated. Moreover, in non-relativistic theory, the Hamiltonian does not contain spin, that is, the spin
is separated from the symmetry of space. Corresponding to LS coupling, orbital angular momentum
and spin angular momentum are two independent motion constants, and their symmetry is expressed
by a single group. In traditional relativity, spin symmetry has lost its meaning. For example, in
non-relativity, H2O is a C2V group, and in the theory of relativity, it is replaced by a double group
C’2V, and a new element is introduced. The symmetry element is doubled, and the non-representative
number is increased by one. The representation is called the irreducible representation of the fermion,
which can be developed by the Fermi function. The irreducible representation of a single group of C2V

is called the boson irreducible representation.
In the four-component theory of relativity, if the time reversal operator K̂ is introduced, which

is the inverse unitary operator, it is impossible to have the product of the two operators by two
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corresponding products, that is, the irreducible unitary representation of the group is not obtained
because the unitary representation operator and the inverse unitary representation operator can’t
occur at the same time. However, it can still form a set of matrices, which is called a corepresentation,
which can be proved that it may still become irreducible representation [16–19]. A group containing
both symmetry of space and time-reversed symmetry is called a fully symmetric group, and the
relativity based on a fully symmetric group is called complete relativity. In this paper, the energy and
electrical properties of molecular Zr2Fe are studied by the theory of Dirac equation based on fully
symmetric group.

2. Elemental Theory

Equivalent definition of time reversal operator: We use another type, that is, Kramer’s theorem to
define the time reversal operator, such as K̂2 = −1, then there is K̂2φ = −φ = φ, that is, after two time
reversals, the state is restored, but the wave function is reversed; if K̂2 = +1, there is K̂2φ = φ, that is,
after two time reversals, the state is restored, but the wave function is not inverted. Thus, Kramer can
be used to expand the base group, i.e., {φ} and

{
φ
}

to expand the operator.
Time reversal operator: a time reversal operator or Kramer operator K̂, which is defined as

K̂ψ(r, t) = ψ∗(r,−t) (5)

If the Hamiltonian operator is a real function of r, then there is

K̂Ĥ(r)ψ(r, t) = Ĥ∗(r)ψ∗(r,−t) = Ĥ(r)ψ∗(r,−t) = ĤK̂ψ(r, t) (6)

That is
[Ĥ, K̂] = 0 (7)

This means that the state is invariant to time reversal, or K̂ and Ĥ have the same eigenfunction.
It can be proved that the time reversal operator is the inverse operator [20,21], i.e.,〈

K̂ψ
∣∣K̂φ

〉
= 〈ψ|φ〉∗ = 〈φ|ψ〉 (8)

The same is also an inverse linear operator.
Kramer’s theorem [22]: It can be proved that, if K̂2 = −1, which corresponds to a semi-positive

J value, that is, a fermion, the time reversal produces at least a new double degeneracy; if K̂2 = +1,
which corresponds to the integer J value, that is, bosons, the time reversal does not produce new
double degeneracy.

For the stationary Dirac equation, the operator is

ĥDψ = ψ; ĥD = β′mc2 + c(α.p̂) + V̂ (9)

where,

α =

[
0 σ

σ 0

]
; β′ =

[
0 0
0 22

]
; I2 = 2 × 2 unit matrix (10)

and Pauli spin matrix

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
(11)

If V̂ = 0, it will be the Dirac equation of free electrons.
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Here, single electronic operator [21–24] is

ĥD =

(
A B
−B∗ A∗

)
=


V̂ −icd̂z 0 −icd̂−
−icd̂z −2mc2 + V̂ −icd̂− 0

0 −icd̂+ V̂ icd̂z

−icd̂+ 0 icd̂z −2mc2 + V̂

 (12)

where
d̂z =

∂

∂z
, d̂± =

∂

∂x
± i

∂

∂y
. (13)

It is easy to know that

A =

(
V̂ −icd̂z

−icd̂z −2mc2 + V̂

)
= A+ (14)

B =

(
0 −icd̂−

−icd̂− 0

)
= −B+ =

(
0 −icd̂+

−icd̂+ 0

)
(15)

That is to say, A is Hermitian, that is, after it is used, the wave function is not inverted; B is
anti-Hermitian, that is, after it is applied, the wave function is reversed. At this time, there are two sets
of Kramer pair base sets, and the Dirac operator ĥD reflects time reversal symmetry.

It is easy to prove that ĥD can be expressed as [22–24]

ĥD = I2 ⊗
(

V̂ 0
0 −2mc2 + V̂

)
− c
∨
i ⊗

(
0 d̂z

d̂z 0

)
− c
∨
j ⊗

(
0 d̂y

d̂y 0

)
− c
∨
k ⊗

(
0 d̂x

d̂x 0

)
(16)

Here, the Dirac operator is represented as a quaternion. Quaternion Algebra [25]: The quaternion
algebra was developed by Hamilton and Frobenius, but it was limited to quantum mechanics at a very
late time. The quaternion can be expressed as

q =
3

∑
λ=0

Vλeλ = V0 + V1
∨
i + V2

∨
j + V3

∨
k (17)

where,

e1 =
∨
i ↔ iσz ; e2 =

∨
j ↔ iσy ; e3 =

∨
k ↔ iσx (18)

And
∨
i ,
∨
j ,
∨
k are the unit number of the quaternion, i is the virtual unit, V0, V1, V2 and V3 are the real

number, σz, σy and σx is the Pauli spin matrix in Equation (11). The quaternion is a four-dimensional
vector space composed of a three-dimensional complex space and a one-dimensional real space. From
Equation (12) to (18), the use of quaternion algebras establishes a connection with time-reversed
symmetry. A group containing spatial symmetry and time-reversed symmetry is called a fully
symmetric group, and its representation is called a corepresentation. Equation (16) is a quaternion
representation of the quaternion ĥD, which is the Dirac operator of the fully symmetric group.

Dirac equation in the form of quaternion algebra

q ĥD
qψ = qψ (19)

3. Theoretical Calculations and Discussions

In this paper, the electrical properties of the molecular Zr2Fe are calculated using the relativistic
configuration interaction (DIRRCI) method of the DIRAC10 program, and the basis set is 3–21G. The
calculation results are listed in Tables 1 and 2.
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Table 1. Geometry, energy, charge, dipole moment and quadrupole moment of molecular Zr2Fe.

Basis Set 3–21G

bond length/Å 2.1188
bond angle/

◦
78.156

Energy/a.u. −928.75326
energy gap/a.u. 4.03630384
atomic charge

Fe −0.540605
Zr 0.270302
Zr 0.270302

dipole moment/Debye −6.39267291
quadrupole moment/a.u. QXX = −0.015036

QYY = −0.015036
QZZ = 0.0300738

(dipole moment:a.u. = 2.54177000 Debye)

Table 2. Polarizability and electric field gradient of molecular Zr2Fe.

Frequency/a.u. Polarizability/a.u. Polarizability/Å3 Electric Field Gradient/a.u.

frequency f = 0.00 0.01173850 0.0017395 Nucleus: Zr
frequency f = 0.10 0.01174660 0.001740665 QXX = −0.311568607
frequency f = 0.20 0.01177109 0.001744294 QYY = −0.311568607
frequency f = 0.30 0.01181226 0.001750395 QZZ = 0.6231372146
frequency f = 0.40 0.01187045 0.0017590176 Nucleus: Fe
frequency f = 0.50 0.01194617 0.0017702382 QXX = 0.3247777245

frequency: Polarizability: QYY = 0.3247777245
1 a.u. = 2.3497 × 108 HZ 1 a.u. = 0.1482 Å3 QZZ = 0.6495554490

(electric field gradient:
1 a.u. = 9.71736 E + 21 V ×m−2)

The axis of symmetry C2V of the dipole moment of the molecule is the z-axis, which is the vector
sum of the dipole vectors of the two bonds FeZr on the axis of symmetry, and the length of the vector
is = 3.2883 Å. Its dipole charge distribution is

q =
µ

r
= ±6.39267291

3.2883
=

6.39267291 ∗ 10−18(CGSE.cm)

3.2883 ∗ 10−8(cm) ∗ 3 ∗ 109 = ± 0.64843/10−19C (20)

The dipole moment is a vector, and the above indicates that the charge is unbalanced along
the symmetry axis C2V of the molecule. The unit is 10−19 C and C is Coulomb. The quadrupole
moment is a second-order tensor, which represents the two-dimensional (vertical symmetry plane σV )
distribution of the charge. For example, the charge distribution of the quadrupole moment of the FeZr
molecule is shown in Figure 1, the unit is 10−19 C, and C is Coulomb.

qz =
QZZ

r = + 0.0300738
3.2883 = + 0.0300738∗10−18(CGSE.cm)

3.2883∗10−8(cm)∗3∗109 = +0.003048566/10−19C

qx(y) =
Q(YY)

r = − 0.015036
3.2883 = 0.015036∗10−18(CGSE.cm)

3.2883∗10−8(cm)∗3∗109 = −0.00152419/10−19C
(21)

Regarding the relationship between the electric field gradient and the chemical bond, the electric
field gradient of diatomic molecule is directly collinear with the axis where the chemical bond is
located. For the C2V Zr2Fe molecule, the electric field gradient is not collinear with the chemical bond,
and the sum of the projections of the electric field gradient component on the chemical bond Fe-Zr is
required. Since Zr2Fe is in the YZ plane, it acts on the three components of the Fe nucleus: QXX , QYY,
and QZZ. And the projection of its component QXX on the chemical bond Fe− Zr is zero, and only the
projection of QXX and QZZ on the chemical bond Fe− Zr is not zero, as shown in Figure 2.
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Figure 2. Projection of electric field gradient on chemical bond Fe-Zr.

It is now necessary to calculate the projections acting on the nucleus Fe and on the chemical bonds
Fe− Zr as follows:

The nucleus Fe electric field gradient (/a.u.) is QXX = 0.3247777245, QYY = 0.3247777245 and QZZ
= 0.6495554490. The component of projection of the Nucleus Fe electric field gradient on the chemical
bond Fe− Zr is zero, and only the projections QZZ and QYY on the z and y axes are zero, and the
projections are

zz = 0.649555449cos39.078 = −0.649555449 × 0.7762885 = 5.04242425
yy = 0.3247777245cos50.922 = 0.3247777245 × 0.69679214 = 0.226302565

(22)

For Fe atom, the sum is 5.04242425 + 0.226302565 = 5.2687.
It is now also necessary to discuss the electric field gradient (/a.u.) of the nuclear Zr as QXX =

−0.3115686073, QYY= −0.3115686073 and = 0.6231372146. QXX component of the projection of the
nucleus Zr electric field gradient on a chemical bond is zero, and only the projections on the z and y
axes, QZZ and QYY, are zero, which are

zz = 0.6231372146cos39.078 = 0.6231372146 × 0.7762885 = 0.483734259
yy = −0.3115686073cos50.922 = −0.3115686073 × 0.63037778 = −0.196405926

(23)

For Zr atom, the sum is 0.483734259 − 0.196405926 = 0.287328333.
It can be proved that in the direction of the molecular bond, that is, in the z-axis direction, there is

one atomic unit electron charge, that is, 1 a.u. charge. And the electric field gradient is 1 a.u., then the
second-order force constant = 1 au electron charge * 1 au electric field gradient, that is

k2 = 1au electron charge ∗ 1au electric field gradient = −4.8029 ∗ 10−10(CGSE) ∗ 9.71736 ∗ 1021 V
m2

= −4.8029 ∗ 10−10(CGSE) ∗ 9.71736 ∗ 1021 ∗ V
104cm ∗

1
300 (CGSE) 1

cm

= 1.55717 ∗ 106 dyne
cm = 1.55717 ∗ 106(g · sec−2) = 1.55717 ∗ 106 g·cm2·sec−2

cm2

= 1.55717 ∗ 106 g.cm. sec−2

cm (
dyne
cm ) = 1.55717 ∗ 106(

erg
cm2 )

(24)
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Zr2Fe is a C2V molecule, the axis of symmetry is the Z axis. Fe atom is the origin point, and the
molecule is in the YZ plane. Therefore, each FeZr bond is also in the YZ plane. Take each ZrFe bond of
Zr2Fe as an example. In the vicinity of its equilibrium point, there is 0.270302 electrons move from the
Zr atom to the Fe atom. The second-order force constant for each ZrFe bond axis is

k2 = [ 5.2687
26+0.270302 + 0.287328333

40−0.270302 ] ∗ 1.55517 ∗ 106(ergcm−2) = 3.2315 ∗ 105(dyne/cm)

k2 = [0.200557 + 0.007232] ∗ 1.55517 ∗ 106(ergcm−2) = 3.2315 ∗ 105(dyne/cm)

k2 = 3.2315 ∗ 105(dyne/cm)

(25)

Its resonant frequency is

ω = 1
2πc (

k
µ )

1/2 = 1
2∗3.1416∗3∗1010 (

0.32315∗106∗6.02∗1023

34.639 )1/2

ω = 1
2πc (

k
µ )

1/2 = 1
2∗3.1416∗3∗1010 (

0.32315∗106∗6.02∗1022

3.4639 )1/2

= 0.039757 × 104 = 397.57 cm−1

(26)

4. Conclusions

In this paper, the electrical properties of the molecular Zr2Fe are calculated using the relativistic
configuration interaction (DIRRCI) method of the DIRAC10 program, and the basis set is 3–21G.
The dipole moment of the molecule along the symmetry axis C2V is the vector sum of the dipole
vectors of the two bonds FeZr on the axis of symmetry, i.e., 3.2883 Å, from which the charge fraction
is calculated. Unlike linear molecules, their dipole moments coincide with the molecular axis. The
electric field gradient is directly related to the twofold force constant k2 of the chemical bond, that is,
the second-order force constant k2 = 1 au electron charge * 1 au electric field gradient.

The approximations of present calculations based on DIRAC10 software can be discussed here.
Relativistic quantum chemistry is related to solve Dirac equation, whose wave function has four
components. The results can be regarded as strict and reliable when the basis set is large enough
and omission and selection is suitable during the solving process. Unlikely, the other approximation
methods, i.e., nonrelativistic Schrodinger equation including the relativistic effect and inclusion of the
relativistic effect in the selected basis sets, are seriously dependent on the systems, which yield much
lower reliability [13–23]. In view of the above points, the more powerful and reliable solutions to Dirac
equation with DIRAC10 software is applied in present calculations here.
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