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Abstract

Background Cardiovascular disease, also known as circulation system disease, remains the leading cause of
morbidity and mortality worldwide. Traditional methods for diagnosing cardiovascular disease are often expensive
and time-consuming. So the purpose of this study is to construct machine learning models for the diagnosis of
cardiovascular diseases using easily accessible blood routine and biochemical detection data and explore the unique
hematologic features of cardiovascular diseases, including some metabolic indicators.

Methods After the data preprocessing, 25,794 healthy people and 32,822 circulation system disease patients with
the blood routine and biochemical detection data were utilized for our study. We selected logistic regression, random
forest, support vector machine, eXtreme Gradient Boosting (XGBoost), and deep neural network to construct models.
Finally, the SHAP algorithm was used to interpret models.

Results The circulation system disease prediction model constructed by XGBoost possessed the best performance
(AUC: 0.9921 (0.9911-0.9930); Acc: 0.9618 (0.9588-0.9645); Sn: 0.9690 (0.9655-0.9723); Sp: 0.9526 (0.9477-0.9572);
PPV:0.9631 (0.9592-0.9668); NPV: 0.9600 (0.9556-0.9644); MCC: 0.9224 (0.9165-0.9279); F1 score: 0.9661 (0.9634—
0.9686)). Most models of distinguishing various circulation system diseases also had good performance, the model
performance of distinguishing dilated cardiomyopathy from other circulation system diseases was the best (AUC:
0.9267 (0.8663-0.9752)). The model interpretation by the SHAP algorithm indicated features from biochemical
detection made major contributions to predicting circulation system disease, such as potassium (K), total protein (TP),
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albumin (ALB), and indirect bilirubin (NBIL). But for models of distinguishing various circulation system diseases, we
found that red blood cell count (RBQ), K, direct bilirubin (DBIL), and glucose (GLU) were the top 4 features subdividing

various circulation system diseases.

Conclusions The present study constructed multiple models using 50 features from the blood routine and
biochemical detection data for the diagnosis of various circulation system diseases. At the same time, the unique
hematologic features of various circulation system diseases, including some metabolic-related indicators, were
also explored. This cost-effective work will benefit more people and help diagnose and prevent circulation system

diseases.

Keywords Metabolic indicator, Blood routine, Biochemical detection, Machine learning, Cardiovascular disease,

Circulation system disease

Background

Cardiovascular diseases (CVDs), also known as circula-
tory system diseases, encompass a range of conditions
including coronary heart disease (CHD), cerebrovascular
disease, arrhythmias, valvular heart disease, cardiomyopa-
thy, heart failure, and other related disorders [1]. With the
widespread adoption of unhealthy lifestyle habits, CVDs
continue to be the leading cause of mortality and morbid-
ity worldwide, imposing a significant health burden and
economic strain on both patients and society [2, 3]. The
impact of CVDs is particularly severe in China. According
to the China Health Statistical Yearbook 2021, CVDs rank
first in both morbidity and mortality rates among urban
and rural residents, surpassing cancer and other diseases
[4].

Traditional diagnostic approaches for CVDs, including
electrocardiograms (ECG), echocardiography, coronary
angiography, stress testing, magnetic resonance imag-
ing, and intracoronary ultrasonography, are often costly
and not ideal for early-stage detection [5]. These methods
are frequently inaccessible to primary healthcare facili-
ties and economically disadvantaged regions due to the
prohibitive costs of the required equipment. Moreover,
many CVDs are asymptomatic in their early stages, and
their progression can be slow, leading to clinical diagno-
ses often occurring at an advanced stage of the disease or
incidentally during routine check-ups or assessments for
other conditions. Therefore, it is crucial to identify more
accessible and early screening indicators for CVDs.

Clinical laboratory tests, including hematological and
biochemical analyses, provide quantitative measure-
ments in the blood of both xenobiotics (foods, drugs, and
their metabolites) and biotics (biomarkers) using vali-
dated, robust assays [6, 7]. Biochemical changes induced
by disease can significantly impact various aspects of
bioanalysis. Specifically, metabolic changes such as
hyperglycemia, hypertriglyceridemia, high-density lipo-
protein (HDL), cholesterol, hypertension, and a pro-
inflammatory state are often present even in the early
stages of CVDs [8]. However, doctors often focus on sig-
nificantly abnormal parameters, potentially overlooking

a substantial amount of other test data and the interre-
lationships between laboratory parameters, which may
lead to an underestimation of the diagnostic potential of
these tests. Therefore, it is essential to study the reference
range and variation characteristics of hematological and
biochemical indicators for early identification of prevent-
able risk factors and early-stage CVD diagnosis, espe-
cially for indicators related to metabolic health, to assist
doctors in early-stage CVD detection.

With the advancement of electronic medical record
systems, an increasing amount of clinical laboratory test
data has become more accessible and reliable. The use of
this data, in combination with artificial intelligence (AI),
for disease diagnosis, prediction, monitoring, and prog-
nosis is a rapidly growing field [9, 10]. Machine learning
(ML), a subset of Al, has shown great promise in aiding
the diagnosis of CVDs [1, 11-13]. Current ML-based
studies on CVDs generally overlook clinical laboratory
test data, instead focusing on more expensive and/or
invasive imaging techniques such as computed tomog-
raphy angiography (CTA), heart ultrasound, computed
tomography (CT), ECG, and echocardiography [14—18].
Additionally, existing research often emphasizes predict-
ing the risk and prognosis of individual diseases [19, 20].
However, there is limited systematic analysis of the dis-
tinguishing features and unique hematological character-
istics of CVDs.

In summary, this study aims to address several key
questions: (1) to develop cost-effective, large-scale
screening models based on blood routine and biochemi-
cal test data using clinical data from the First Affiliated
Hospital of Xiamen University. The models we devel-
oped, after undergoing multiple rounds of parameter
optimization, have achieved high accuracy. These models
can accurately distinguish between cardiovascular dis-
ease patients and healthy individuals, as well as differenti-
ate between most types of cardiovascular diseases; (2) to
leverage the strengths of machine learning to explore the
diagnostic performance of multi-indicator combinations
in blood routine and biochemical test data, identifying
universal indicators for the diagnosis and classification
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of cardiovascular diseases; (3) to systematically compare
and evaluate the unique hematological and metabolic
characteristics of cardiovascular disease patients, provid-
ing clinicians with specialized insights for diagnosis and
disease prevention.

Methods

Data collection and processing

All the raw data we collected came from inpatients in the
Departments of Neurology and Cardiology and healthy
people who had physical examinations in the First Affili-
ated Hospital of Xiamen University between 2018 and
2023. These data were from the hospital information sys-
tem. For all patients, we screened the blood routine and
biochemical test data from the first test after hospital-
ization as features for the construction of models, while
for healthy people, we selected the blood routine and
biochemical test data from the first physical examination
every year as features. Because too many missing val-
ues may affect the prediction accuracy, we removed the
features with a missing value ratio greater than 50% and
finally screened out 22 features from the blood routine
and 28 features from the biochemical test data (Supple-
mentary Tables 1 and 2). Diagnostic information for all
patients was determined according to The International
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Statistical Classification of Diseases and Related Health
Problems 10th Revision (ICD-10). To ensure that the
sample size for each circulation system disease was suffi-
cient, we removed circulation system diseases with fewer
than 100 samples. At the same time, we also deleted
samples with a greater proportion of than 50% missing
features. In the end, 25,794 healthy people and 32,822
patients with circulation system disease were used to
construct our models (Fig. 1; Table 1). These data were
randomly divided into a training set (70%) and a valida-
tion set (30%).

Machine learning methods

Logistic regression (LR), also known as logistic regres-
sion analysis, is a generalized linear regression analysis
model, which is often used in data mining, automatic
disease diagnosis, economic forecasting, and other fields.
Logistic regression estimates the probability of an event
occurring based on a given dataset of independent vari-
ables, and since the outcome is a probability, the depen-
dent variable ranges between 0 and 1. Random forest
(RF) is a classifier with many decision trees, which can
be used to deal with classification and regression prob-
lems, as well as for dimensionality reduction problems. It
also has a good tolerance for outliers and noise and has
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Fig. 1 The flow chart of this study
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Table 1 Data distribution of diseases

ICD-10 disease code Disease Number
110.x00 Idiopathic (primary) hypertension 1935
[10.x00x 002 Hypertension 3121
110.x00x 028 Hypertension grade 2 (very high risk) 226
[10.x00x 032 Hypertension grade 3 (very high risk) 701
110.x03 Hypertension grade 1 269
110.x04 Hypertension grade 2 867
110.x05 Hypertension grade 3 2188
111.901 Hypertensive heart disease 105
120.000 Unstable angina 1655
121.401 Acute non-ST-elevation myocardial infarction 142
121.900 Acute myocardial infarction 233
125.102 Coronary atherosclerosis 997
125.103 Coronary atherosclerotic heart disease 2479
142.000 Dilated cardiomyopathy 129
145.102 Complete right bundle branch block 147
147.101 Atrial tachycardia 101
147.110 Atrial reentrant tachycardia 152
148x01 Atrial fibrillation 933
148.x02 Paroxysmal atrial fibrillation 251
149.100 Premature atrial depolarization 383
149.100x 001 Atrial premature contractions (premature atrial contractions) 291
149.300 Premature ventricular depolarization 593
149.301 Frequent ventricular extraphase contractions 102
149.500 Sick sinus syndrome 145
149.900 Arrhythmia 958
150.900 X 002 Cardiac insufficiency 175
160.900 Subarachnoid hemorrhage 324
161.004 Basal ganglia hemorrhage 382
161.101 Lobar hemorrhage 105
161.500% 001 Ventricular hemorrhage 103
161.802 Hemorrhage in the thalamus 205
161.900 Intracerebral hemorrhage 229
162.001 Subdural hematoma 116
162.003 Chronic subdural hematoma 188
162.900 Intracranial hemorrhage (non-traumatic) 178
163.200 Cerebral infarction caused by occlusion or stenosis of the anterior artery into the brain 122
163.300 Cerebral infarction caused by cerebral artery thrombosis 159
163.501 Cerebral artery stenosis, cerebral infarction 316
163.502 Cerebral artery occlusion, cerebral infarction 130
163.800 Cerebral infarction, others 164
163.801 Lacunar cerebral infarction 380
163.900 Cerebral infarction 1643
163.901 Brainstem infarction 320
163.902 Massive cerebral infarction 187
163.904 Cerebellar infarction 122
163.905 Multiple cerebral infarctions 633
163.906 Basal ganglia infarction 189
163.907 Thalamic infarction 131
165.001 Vertebral artery stenosis 366
165.002 Vertebral artery occlusion 117
165.102 Basilar artery stenosis 102
165.200% 001 Carotid artery stenosis 103
165.201 Internal carotid artery stenosis 379




Wang et al. Cardiovascular Diabetology (2024) 23:351 Page 5 of 17
Table 1 (continued)

ICD-10 disease code Disease Number
165.203 Internal carotid artery occlusion 264
166.001 Middle cerebral artery stenosis 449
166.002 Middle cerebral artery occlusion 285
167.200 Cerebral atherosclerosis 456
167.200%x011 Cerebral atherosclerosis 379
167.202 Internal carotid atherosclerosis 617
167.500 Moyamoya disease 217
169.100 Sequelae of intracerebral hemorrhage 188
169.300 Sequelae of cerebral infarction 1098
170.804 Subclavian atherosclerosis 361
170.806 Carotid arteriosclerosis 828
170.900 Systemic atherosclerosis 333
170.900x 003 Arteriosclerosis 291
170.900 x 004 Atherosclerosis 127
172.002 Internal carotid aneurysm 128
180.303 Venous thrombosis of the lower extremities 130

ICD-10: The International Statistical Classification of Diseases and Related Health Problems 10th Revision

better prediction and classification performance than
decision trees. Support vector machine (SVM) is a kind
of generalized linear classifier that classifies data binarily
according to supervised learning, and its decision bound-
ary is the maximum margin hyperplane solved by the
learning sample. eXtreme Gradient Boosting (XGBoost)
is an algorithm or engineering implementation based on
the Gradient Boosting Decision Tree (GBDT). XGBoost
is efficient, flexible, and lightweight, and has been widely
used in data mining, recommender systems, and other
fields. The deep neural network (DNN) is a framework for
deep learning, that is a neural network with at least one
hidden layer. Similar to shallow neural networks, deep
neural networks can also provide modeling for complex
nonlinear systems, but the extra layers provide a higher
level of abstraction for the model, thus improving the
model’s capabilities. LR can optimize features through
regularization. RF naturally reduces the impact of feature
noise by combining multiple decision trees, thereby opti-
mizing feature usage. SVM uses kernel functions and reg-
ularization parameters to find an appropriate hyperplane
in high-dimensional space, indirectly affecting feature
selection and optimization. XGBoost optimizes feature
usage in the tree structure through gradient boosting.
DNN can automatically learn and optimize features, par-
ticularly when dealing with complex data, by progres-
sively extracting and refining features through multiple
hidden layers. In summary, each of these algorithms has
its strengths in feature optimization. For comparing the
performance of different machine learning methods, we
selected LR, RE, SVM, XGBoost, and DNN to construct
the model [21-25].

To eliminate the impact of different feature scales on
the accuracy of the prediction models, we standardized

both the training and validation sets. We then performed
hyperparameter selection for five machine learning algo-
rithms using a combination of grid search cross-vali-
dation (CV) and manual fine-tuning. The parameters
adjusted for LR were C, max_iter, penalty, and solver. For
RF, the parameters were max_depth, min_samples_leaf,
and n_estimators. For SVM, the parameters adjusted
were C, gamma, and kernel. For XGBoost, the param-
eters were colsample bytree, gamma, learning rate,
max_depth, n_estimators, and subsample. For DNN,
the adjusted parameters included activation, number
of layers, and number of neurons per layer. All optimal
parameters were determined within the training set for
the models distinguishing cardiovascular disease patients
from healthy individuals. A 5-fold cross-validation was
employed, with area under the curve (AUC) serving as
the primary performance evaluation metric, to identify
the best estimator (Supplementary Data 1).

The LR, RE, and SVM were used through scikit-learn
(version 1.3.0), XGBoost was used through the xgboost
package (version 2.0.2), and the DNN by tensorflow (ver-
sion 2.0.2) in python.

Model performance evaluation

All models were trained using the best estimator and
then validated on the validation set. Sensitivity (Sn),
specificity (Sp), positive predictive value (PPV), negative
predictive value (NPV), F1 score, matthews correlation
coefficient (MCC), and accuracy (Acc) were utilized for
model performance evaluation. Their formulas are shown
below [26-28]:

TP

Sp=——
"T TP FN
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TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative separately. Meanwhile,
we also made use of the AUC of the receiver operat-
ing characteristics curve (ROC) to evaluate the model
performance comprehensively. Additionally, to further
assess the robustness of the models, all performance
evaluation metrics were calculated on the validation set
using the bootstrapping method to determine their 95%
confidence intervals (CI) [29-31].

Model interpretation

Machine learning makes it difficult to explain the contri-
bution of each feature due to its black-box principle, so
the SHAP algorithm was introduced in this study. The
SHAP algorithm assigns a SHAP value to each feature,
which is used to explain the impact of the feature on
the predictive model [32]. The SHAP value of each fea-
ture was computed by the shap python package (version
0.44.0).

Identification of features for various types of CVDs

To identify the unique hematological and metabolic fea-
tures of various cardiovascular diseases, we applied the
SHAP algorithm to calculate SHAP values for 50 features
across the 69 models distinguishing between different
diseases. To ensure that the raw SHAP values were accu-
rately represented in the heatmap, we did not normalize
the values. We then performed hierarchical clustering on
both rows and columns of the heatmap, reordered them
according to the clustering results, and finally plotted the
heatmap using Python.

To further explore the universal features distinguishing
between various diseases, we selected the top ten features
from the 69 models and connected these features with
the respective diseases in a network graph. The size of
each feature’s node in the network increases if it appears
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frequently among the top ten features across the models,
indicating its potential as a universal distinguishing fea-
ture between the diseases. The network was visualized
using Cytoscape (version 3.10.2) [33].

Results

Circulation system disease prediction model construction
To ensure the accuracy of our prediction models, the
number of various circulation system diseases was all
over 100 (Table 1). The male-to-female ratio between
healthy people and circulation system disease patients
was similar, all close to 1:1. The number of healthy peo-
ple for 40-60 years old and circulation system disease
patients for 60—80 years old was the most population,
12,828 and 18,868 respectively (Supplementary Fig. 1).
Subsequently, we chose five machine learning meth-
ods (LR, RE, SVM, XGBoost, and DNN) and utilized 22
features from blood routine and 28 features from bio-
chemical detection to construct the circulation system
disease prediction models. The results showed the com-
prehensive performance of XGBoost was the best (AUC:
0.9921 (0.9911-0.9930); Acc: 0.9618 (0.9588-0.9645); Sn:
0.9690 (0.9655-0.9723); Sp: 0.9526 (0.9477-0.9572); PPV:
0.9631 (0.9592-0.9668); NPV: 0.9600 (0.9556—0.9644);
MCC: 0.9224 (0.9165-0.9279); F1 score: 0.9661 (0.9634—
0.9686)) (Table 2). Meanwhile, we also attempted to
construct the models only using blood routine or bio-
chemical detection data. We found the model perfor-
mance of the blood routine combined with biochemical
detection was the best (Fig. 2B-D and Supplementary
Data 2). Considering the imbalance for sample number
among 69 circulation system diseases, we also used each
circulation system disease to construct 69 models. The
AUC of these models were all beyond 0.9, the highest
one reached 0.9996 (0.9992-0.9999) (Fig. 2A; Table 2).
These models all showed nice performance and robust-
ness (Table 2).

Classification of various circulation system diseases

To further subdivide various circulation system diseases,
we constructed 69 models distinguishing a kind of circu-
lation system disease from other circulation system dis-
eases, such as distinguishing venous thrombosis of the
lower extremities from other circulation system diseases.
The XGBoost was selected to construct models because
of its good performance. The results showed the AUC
of these models ranged from 0.5256 to 0.9267. Surpris-
ingly, the model performance of distinguishing dilated
cardiomyopathy (DCM) from other circulation system
diseases was the best. DCM is a type of cardiomyopathy
characterized by enlargement of the left or both ventri-
cles of the heart with systolic dysfunction. The diagno-
sis of DCM primarily depends on ultrasonic cardiogram
and cardiac magnetic resonance, not the blood routine
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Table 2 Model performance evaluation results (circulation system diseases vs. healthy, XGBoost)
Model AUC Acc (95%Cl)  Sn (95%Cl) Sp (95%Cl) PPV (95%Cl) NPV MCC (95%Cl) F1 score
(95%Cl) (95%ClI) (95%ClI)
Circulation system  0.9921 0.9618 0.9690 0.9526 0.9631 0.9600 0.9224 0.9661
disease (0.9911-  (0.9588- (0.9655-0.9723) (0.9477-0.9572) (0.9592-0.9668) (0.9556- (0.9165-0.9279) (0.9634-
0.9930)  0.9645) 0.9644) 0.9686)
Idiopathic (primary) 0.9934 0.9859 0.8357 0.9969 09517 0.9881 0.8846 0.8899
hypertension (0.9903- (0.9833- (0.8038-0.8655) (0.9956-0.9981) (0.9332-0.9695) (0.9857-  (0.8640-0.9029) (0.8698-
0.9960)  0.9882) 0.9903) 0.9078)
Hypertension 09777 0.9699 0.7956 0.9901 0.9029 0.9767 0.8313 0.8458
(0.9718-  (0.9661- (0.7710-0.8231) (0.9878-0.9923) (0.8816-0.9241) (0.9733- (0.8115-0.8511) (0.8276-
09832)  0.9734) 0.9801) 0.8640)
Hypertension 0.9538 0.9923 0.3506 0.9987 0.7297 0.9936 0.5027 04737
grade 2 (very high  (0.9263-  (0.9905- (0.2424-0.4546) (0.9979-0.9995) (0.5758-0.8724) (0.9919- (0.3827-0.6035) (0.3584-
risk) 0.9758)  0.9942) 0.9952) 0.5794)
Hypertension 0.9803 0.9870 0.5817 0.9979 0.8832 0.9889 0.7110 0.7014
grade 3 (very high  (0.9694- (0.9846- (0.5102-0.6453) (0.9969-0.9990) (0.8298-0.9359) (0.9865-  (0.6548-0.7607) (0.6416-
risk) 0.9888)  0.9894) 0.9910) 0.7537)
Hypertension 09750 09927 04286 0.9988 0.8000 09938 05825 0.5581
grade 1 (0.9485-  (0.9907- (0.3234-0.5317) (0.9981-0.9995) (0.6785-0.9091) (0.9920- (0.4853-0.6725) (0.4528-
0.9925)  0.9944) 0.9954) 0.6552)
Hypertension 09818 09847 0.6078 0.9972 0.8757 09872 07225 07176
grade 2 (09719- (0.9820- (0.5474-0.6653) (0.9959-0.9983) (0.8246-0.9222) (0.9848- (0.6758-0.7629) (0.6667-
0.9896)  0.9871) 0.9895) 0.7594)
Hypertension 0.9873 0.9796 0.7973 0.9953 0.9365 0.9828 0.8536 0.8613
grade 3 (0.9821- (0.9765- (0.7665-0.8272) (0.9939-0.9968) (0.9167-0.9561) (09797- (0.8315-0.8731) (0.8395-
09911)  0.9824) 0.9856) 0.8801)
Hypertensive heart 09794  0.9976 04839 0.999 0.8333 09979 06340 06122
disease (09350-  (0.9964- (03124-06667)  (09991-1.0000)  (0.6429-1.0000)  (0.9969- (0.4700-0.7683)  (0.4324-
0.9986)  0.9985) 0.9988) 0.7556)
Unstableangina 09987  0.9933 09146 0.9982 0.9691 09947 09380 0.9411
(09981 (09915~ (08886-09381)  (09972-09991)  (0.9514-09840)  (09930- (09207-09533)  (0.9247-
0.9992)  0.9949) 0.9963) 0.9557)
Acute non-ST-ele-  0.9972 0.9970 05106 1.0000 1.0000 0.9970 0.7135 0.6761
vation myocardial ~ (0.9937-  (0.9958- (0.3673-0.6400) (1.0000-1.0000) (1.0000-1.0000) (0.9957-  (0.6049-0.7991) (0.5373-
infarction 0.9994) 0.9981) 0.9981) 0.7805)
Acute myocardial 09993 09977 0.7887 0.999 0.9492 09981 08641 0.8615
infarction (09986~ (0.9965~ (06866-08788)  (09991-1.0000)  (0.8800-1.0000)  (0.9969- (0.7972-09182)  (0.7903—
0.9997) 0.9987) 0.9990) 0.9167)
Coronary 0.9828 0.9882 0.7352 0.9975 09174 0.9903 0.8155 0.8162
atherosclerosis (0.9721-  (0.9857- (0.6848-0.7836) (0.9964-0.9986) (0.8804-0.9498) (0.9882-  (0.7802-0.8486) (0.7795-
0.9907) 0.9904) 0.9923) 0.8507)
Coronary athero- 0.9957 0.9876 0.8893 0.9970 0.9663 0.9895 0.9204 0.9262
sclerotic heart (0.9935-  (0.9853- (0.8674-0.9107) (0.9957-0.9982) (0.9522-0.9798) (0.9873-  (0.9057-0.9346) (0.9123-
disease 0.9973) 0.9899) 0.9918) 0.9396)
Dilated 09996 09985 0.7381 0.9999 09688 09986  0.8449 0.8378
cardiomyopathy ~ (09992-  (0.9976- (06052-0.8788)  (0.9996-10000)  (0.8947-10000)  (0.9977- (0.7580-09255)  (0.7418-
0.9999) 0.9994) 0.9994) 0.9231)
Complete right 09749 09965 04444 0.9997 0.9091 09968 06343 0.5970
bundle branch (0.9476— (0.9951- (0.2922-0.6000) (0.9994-1.0000) (0.7778-1.0000) (0.9955-  (0.4947-0.7477) (0.4347-
block 0.9947) 0.9978) 0.9981) 0.7251)
Atrial tachycardia 09885 09970 02333 1.0000 1.0000 09970 04823 03784
(09786-  (0.9958- (0.1000-04092)  (1.0000-1.0000)  (1.0000-1.0000)  (0.9957- (0.3157-06391)  (0.1818-
0.9964)  0.9982) 0.9982) 0.5807)
Atrial reentrant 09665 09955 0.4043 0.9991 0.7308 09964 05416 0.5205
tachycardia (0.9260- (0.9938- (0.2632-0.5610) (0.9983-0.9997) (0.5500-0.8948) (0.9950- (0.3975-0.6672) (0.3714-
0.9940) 0.9970) 0.9977) 0.6512)
Atrial fibrillation 0.9937 0.9913 0.8000 0.9979 0.9310 0.9931 0.8587 0.8606
(0.9895-  (0.9892- (0.7529-0.8493) (0.9969-0.9990) (0.8991-0.9635) (0.9913-  (0.8259-0.8914) (0.8274-
0.9969) 0.9934) 0.9947) 0.8933)
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Table 2 (continued)
Model AUC Acc (95%Cl) Sn (95%ClI) Sp (95%Cl) PPV (95%Cl) NPV MCC (95%(Cl) F1 score
(95%Cl) (95%Cl) (95%Cl)
Paroxysmal atrial 0.9850 0.9946 04815 1.0000 1.0000 0.9946 0.6920 0.6500
fibrillation (0.9692- (0.9931- (0.3766-0.5890) (1.0000-1.0000) (1.0000-1.0000) (0.9931-  (0.6118-0.7656) (0.5472-
0.9958) 0.9962) 0.9961) 0.7413)
Premature atrial 0.9827 0.9924 0.5315 0.9990 0.8806 0.9933 0.6809 0.6629
depolarization (09726 (0.9905- (0.4386-0.6286) (0.9982-0.9996) (0.7922-0.9531) (0.9915-  (0.6026-0.7499) (0.5765-
0.9905) 0.9943) 0.9951) 0.7380)
Atrial premature 0.9669 0.9925 04694 0.9991 0.8679 0.9933 0.6352 0.6093
contractions (0.9461-  (0.9905- (0.3714-0.5686) (0.9983-0.9997) (0.7660-0.9574) (0.9915-  (0.5466-0.7161) (0.5124-
(premature atrial 0.9839) 0.9944) 0.9951) 0.6977)
contractions)
Premature ventric-  0.9716 0.9867 04972 0.9982 0.8654 0.9884 0.6504 06316
ular depolarization  (0.9591-  (0.9842- (0.4210-0.5731) (0.9973-0.9991) (0.7966-0.9271) (0.9859-  (0.5854-0.7085) 0.5611-
0.9823)  0.9891) 0.9906) 0.6948)
Frequent ven- 0.9275 0.9967 0.2973 1.0000 1.0000 0.9966 0.5443 04583
tricular extraphase  (0.8592-  (0.9952- (0.1599-0.4500) (1.0000-1.0000) (1.0000-1.0000) (0.9952-  (0.3993-0.6699) (0.2757-
contractions 0.9829)  0.9978) 0.9978) 0.6207)
Sick sinus 0.9982 0.9976 0.6042 1.0000 1.0000 0.9975 0.7763 0.7532
syndrome (0.9964-  (0.9964- (0.4633-0.7436) (1.0000-1.0000) (1.0000-1.0000) (0.9964- (0.6797-0.8618) (0.6332-
0.9994)  0.9986) 0.9986) 0.8529)
Arrhythmia 09812 09834 0.6416 0.9964 0.8704 09866  0.739%4 0.7387
(0.9744-  (0.9804- (0.5827-0.6993) (0.9950-0.9977) (0.8220-0.9114) (0.9838-  (0.6969-0.7840) (0.6926-
0.9866)  0.9863) 0.9891) 0.7837)
Cardiac 0.9968 0.9973 0.7069 0.9995 09111 0.9978 0.8013 0.7961
insufficiency (0.9936- (0.9961- (0.5832-0.8149) (0.9990-0.9999) (0.8163-0.9811) (0.9968- (0.7113-0.8754) (0.7000-
0.9991)  0.9983) 0.9987) 0.8724)
Subarachnoid 09975  0.9969 0.8000 0.9996 0.9655 09973 08774 0.8750
hemorrhage (0.9946- (0.9957- (0.7169-0.8785) (0.9991-1.0000) (0.9221-1.0000) (0.9961-  (0.8258-0.9234) (0.8191-
0.9994)  0.9981) 0.9985) 0.9224)
Basal ganglia 09927 09949 0.7083 0.9994 0.9444 09955 08156 0.8095
hemorrhage (0.9860- (0.9933- (0.6209-0.7911) (0.9987-0.9999) (0.8941-0.9885) (0.9939- (0.7563-0.8688) (0.7425-
0.9976)  0.9964) 0.9969) 0.8657)
Lobar hemorrhage  0.9824  0.9986 0.6774 0.9999 0.9545 09987  0.8035 0.7925
(0.9546- (0.9977- (0.5000-0.8401) (0.9996-1.0000) (0.8500-1.0000) (0.9978- (0.6786-0.9024) (0.6511-
0.9993)  0.9994) 0.9995) 0.8980)
Ventricular 09987 09988 0.7714 0.9999 0.9643 09990 08619 0.8571
hemorrhage (0.9967-  (0.9979- (0.6110-0.9091) (0.9996-1.0000) (0.8710-1.0000) (0.9982-  (0.7604-0.9426) (0.7441-
0.9999)  0.9996) 0.9996) 0.9412)
Hemorrhage inthe 09793  0.9956 0.5469 0.9994 0.8750 09963 06899 0.6731
thalamus (09610~ (0.9941- (0.4200-0.6567) (0.9987-0.9999) (0.7659-0.9706) (0.9947- (0.5858-0.7771) (0.5566—
0.9930)  0.9969) 0.9974) 0.7692)
Intracerebral 0.9886 0.9969 0.7143 0.9995 0.9259 0.9974 0.8118 0.8065
hemorrhage (0.9750- (0.9956— (0.6076-0.8193) (0.9990-0.9999) (0.8511-0.9828) (0.9963- (0.7366-0.8796) (0.7273-
0.9972) 0.9981) 0.9985) 0.8772)
Subdural 09910 09976 0.5952 0.9997 0.9259 09978 07414 0.7246
hematoma (0.9799- (0.9964- (0.4358-0.7429) (0.9994-1.0000) (0.8077-1.0000) (0.9968- (0.6138-0.8382) (0.5806—
0.9987) 0.9986) 0.9988) 0.8333)
Chronic subdural 09840  0.9970 0.6364 0.9996 0.9211 09974 07643 0.7527
hematoma (0.9567-  (0.9958- (0.5091-0.7551) (0.9991-1.0000) (0.8235-1.0000) (0.9963- (0.6697-0.8422) (0.6493-
09987)  0.9982) 0.9985) 0.8364)
Intracra- 0.9971 0.9961 0.5714 0.9988 0.7568 0.9973 0.6558 0.6512
nial hemorrhage (0.9955-  (0.9947- (0.4339-0.7060) (0.9981-0.9995) (0.6176-0.8919) (0.9961- (0.5298-0.7615) (0.5217-
(non-traumatic) 0.9985) 0.9976) 0.9983) 0.7595)
Cerebral infarction  0.9837 0.9956 0.3095 0.9994 0.7222 0.9963 04711 04333
caused by occlu- (09729-  (0.9941- (0.1739-0.4510) (0.9987-0.9999) (0.5000-0.9375) (0.9948-  (0.3037-0.6090) (0.2666—
sion or stenosis of  0.9922) 0.9970) 0.9976) 0.5833)

the anterior artery
into the brain
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Table 2 (continued)
Model AUC Acc (95%Cl) Sn (95%ClI) Sp (95%Cl) PPV (95%Cl) NPV MCC (95%(Cl) F1 score
(95%Cl) (95%Cl) (95%Cl)
Cerebral infarction  0.9710 0.9949 0.3269 0.9994 0.7727 0.9955 0.5007 0.4595
caused by cerebral  (0.9327-  (0.9933- (0.2037-0.4615) (0.9987-0.9999) (0.5909-0.9460) (0.9939- (0.3676-0.6256) (03188~
artery thrombosis ~ 0.9947) 0.9965) 0.9970) 0.5927)
Cerebral artery 0.9842 0.9925 0.4490 0.9994 0.8980 0.9931 0.6320 0.5986
stenosis, cerebral (09761-  (0.9904— (0.3469-0.5532) (0.9988-0.9999) (0.8055-0.9737) (0.9911-  (0.5426-0.7168) (0.4960-
infarction 0.9910) 0.9943) 0.9949) 0.6906)
Cerebral artery 0.9822 0.9973 0.5750 0.9995 0.8519 0.9978 0.6987 0.6866
occlusion, cerebral ~ (0.9580-  (0.9961- (0.4186-0.7180) (0.9990-0.9999) (0.7058-0.9643) (0.9968- (0.5614-0.8099) (0.5422—
infarction 0.9955) 0.9983) 0.9987) 0.8044)
Cerebral infarction, 0.9821 0.9958 0.3469 0.9999 0.9444 0.9959 0.5711 0.5075
others (0.9673-  (0.9942- (0.2195-0.4889) (0.9996-1.0000) (0.8180-1.0000) (0.9945- (0.4433-0.6831) (0.3508-
0.9934) 0.9972) 0.9973) 0.6486)
Lacunar cerebral 09519 0.9911 0.5410 0.9982 0.8250 0.9928 0.6640 0.6535
infarction (0.9260-  (0.9889- (0.4531-0.6305) (0.9972-0.9991) (0.7432-0.9079) (0.9909-  (0.5909-0.7345) (0.5766—
0.9761) 0.9931) 0.9946) 0.7289)
Cerebral infarction  0.9891 0.9825 0.7780 0.9955 09161 0.9861 0.8353 0.8414
(0.9853-  (0.9796- (0.7414-0.8146) (0.9938-0.9970) (0.8866-0.9434) (0.9833-  (0.8090-0.8614) (0.8153-
0.9923) 0.9852) 0.9886) 0.8666)
Brainstem 0.9915 0.9922 0.5446 0.9981 0.7857 0.9941 0.6505 0.6433
infarction (0.9860-  (0.9902- (0.4457-0.6422) (0.9970-0.9990) (0.6901-0.8800) (0.9923- (0.5672-0.7291) (0.5548-
0.9953) 0.9941) 0.9957) 0.7244)
Massive cerebral 0.9947 0.9976 0.7143 0.9996 0.9302 0.9979 0.8140 0.8081
infarction (0.9888-  (0.9964— (05918-0.8333)  (0.9991-1.0000)  (0.8511-1.0000)  (0.9969- (0.7290-0.8918)  (0.7158-
0.9992) 0.9986) 0.9988) 0.8889)
Cerebellar 0.9735 0.9963 04048 0.9995 0.8095 0.9968 0.5709 0.5397
infarction (0.9538-  (0.9950- (0.2571-0.5642) (0.9990-1.0000) (0.6429-1.0000) (0.9956-  (0.4277-0.6985) (0.3823-
0.9902) 0.9977) 0.9981) 0.6769)
Multiple cerebral 0.9842 0.9898 0.6522 0.9978 0.8759 0.9918 0.7510 0.7477
infarctions (0.9756- (0.9878- (0.5829-0.7222) (0.9966-0.9988) (0.8163-0.9265) (0.9898-  (0.6992-0.8004) (0.6931-
0.9920)  0.9919) 0.9937) 0.7988)
Basal ganglia 0.9855 0.9949 0.3455 0.9995 0.8261 0.9954 0.5323 04872
infarction (0.9726- (0.9932- (0.2222-0.4717) (0.9990-0.9999) (0.6667-0.9615) (0.9938-  (0.3932-0.6480) (0.3429-
0.9946)  0.9964) 0.9969) 0.6154)
Thalamic infarction 09571 0.9955 0.3043 0.9996 0.8235 0.9959 0.4991 04444
(0.9290- (0.9940- (0.1818-0.4444) (0.9992-1.0000) (0.6364-1.0000) (0.9943-  (0.3544-0.6287) (0.2857-
0.9808)  0.9969) 0.9973) 0.5902)
Vertebral artery 09718 09920 04343 0.9991 0.8600 09928 06080 0.5772
stenosis (0.9593-  (0.9901- (0.3367-0.5341) (0.9984-0.9997) (0.7500-0.9524) (0.9909- (0.5166-0.6918) (04733-
0.9830)  0.9939) 0.9946) 0.6667)
Vertebral artery 09652 09958 0.2955 0.9997 0.8667 09960  0.5046 04407
occlusion (0.9411-  (0.9942- (0.1666-0.4250) (0.9994-1.0000) (0.6667-1.0000) (0.9946- (0.3454-0.6244) (0.2712-
0.9838)  0.9972) 0.9973) 0.5807)
Basilar artery 09898 09967 0.3243 0.9999 0.9231 09968  0.5461 0.4800
stenosis (0.9815-  (0.9952- (0.1749-0.4688) (0.9996-1.0000) (0.7500-1.0000) (0.9955-  (0.3823-0.6727) (0.2857-
0.9959)  0.9979) 0.9981) 0.6342)
Carotid artery 0.9527 0.9965 0.2286 1.0000 1.0000 0.9965 04773 0.3721
stenosis (0.8986- (0.9951- (0.0937-0.3751) (1.0000-1.0000) (1.0000-1.0000) (0.9951-  (0.3055-0.6116) 0.1713-
0.9923)  0.9977) 0.9977) 0.5455)
Internal carotid 0.9752 0.9920 0.5299 0.9990 0.8857 0.9929 0.6817 0.6631
artery stenosis (0.9574-  (0.9899- (0.4380-0.6230) (0.9982-0.9996) (0.8088-0.9559) (0.9910- (0.6050-0.7485) (0.5802-
0.9875)  0.9939) 0.9947) 0.7383)
Internal carotid 09911 09941 06163 0.9983 0.8030 09957  0.7007 06974
artery occlusion (0.9824-  (0.9925- (0.5200-0.7177) (0.9973-0.9991) (0.6969-0.8919) (0.9943-  (0.6153-0.7803) (0.6099-
0.9970)  0.9957) 0.9970) 0.7765)
Middle cerebral 09710 0.9902 0.5401 0.9982 0.8409 09919 06696 06578
artery stenosis (0.9530- (0.9879- (0.4524-0.6228) (0.9972-0.9991) (0.7586-0.9131) (0.9899-  (0.5940-0.7337) (0.5803-
0.9859)  0.9924) 0.9938) 0.7273)
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Model AUC Acc (95%Cl) Sn (95%ClI) Sp (95%Cl) PPV (95%Cl) NPV MCC (95%(Cl) F1 score
(95%Cl) (95%Cl) (95%Cl)
Middle cerebral 09776 0.9931 04574 0.9996 0.9348 0.9934 0.6513 0.6143
artery occlusion (0.9632-  (0.9913- (0.3548-0.5568) (0.9991-1.0000) (0.8519-1.0000) (0.9916- (0.5604-0.7276) (05116-
0.9899) 0.9948) 0.9951) 0.7037)
Cerebral athero- 0.9826 0.9920 0.6015 0.9987 0.8889 0.9932 0.7276 0.7175
sclerosis (167.200)  (0.9748-  (0.9900- (0.5217-0.6801) (0.9979-0.9995) (0.8256-0.9518) (0.9914- (0.6609-0.7877) (0.6468-
0.9896) 0.9938) 0.9949) 0.7807)
Cerebral ath- 0.9693 0.9897 04615 09977 0.7500 0.9919 0.5837 0.5714
erosclerosis (0.9484- (0.9874- (0.3695-0.5596) (0.9966-0.9987) (0.6528-0.8507) (0.9897- (0.5004-0.6723) (0.4810-
(167.200%x011) 0.9847) 0.9920) 0.9939) 0.6632)
Internal carotid 09727 0.9850 04789 0.9974 0.8198 0.9873 0.6201 0.6047
atherosclerosis (09619- (0.9823- (0.4131-0.5481) (0.9962-0.9986) (0.7431-0.8889) (0.9849-  (0.5600-0.6800) (0.5407-
0.9821) 0.9875) 0.9897) 0.6688)
Moyamoya disease  0.9335 0.9944 0.3279 0.9996 0.8696 0.9947 0.5320 04762
(0.8938-  (0.9926- (0.2187-0.4375) (0.9991-1.0000) (0.7143-1.0000) (0.9931-  (0.4081-0.6288) (0.3437-
0.9678) 0.9959) 0.9961) 0.5870)
Sequelae of 0.9819 0.9962 0.5455 0.9994 0.8571 0.9968 0.6821 0.6667
intracerebral (0.9607-  (0.9947- (0.4181-0.6786) (0.9987-0.9999) (0.7273-0.9655) (0.9955-  (0.5687-0.7836) (0.5476-
hemorrhage 0.9955) 0.9974) 0.9979) 0.7789)
Sequelae of cere-  0.9900 0.9866 0.7391 0.9969 0.9084 0.9892 0.8128 0.8151
bral infarction (0.9837-  (0.9840- (0.6938-0.7841) (0.9956-0.9981) (0.8739-0.9421) (0.9869- (0.7817-0.8434) (0.7831-
0.9943) 0.9890) 0.9914) 0.8458)
Subclavian 0.9681 0.9890 04034 0.9981 0.7619 0.9909 0.5497 0.5275
atherosclerosis (0.9469-  (0.9866— (0.3181-0.4912) (0.9970-0.9990) (0.6551-0.8616) (0.9886-  (0.4605-0.6257) (0.4347-
0.9831) 0.9913) 0.9929) 0.6100)
Carotid 0.9803 0.9870 0.6707 0.9970 0.8777 0.9896 0.7610 0.7604
arteriosclerosis (0.9721-  (0.9842- (0.6107-0.7297) (0.9959-0.9982) (0.8342-0.9214) (0.9872- (0.7169-0.8027) (0.7133-
0.9874) 0.9894) 0.9918) 0.8025)
Systemic 0.9858 0.9923 0.5377 0.9986 0.8382 0.9937 0.6680 0.6552
atherosclerosis (0.9769-  (0.9902- (0.4392-0.6316) (0.9977-0.9994) (0.7411-0.9231) (0.9919- (0.5871-0.7476) (0.5683-
0.9933)  0.9944) 0.9954) 0.7352)
Arteriosclerosis 0.9739 0.9935 0.5408 0.9992 0.8983 0.9942 0.6943 0.6752
(170.900x 003) (0.9579-  (0.9917- (0.4400-0.6374) (0.9986-0.9997) (0.8113-0.9688) (0.9925- (0.6158-0.7688) (0.5867-
09871)  0.9951) 0.9957) 0.7558)
Atherosclerosis 0.9677 0.9956 0.2564 0.9994 0.6667 0.9963 04118 0.3704
(170.900 x 004) (0.9227-  (0.9941- (0.1281-0.4000) (0.9987-0.9999) (0.4118-0.9000) (0.9948- (0.2394-0.5592) (0.1967-
0.9947)  0.9972) 0.9976) 0.5263)
Internal carotid 09665  0.9964 0.3250 0.9999 0.9286 09965  0.5482 04815
aneurysm (0.9440- (0.9950- (0.1860-0.4706) (0.9996-1.0000) (0.7643-1.0000) (0.9951-  (0.3929-0.6732) (0.3110-
0.9857)  0.9977) 0.9978) 0.6275)
Venous thrombo-  0.9930 0.9972 0.6500 0.9990 0.7647 0.9982 0.7036 0.7027
sis of the lower (0.9862-  (0.9960- (0.5000-0.8001) (0.9982-0.9996) (0.6127-0.8920) (0.9973-  (0.5859-0.8165) (0.5797-
extremities 0.9987)  0.9983) 0.9991) 0.8158)

95%Cl: 95% confidence intervals (Lower-Upper bound)

and biochemical detection. These results indicated these
models could help doctors well distinguish different cir-
culation system diseases (Fig. 3 and Supplementary Data
3).

Analysis of circulation system disease-specific indicators

To help us better understand the contributions of 50
features for the circulation system disease prediction
model and find the circulation system disease-specific
indicators, we used the SHAP algorithm to compute
the contribution degree of each feature. For the con-
structed model only utilizing the blood routine, the top

10 features were lymphocyte percentage (LY%), red blood
cell count (RBC), absolute value of monocyte (MO#),
hematocrit (HCT), absolute value of neutrophil (NE#),
mean erythrocyte hemoglobin concentration (MCHC),
plateletcrit (PCT), white blood cell count (WBC), plate-
let distribution width (PDW), and mean platelet vol-
ume (MPV) (Fig. 4A). For the constructed model only
utilizing the biochemical detection data, the top 10 fea-
tures were potassium (K), albumin (ALB), total protein
(TP), indirect bilirubin (NBIL), direct bilirubin (DBIL),
sodium (Na), glucose (GLU), triglycerides (TG), cho-
lesterol (CHO), Apolipoprotein A1 (APOA1) (Fig. 4B).
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(D) Biochemical detection

Interestingly, for the constructed model utilizing the
blood routine combined with biochemical detection, only
one feature from the blood routine, LY%, was one of the
top 10 features (Fig. 4C). These results indicated features
from biochemical detection made major contributions to
predicting circulation system disease (Fig. 4D). Addition-
ally, to further validate the importance of these features,
we also calculated the top 20 features ranked by the other
four machine learning methods. As shown in the results,
although there were slight variations in feature rankings
across different methods, there was considerable over-
lap among the top 20 features, indicating that our model
interpretation approach demonstrates good stability
(Supplementary Data 4).

To verify whether the performance of the XGBoost
was affected by redundant features, we constructed the
model to distinguish cardiovascular disease patients from

healthy individuals using only the top 10 features ranked
by the SHAP algorithm (Fig. 4C). The results showed
the model built using all 50 features performed better,
indicating that the performance of our models was not
impacted by redundant features (Supplementary Fig. 2).

Analysis of characteristic indicators of discrimination
between various circulation system diseases

After exploring circulation system disease-specific indi-
cators, we also hoped to further explore characteristic
indicators of discrimination between various circulation
system diseases. Then, we displayed the SHAP value of
each feature through a heatmap. Rows and columns were
clustered separately, and the more similar the features or
diseases, the closer they were. We found that every cir-
culation system disease had distinctive characteristics
(Fig. 5A and Supplementary Data 5). At the same time,
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a network displaying the intersection features among
various circulation system diseases showed that RBC, K,
DBIL, and GLU were the top 4 features subdividing vari-
ous circulation system diseases (Fig. 5B). Elevated GLU
is often associated with diabetes, but we found that GLU
could also be used to distinguish between different circu-
lation system diseases. DBIL, also known as conjugated
bilirubin, is produced by the combination of indirect
bilirubin into the liver by the action of intrahepatic gluc-
uronosyltransferase and glucuronic acid, and its eleva-
tion is usually related to various liver dysfunctions. But
as we can see in our results, it also has great potential
for predicting various circulation system diseases. The
numerical distributions of the top 4 features among vari-
ous circulation system diseases and healthy people were
different (Fig. 5C). The results proved our models were

reliable.

Discussion

Cardiovascular disease (CVD) remains the leading cause
of death globally [2]. Early-stage detection of CVD is an
important way of reducing this toll. An advanced detec-
tion of cardiovascular disease is required to improve
therapeutic strategies and patient risk stratification.
Therefore, an urgent need exists for novel effective, and
targeted therapies with more precise risk stratification,
which necessitates a deeper understanding of the under-
lying molecular mechanisms that drive the progression of
CVD.

From a 6-year population-based cohort of the First
Affiliated Hospital of Xiamen University, this study
enrolled 32,822 CVD and 25,794 CVD-free participants.
We implemented 5 kinds of ML-based data-driven pipe-
line (LR, RF, SVM, XGBoost, and DNN) to identify pre-
dictors from 50 candidate variables covering 22 features
from the blood routine and 28 features from blood bio-
chemical tests and assessed multiple ML classifiers to
establish risk prediction models on CVD. Our models
obtained satisfied discriminative performance with the
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best AUC of 0.9921. Further, we attempted to construct
predictive models to distinguish among 69 common
CVDs. All these prediction models can discriminate
among multiple CVDs, with particularly notable per-
formance in distinguishing DCM (AUC=0.9267) from
others.

In this study, we developed predictive models using
blood routine and biochemical test data. These models
have the potential to be reliable methods for early diag-
nosis and large-scale screening for CVDs in populations.

Recent studies have shown that bilirubin is not just a
byproduct of heme degradation but also a crucial endog-
enous antioxidant [34]. The biochemical processes
underlying the relationship between raised DBIL and
higher CHD risk remain unclear, although in middle-
aged and older adults, DBIL is independently linked to
a linear dose-response increased risk for CHD incidence
[35]. It has been reported that DBIL is more readily avail-
able in an active state because it is soluble in serum and
only weakly bound to albumin. In the meantime, it may
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be hard for water-soluble DBIL to penetrate the vascular
intima of the atherosclerotic plaque and function as an
antioxidant [36]. This affirmed the significance of circu-
lating bilirubin, including DBIL and NBIL, as predictive
features in our models. The diagnostic relevance pertains
to the utility of circulating bilirubin concentrations as a
novel and reliable marker of cardiovascular disease risk.
This biomarker can be readily measured in clinical labo-
ratories and implemented in medical practice.

Diabetes mellitus is associated with a significantly
increased risk of cardiovascular diseases. Chronic hyper-
glycemia is known to induce mitochondrial dysfunction
and endoplasmic reticulum stress, promote the accumu-
lation of reactive oxygen species (ROS), and consequently
lead to cardiovascular damage [37]. Similarly, hypertri-
glyceridemia has been implicated in promoting cardio-
vascular disease through multiple mechanisms, including
the upregulation of signaling pathways that mediate
inflammation, oxidative stress, thrombosis, endothelial
dysfunction, and vascular impairment [38]. Furthermore,
serum cholesterol (CHO) levels have been demonstrated
to be associated with an increased risk of CVD [39]. Apo-
lipoprotein (APO) Al, the principal apolipoprotein of
plasma high-density lipoproteins (HDLs), possesses mul-
tiple well-documented cardioprotective functions [40].
Our models confirm alignment with these established
metabolic risk factors—GLU, TG, CHO, and APOAl1—
highlighted as top predictors in this study. This alignment
enhances the models’ clinical utility, demonstrating their
potential to identify individuals at risk of cardiovascular
events based on readily accessible parameters.

Furthermore, vascular inflammation and associated
chronic pro-inflammatory states are considered key fac-
tors in the development of CVD [41]. Previous clinical
investigations have demonstrated that peripheral blood
lymphocytes are associated with the prognosis of heart
failure [42]. Lymphocytopenia in chronic heart failure
patients may result from programmed lymphocyte death
due to excessive sympathetic activation and increased
oxidative stress and pro-inflammatory status [43]. The
model constructed in our work demonstrates the role of
lymphocyte percentage in the diagnosis of CVD, which is
consistent with these previous investigations.

Overall, the predictors derived in our data-driven pipe-
line have been validated by numerous studies, proving
the reliability of our model; however, it is the first time
that the ten predictors were combined to establish a
CVD risk prediction model. Our models underscore the
importance of blood lipid and glucose levels, as well as
circulating bilirubin, in the prediction of CVDs.

One notable strength of our study is that all the top 10
predictors for model development can be easily obtained
through blood sampling, which provides the general pop-
ulation with the opportunity to perform automated and

Page 15 of 17

rapid health screening. It also gives clinicians a tool to
help them diagnose heart problems early on. As a result,
it will be easier to treat patients effectively and avoid seri-
ous repercussions.

While earlier studies have primarily focused on the pre-
diction and diagnosis of specific cardiovascular diseases,
such as coronary artery disease [44, 45], atrial fibrilla-
tion [46], major adverse cardiovascular events in patients
with diabetes [47], and heart failure [48], comprehensive
approaches that encompass the entire cardiovascular sys-
tem remain relatively underexplored. We performed an
extensive analysis of 69 prevalent cardiovascular diseases
and developed diagnostic models. Additionally, our com-
prehensive approach in constructing the model included
an analysis of distinctions between different CVDs,
thereby providing physicians with improved diagnostic
differentiation.

While the analysis of clinical data is commonly
employed in diagnosis, this practice is less prevalent in
CVD diagnostics, where available data is often limited to
advanced imaging modalities and invasive hemodynamic
assessments [49—51]. The availability of data are essential
prerequisite for advancements in the clinical application
of machine learning. Our research utilizes hematological
data, which is not only more readily accessible but also
significantly more cost-effective.

Several caveats should be considered. Given the effect
of biological variables such as sex and age on cardiovas-
cular risk [52], it is imperative to integrate datasets from
increasing numbers of donors to evaluate the influence of
these variables on human cardiovascular disease. More-
over, patients with cardiovascular disease, especially
those of advanced age, often have comorbidities such as
diabetes mellitus, obesity, and high blood pressure, which
will need to be considered in the analysis and interpreta-
tion. This study’s limitation is its single-center retrospec-
tive design, with a sample confined to patients from the
First Affiliated Hospital of Xiamen University. Conse-
quently, some results may not be generalizable to other
populations. Further validation requires studies involving
diverse populations and multiple centers.

Conclusions

In summary, our study developed cost-effective, large-scale
screening models based on blood routine and biochemical
test data. These models are capable of distinguishing not
only cardiovascular disease patients from healthy indi-
viduals but also differentiating between various types of
cardiovascular diseases (Supplementary Fig. 3). We identi-
fied K, TP, ALB, and NBIL as universal indicators for dis-
tinguishing cardiovascular disease patients from healthy
individuals, while RBC, K, DBIL, and GLU were found
to be universal indicators for distinguishing between dif-
ferent types of cardiovascular diseases. Additionally, we
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identified unique hematological and metabolic character-
istics for each type of cardiovascular disease, which could
provide clinicians with specialized insights for early dis-
ease prevention and diagnosis.

Abbreviations

CVDs Cardiovascular diseases

LR Logistic regression

RF Random forest

SVM Support vector machine
XGBoost  Extreme Gradient Boosting
GBDT Gradient boosting decision tree
DNN Deep neural network
DCM Dilated cardiomyopathy
RBC Red blood cell count

LY% Lymphocyte percentage
HCT Hematocrit
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