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Abstract
Background  Cardiovascular disease, also known as circulation system disease, remains the leading cause of 
morbidity and mortality worldwide. Traditional methods for diagnosing cardiovascular disease are often expensive 
and time-consuming. So the purpose of this study is to construct machine learning models for the diagnosis of 
cardiovascular diseases using easily accessible blood routine and biochemical detection data and explore the unique 
hematologic features of cardiovascular diseases, including some metabolic indicators.

Methods  After the data preprocessing, 25,794 healthy people and 32,822 circulation system disease patients with 
the blood routine and biochemical detection data were utilized for our study. We selected logistic regression, random 
forest, support vector machine, eXtreme Gradient Boosting (XGBoost), and deep neural network to construct models. 
Finally, the SHAP algorithm was used to interpret models.

Results  The circulation system disease prediction model constructed by XGBoost possessed the best performance 
(AUC: 0.9921 (0.9911–0.9930); Acc: 0.9618 (0.9588–0.9645); Sn: 0.9690 (0.9655–0.9723); Sp: 0.9526 (0.9477–0.9572); 
PPV: 0.9631 (0.9592–0.9668); NPV: 0.9600 (0.9556–0.9644); MCC: 0.9224 (0.9165–0.9279); F1 score: 0.9661 (0.9634–
0.9686)). Most models of distinguishing various circulation system diseases also had good performance, the model 
performance of distinguishing dilated cardiomyopathy from other circulation system diseases was the best (AUC: 
0.9267 (0.8663–0.9752)). The model interpretation by the SHAP algorithm indicated features from biochemical 
detection made major contributions to predicting circulation system disease, such as potassium (K), total protein (TP), 
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Background
Cardiovascular diseases (CVDs), also known as circula-
tory system diseases, encompass a range of conditions 
including coronary heart disease (CHD), cerebrovascular 
disease, arrhythmias, valvular heart disease, cardiomyopa-
thy, heart failure, and other related disorders [1]. With the 
widespread adoption of unhealthy lifestyle habits, CVDs 
continue to be the leading cause of mortality and morbid-
ity worldwide, imposing a significant health burden and 
economic strain on both patients and society [2, 3]. The 
impact of CVDs is particularly severe in China. According 
to the China Health Statistical Yearbook 2021, CVDs rank 
first in both morbidity and mortality rates among urban 
and rural residents, surpassing cancer and other diseases 
[4].

Traditional diagnostic approaches for CVDs, including 
electrocardiograms (ECG), echocardiography, coronary 
angiography, stress testing, magnetic resonance imag-
ing, and intracoronary ultrasonography, are often costly 
and not ideal for early-stage detection [5]. These methods 
are frequently inaccessible to primary healthcare facili-
ties and economically disadvantaged regions due to the 
prohibitive costs of the required equipment. Moreover, 
many CVDs are asymptomatic in their early stages, and 
their progression can be slow, leading to clinical diagno-
ses often occurring at an advanced stage of the disease or 
incidentally during routine check-ups or assessments for 
other conditions. Therefore, it is crucial to identify more 
accessible and early screening indicators for CVDs.

Clinical laboratory tests, including hematological and 
biochemical analyses, provide quantitative measure-
ments in the blood of both xenobiotics (foods, drugs, and 
their metabolites) and biotics (biomarkers) using vali-
dated, robust assays [6, 7]. Biochemical changes induced 
by disease can significantly impact various aspects of 
bioanalysis. Specifically, metabolic changes such as 
hyperglycemia, hypertriglyceridemia, high-density lipo-
protein (HDL), cholesterol, hypertension, and a pro-
inflammatory state are often present even in the early 
stages of CVDs [8]. However, doctors often focus on sig-
nificantly abnormal parameters, potentially overlooking 

a substantial amount of other test data and the interre-
lationships between laboratory parameters, which may 
lead to an underestimation of the diagnostic potential of 
these tests. Therefore, it is essential to study the reference 
range and variation characteristics of hematological and 
biochemical indicators for early identification of prevent-
able risk factors and early-stage CVD diagnosis, espe-
cially for indicators related to metabolic health, to assist 
doctors in early-stage CVD detection.

With the advancement of electronic medical record 
systems, an increasing amount of clinical laboratory test 
data has become more accessible and reliable. The use of 
this data, in combination with artificial intelligence (AI), 
for disease diagnosis, prediction, monitoring, and prog-
nosis is a rapidly growing field [9, 10]. Machine learning 
(ML), a subset of AI, has shown great promise in aiding 
the diagnosis of CVDs [1, 11–13]. Current ML-based 
studies on CVDs generally overlook clinical laboratory 
test data, instead focusing on more expensive and/or 
invasive imaging techniques such as computed tomog-
raphy angiography (CTA), heart ultrasound, computed 
tomography (CT), ECG, and echocardiography [14–18]. 
Additionally, existing research often emphasizes predict-
ing the risk and prognosis of individual diseases [19, 20]. 
However, there is limited systematic analysis of the dis-
tinguishing features and unique hematological character-
istics of CVDs.

In summary, this study aims to address several key 
questions: (1) to develop cost-effective, large-scale 
screening models based on blood routine and biochemi-
cal test data using clinical data from the First Affiliated 
Hospital of Xiamen University. The models we devel-
oped, after undergoing multiple rounds of parameter 
optimization, have achieved high accuracy. These models 
can accurately distinguish between cardiovascular dis-
ease patients and healthy individuals, as well as differenti-
ate between most types of cardiovascular diseases; (2) to 
leverage the strengths of machine learning to explore the 
diagnostic performance of multi-indicator combinations 
in blood routine and biochemical test data, identifying 
universal indicators for the diagnosis and classification 

albumin (ALB), and indirect bilirubin (NBIL). But for models of distinguishing various circulation system diseases, we 
found that red blood cell count (RBC), K, direct bilirubin (DBIL), and glucose (GLU) were the top 4 features subdividing 
various circulation system diseases.

Conclusions  The present study constructed multiple models using 50 features from the blood routine and 
biochemical detection data for the diagnosis of various circulation system diseases. At the same time, the unique 
hematologic features of various circulation system diseases, including some metabolic-related indicators, were 
also explored. This cost-effective work will benefit more people and help diagnose and prevent circulation system 
diseases.

Keywords  Metabolic indicator, Blood routine, Biochemical detection, Machine learning, Cardiovascular disease, 
Circulation system disease
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of cardiovascular diseases; (3) to systematically compare 
and evaluate the unique hematological and metabolic 
characteristics of cardiovascular disease patients, provid-
ing clinicians with specialized insights for diagnosis and 
disease prevention.

Methods
Data collection and processing
All the raw data we collected came from inpatients in the 
Departments of Neurology and Cardiology and healthy 
people who had physical examinations in the First Affili-
ated Hospital of Xiamen University between 2018 and 
2023. These data were from the hospital information sys-
tem. For all patients, we screened the blood routine and 
biochemical test data from the first test after hospital-
ization as features for the construction of models, while 
for healthy people, we selected the blood routine and 
biochemical test data from the first physical examination 
every year as features. Because too many missing val-
ues may affect the prediction accuracy, we removed the 
features with a missing value ratio greater than 50% and 
finally screened out 22 features from the blood routine 
and 28 features from the biochemical test data (Supple-
mentary Tables 1 and 2). Diagnostic information for all 
patients was determined according to The International 

Statistical Classification of Diseases and Related Health 
Problems 10th Revision (ICD-10). To ensure that the 
sample size for each circulation system disease was suffi-
cient, we removed circulation system diseases with fewer 
than 100 samples. At the same time, we also deleted 
samples with a greater proportion of than 50% missing 
features. In the end, 25,794 healthy people and 32,822 
patients with circulation system disease were used to 
construct our models (Fig.  1; Table  1). These data were 
randomly divided into a training set (70%) and a valida-
tion set (30%).

Machine learning methods
Logistic regression (LR), also known as logistic regres-
sion analysis, is a generalized linear regression analysis 
model, which is often used in data mining, automatic 
disease diagnosis, economic forecasting, and other fields. 
Logistic regression estimates the probability of an event 
occurring based on a given dataset of independent vari-
ables, and since the outcome is a probability, the depen-
dent variable ranges between 0 and 1. Random forest 
(RF) is a classifier with many decision trees, which can 
be used to deal with classification and regression prob-
lems, as well as for dimensionality reduction problems. It 
also has a good tolerance for outliers and noise and has 

Fig. 1  The flow chart of this study
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ICD-10 disease code Disease Number
I10.x00 Idiopathic (primary) hypertension 1935
I10.x00 × 002 Hypertension 3121
I10.x00 × 028 Hypertension grade 2 (very high risk) 226
I10.x00 × 032 Hypertension grade 3 (very high risk) 701
I10.x03 Hypertension grade 1 269
I10.x04 Hypertension grade 2 867
I10.x05 Hypertension grade 3 2188
I11.901 Hypertensive heart disease 105
I20.000 Unstable angina 1655
I21.401 Acute non-ST-elevation myocardial infarction 142
I21.900 Acute myocardial infarction 233
I25.102 Coronary atherosclerosis 997
I25.103 Coronary atherosclerotic heart disease 2479
I42.000 Dilated cardiomyopathy 129
I45.102 Complete right bundle branch block 147
I47.101 Atrial tachycardia 101
I47.110 Atrial reentrant tachycardia 152
I48.x01 Atrial fibrillation 933
I48.x02 Paroxysmal atrial fibrillation 251
I49.100 Premature atrial depolarization 383
I49.100 × 001 Atrial premature contractions (premature atrial contractions) 291
I49.300 Premature ventricular depolarization 593
I49.301 Frequent ventricular extraphase contractions 102
I49.500 Sick sinus syndrome 145
I49.900 Arrhythmia 958
I50.900 × 002 Cardiac insufficiency 175
I60.900 Subarachnoid hemorrhage 324
I61.004 Basal ganglia hemorrhage 382
I61.101 Lobar hemorrhage 105
I61.500 × 001 Ventricular hemorrhage 103
I61.802 Hemorrhage in the thalamus 205
I61.900 Intracerebral hemorrhage 229
I62.001 Subdural hematoma 116
I62.003 Chronic subdural hematoma 188
I62.900 Intracranial hemorrhage (non-traumatic) 178
I63.200 Cerebral infarction caused by occlusion or stenosis of the anterior artery into the brain 122
I63.300 Cerebral infarction caused by cerebral artery thrombosis 159
I63.501 Cerebral artery stenosis, cerebral infarction 316
I63.502 Cerebral artery occlusion, cerebral infarction 130
I63.800 Cerebral infarction, others 164
I63.801 Lacunar cerebral infarction 380
I63.900 Cerebral infarction 1643
I63.901 Brainstem infarction 320
I63.902 Massive cerebral infarction 187
I63.904 Cerebellar infarction 122
I63.905 Multiple cerebral infarctions 633
I63.906 Basal ganglia infarction 189
I63.907 Thalamic infarction 131
I65.001 Vertebral artery stenosis 366
I65.002 Vertebral artery occlusion 117
I65.102 Basilar artery stenosis 102
I65.200 × 001 Carotid artery stenosis 103
I65.201 Internal carotid artery stenosis 379

Table 1  Data distribution of diseases
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better prediction and classification performance than 
decision trees. Support vector machine (SVM) is a kind 
of generalized linear classifier that classifies data binarily 
according to supervised learning, and its decision bound-
ary is the maximum margin hyperplane solved by the 
learning sample. eXtreme Gradient Boosting (XGBoost) 
is an algorithm or engineering implementation based on 
the Gradient Boosting Decision Tree (GBDT). XGBoost 
is efficient, flexible, and lightweight, and has been widely 
used in data mining, recommender systems, and other 
fields. The deep neural network (DNN) is a framework for 
deep learning, that is a neural network with at least one 
hidden layer. Similar to shallow neural networks, deep 
neural networks can also provide modeling for complex 
nonlinear systems, but the extra layers provide a higher 
level of abstraction for the model, thus improving the 
model’s capabilities. LR can optimize features through 
regularization. RF naturally reduces the impact of feature 
noise by combining multiple decision trees, thereby opti-
mizing feature usage. SVM uses kernel functions and reg-
ularization parameters to find an appropriate hyperplane 
in high-dimensional space, indirectly affecting feature 
selection and optimization. XGBoost optimizes feature 
usage in the tree structure through gradient boosting. 
DNN can automatically learn and optimize features, par-
ticularly when dealing with complex data, by progres-
sively extracting and refining features through multiple 
hidden layers. In summary, each of these algorithms has 
its strengths in feature optimization. For comparing the 
performance of different machine learning methods, we 
selected LR, RF, SVM, XGBoost, and DNN to construct 
the model [21–25].

To eliminate the impact of different feature scales on 
the accuracy of the prediction models, we standardized 

both the training and validation sets. We then performed 
hyperparameter selection for five machine learning algo-
rithms using a combination of grid search cross-vali-
dation (CV) and manual fine-tuning. The parameters 
adjusted for LR were C, max_iter, penalty, and solver. For 
RF, the parameters were max_depth, min_samples_leaf, 
and n_estimators. For SVM, the parameters adjusted 
were C, gamma, and kernel. For XGBoost, the param-
eters were colsample_bytree, gamma, learning_rate, 
max_depth, n_estimators, and subsample. For DNN, 
the adjusted parameters included activation, number 
of layers, and number of neurons per layer. All optimal 
parameters were determined within the training set for 
the models distinguishing cardiovascular disease patients 
from healthy individuals. A 5-fold cross-validation was 
employed, with area under the curve (AUC) serving as 
the primary performance evaluation metric, to identify 
the best estimator (Supplementary Data 1).

The LR, RF, and SVM were used through scikit-learn 
(version 1.3.0), XGBoost was used through the xgboost 
package (version 2.0.2), and the DNN by tensorflow (ver-
sion 2.0.2) in python.

Model performance evaluation
All models were trained using the best estimator and 
then validated on the validation set. Sensitivity (Sn), 
specificity (Sp), positive predictive value (PPV), negative 
predictive value (NPV), F1 score, matthews correlation 
coefficient (MCC), and accuracy (Acc) were utilized for 
model performance evaluation. Their formulas are shown 
below [26–28]:

	
Sn =

TP
TP + FN

ICD-10 disease code Disease Number
I65.203 Internal carotid artery occlusion 264
I66.001 Middle cerebral artery stenosis 449
I66.002 Middle cerebral artery occlusion 285
I67.200 Cerebral atherosclerosis 456
I67.200 × 011 Cerebral atherosclerosis 379
I67.202 Internal carotid atherosclerosis 617
I67.500 Moyamoya disease 217
I69.100 Sequelae of intracerebral hemorrhage 188
I69.300 Sequelae of cerebral infarction 1098
I70.804 Subclavian atherosclerosis 361
I70.806 Carotid arteriosclerosis 828
I70.900 Systemic atherosclerosis 333
I70.900 × 003 Arteriosclerosis 291
I70.900 × 004 Atherosclerosis 127
I72.002 Internal carotid aneurysm 128
I80.303 Venous thrombosis of the lower extremities 130
ICD-10: The International Statistical Classification of Diseases and Related Health Problems 10th Revision

Table 1  (continued) 
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Sp =

TN
TN + FP

	
PPV =

TP
TP + FP

	
NPV =

TN
TN + FN

	
Acc =

TP + TN
TP + FN + TN + FP

	
F1 score =

2TP
2TP + FN + FP

	
MCC =

TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

TP, TN, FP, and FN represent true positive, true negative, 
false positive, and false negative separately. Meanwhile, 
we also made use of the AUC of the receiver operat-
ing characteristics curve (ROC) to evaluate the model 
performance comprehensively. Additionally, to further 
assess the robustness of the models, all performance 
evaluation metrics were calculated on the validation set 
using the bootstrapping method to determine their 95% 
confidence intervals (CI) [29–31].

Model interpretation
Machine learning makes it difficult to explain the contri-
bution of each feature due to its black-box principle, so 
the SHAP algorithm was introduced in this study. The 
SHAP algorithm assigns a SHAP value to each feature, 
which is used to explain the impact of the feature on 
the predictive model [32]. The SHAP value of each fea-
ture was computed by the shap python package (version 
0.44.0).

Identification of features for various types of CVDs
To identify the unique hematological and metabolic fea-
tures of various cardiovascular diseases, we applied the 
SHAP algorithm to calculate SHAP values for 50 features 
across the 69 models distinguishing between different 
diseases. To ensure that the raw SHAP values were accu-
rately represented in the heatmap, we did not normalize 
the values. We then performed hierarchical clustering on 
both rows and columns of the heatmap, reordered them 
according to the clustering results, and finally plotted the 
heatmap using Python.

To further explore the universal features distinguishing 
between various diseases, we selected the top ten features 
from the 69 models and connected these features with 
the respective diseases in a network graph. The size of 
each feature’s node in the network increases if it appears 

frequently among the top ten features across the models, 
indicating its potential as a universal distinguishing fea-
ture between the diseases. The network was visualized 
using Cytoscape (version 3.10.2) [33].

Results
Circulation system disease prediction model construction
To ensure the accuracy of our prediction models, the 
number of various circulation system diseases was all 
over 100 (Table  1). The male-to-female ratio between 
healthy people and circulation system disease patients 
was similar, all close to 1:1. The number of healthy peo-
ple for 40–60 years old and circulation system disease 
patients for 60–80 years old was the most population, 
12,828 and 18,868 respectively (Supplementary Fig.  1). 
Subsequently, we chose five machine learning meth-
ods (LR, RF, SVM, XGBoost, and DNN) and utilized 22 
features from blood routine and 28 features from bio-
chemical detection to construct the circulation system 
disease prediction models. The results showed the com-
prehensive performance of XGBoost was the best (AUC: 
0.9921 (0.9911–0.9930); Acc: 0.9618 (0.9588–0.9645); Sn: 
0.9690 (0.9655–0.9723); Sp: 0.9526 (0.9477–0.9572); PPV: 
0.9631 (0.9592–0.9668); NPV: 0.9600 (0.9556–0.9644); 
MCC: 0.9224 (0.9165–0.9279); F1 score: 0.9661 (0.9634–
0.9686)) (Table  2). Meanwhile, we also attempted to 
construct the models only using blood routine or bio-
chemical detection data. We found the model perfor-
mance of the blood routine combined with biochemical 
detection was the best (Fig.  2B-D and Supplementary 
Data 2). Considering the imbalance for sample number 
among 69 circulation system diseases, we also used each 
circulation system disease to construct 69 models. The 
AUC of these models were all beyond 0.9, the highest 
one reached 0.9996 (0.9992–0.9999) (Fig.  2A; Table  2). 
These models all showed nice performance and robust-
ness (Table 2).

Classification of various circulation system diseases
To further subdivide various circulation system diseases, 
we constructed 69 models distinguishing a kind of circu-
lation system disease from other circulation system dis-
eases, such as distinguishing venous thrombosis of the 
lower extremities from other circulation system diseases. 
The XGBoost was selected to construct models because 
of its good performance. The results showed the AUC 
of these models ranged from 0.5256 to 0.9267. Surpris-
ingly, the model performance of distinguishing dilated 
cardiomyopathy (DCM) from other circulation system 
diseases was the best. DCM is a type of cardiomyopathy 
characterized by enlargement of the left or both ventri-
cles of the heart with systolic dysfunction. The diagno-
sis of DCM primarily depends on ultrasonic cardiogram 
and cardiac magnetic resonance, not the blood routine 
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Model AUC 
(95%CI)

Acc (95%CI) Sn (95%CI) Sp (95%CI) PPV (95%CI) NPV 
(95%CI)

MCC (95%CI) F1 score 
(95%CI)

Circulation system 
disease

0.9921 
(0.9911–
0.9930)

0.9618 
(0.9588–
0.9645)

0.9690 
(0.9655–0.9723)

0.9526 
(0.9477–0.9572)

0.9631 
(0.9592–0.9668)

0.9600 
(0.9556–
0.9644)

0.9224 
(0.9165–0.9279)

0.9661 
(0.9634–
0.9686)

Idiopathic (primary) 
hypertension

0.9934 
(0.9903–
0.9960)

0.9859 
(0.9833–
0.9882)

0.8357 
(0.8038–0.8655)

0.9969 
(0.9956–0.9981)

0.9517 
(0.9332–0.9695)

0.9881 
(0.9857–
0.9903)

0.8846 
(0.8640–0.9029)

0.8899 
(0.8698–
0.9078)

Hypertension 0.9777 
(0.9718–
0.9832)

0.9699 
(0.9661–
0.9734)

0.7956 
(0.7710–0.8231)

0.9901 
(0.9878–0.9923)

0.9029 
(0.8816–0.9241)

0.9767 
(0.9733–
0.9801)

0.8313 
(0.8115–0.8511)

0.8458 
(0.8276–
0.8640)

Hypertension 
grade 2 (very high 
risk)

0.9538 
(0.9263–
0.9758)

0.9923 
(0.9905–
0.9942)

0.3506 
(0.2424–0.4546)

0.9987 
(0.9979–0.9995)

0.7297 
(0.5758–0.8724)

0.9936 
(0.9919–
0.9952)

0.5027 
(0.3827–0.6035)

0.4737 
(0.3584–
0.5794)

Hypertension 
grade 3 (very high 
risk)

0.9803 
(0.9694–
0.9888)

0.9870 
(0.9846–
0.9894)

0.5817 
(0.5102–0.6453)

0.9979 
(0.9969–0.9990)

0.8832 
(0.8298–0.9359)

0.9889 
(0.9865–
0.9910)

0.7110 
(0.6548–0.7607)

0.7014 
(0.6416–
0.7537)

Hypertension 
grade 1

0.9750 
(0.9485–
0.9925)

0.9927 
(0.9907–
0.9944)

0.4286 
(0.3234–0.5317)

0.9988 
(0.9981–0.9995)

0.8000 
(0.6785–0.9091)

0.9938 
(0.9920–
0.9954)

0.5825 
(0.4853–0.6725)

0.5581 
(0.4528–
0.6552)

Hypertension 
grade 2

0.9818 
(0.9719–
0.9896)

0.9847 
(0.9820–
0.9871)

0.6078 
(0.5474–0.6653)

0.9972 
(0.9959–0.9983)

0.8757 
(0.8246–0.9222)

0.9872 
(0.9848–
0.9895)

0.7225 
(0.6758–0.7629)

0.7176 
(0.6667–
0.7594)

Hypertension 
grade 3

0.9873 
(0.9821–
0.9911)

0.9796 
(0.9765–
0.9824)

0.7973 
(0.7665–0.8272)

0.9953 
(0.9939–0.9968)

0.9365 
(0.9167–0.9561)

0.9828 
(0.9797–
0.9856)

0.8536 
(0.8315–0.8731)

0.8613 
(0.8395–
0.8801)

Hypertensive heart 
disease

0.9794 
(0.9350–
0.9986)

0.9976 
(0.9964–
0.9985)

0.4839 
(0.3124–0.6667)

0.9996 
(0.9991-1.0000)

0.8333 
(0.6429-1.0000)

0.9979 
(0.9969–
0.9988)

0.6340 
(0.4700-0.7683)

0.6122 
(0.4324–
0.7556)

Unstable angina 0.9987 
(0.9981–
0.9992)

0.9933 
(0.9915–
0.9949)

0.9146 
(0.8886–0.9381)

0.9982 
(0.9972–0.9991)

0.9691 
(0.9514–0.9840)

0.9947 
(0.9930–
0.9963)

0.9380 
(0.9207–0.9533)

0.9411 
(0.9247–
0.9557)

Acute non-ST-ele-
vation myocardial 
infarction

0.9972 
(0.9937–
0.9994)

0.9970 
(0.9958–
0.9981)

0.5106 
(0.3673-0.6400)

1.0000 
(1.0000–1.0000)

1.0000 
(1.0000–1.0000)

0.9970 
(0.9957–
0.9981)

0.7135 
(0.6049–0.7991)

0.6761 
(0.5373–
0.7805)

Acute myocardial 
infarction

0.9993 
(0.9986–
0.9997)

0.9977 
(0.9965–
0.9987)

0.7887 
(0.6866–0.8788)

0.9996 
(0.9991-1.0000)

0.9492 
(0.8800-1.0000)

0.9981 
(0.9969–
0.9990)

0.8641 
(0.7972–0.9182)

0.8615 
(0.7903–
0.9167)

Coronary 
atherosclerosis

0.9828 
(0.9721–
0.9907)

0.9882 
(0.9857–
0.9904)

0.7352 
(0.6848–0.7836)

0.9975 
(0.9964–0.9986)

0.9174 
(0.8804–0.9498)

0.9903 
(0.9882–
0.9923)

0.8155 
(0.7802–0.8486)

0.8162 
(0.7795–
0.8507)

Coronary athero-
sclerotic heart 
disease

0.9957 
(0.9935–
0.9973)

0.9876 
(0.9853–
0.9899)

0.8893 
(0.8674–0.9107)

0.9970 
(0.9957–0.9982)

0.9663 
(0.9522–0.9798)

0.9895 
(0.9873–
0.9918)

0.9204 
(0.9057–0.9346)

0.9262 
(0.9123–
0.9396)

Dilated 
cardiomyopathy

0.9996 
(0.9992–
0.9999)

0.9985 
(0.9976–
0.9994)

0.7381 
(0.6052–0.8788)

0.9999 
(0.9996-1.0000)

0.9688 
(0.8947-1.0000)

0.9986 
(0.9977–
0.9994)

0.8449 
(0.7580–0.9255)

0.8378 
(0.7418–
0.9231)

Complete right 
bundle branch 
block

0.9749 
(0.9476–
0.9947)

0.9965 
(0.9951–
0.9978)

0.4444 
(0.2922-0.6000)

0.9997 
(0.9994-1.0000)

0.9091 
(0.7778-1.0000)

0.9968 
(0.9955–
0.9981)

0.6343 
(0.4947–0.7477)

0.5970 
(0.4347–
0.7251)

Atrial tachycardia 0.9885 
(0.9786–
0.9964)

0.9970 
(0.9958–
0.9982)

0.2333 
(0.1000-0.4092)

1.0000 
(1.0000–1.0000)

1.0000 
(1.0000–1.0000)

0.9970 
(0.9957–
0.9982)

0.4823 
(0.3157–0.6391)

0.3784 
(0.1818–
0.5807)

Atrial reentrant 
tachycardia

0.9665 
(0.9260–
0.9940)

0.9955 
(0.9938–
0.9970)

0.4043 
(0.2632–0.5610)

0.9991 
(0.9983–0.9997)

0.7308 
(0.5500-0.8948)

0.9964 
(0.9950–
0.9977)

0.5416 
(0.3975–0.6672)

0.5205 
(0.3714–
0.6512)

Atrial fibrillation 0.9937 
(0.9895–
0.9969)

0.9913 
(0.9892–
0.9934)

0.8000 
(0.7529–0.8493)

0.9979 
(0.9969–0.9990)

0.9310 
(0.8991–0.9635)

0.9931 
(0.9913–
0.9947)

0.8587 
(0.8259–0.8914)

0.8606 
(0.8274–
0.8933)

Table 2  Model performance evaluation results (circulation system diseases vs. healthy, XGBoost)
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Model AUC 
(95%CI)

Acc (95%CI) Sn (95%CI) Sp (95%CI) PPV (95%CI) NPV 
(95%CI)

MCC (95%CI) F1 score 
(95%CI)

Paroxysmal atrial 
fibrillation

0.9850 
(0.9692–
0.9958)

0.9946 
(0.9931–
0.9962)

0.4815 
(0.3766–0.5890)

1.0000 
(1.0000–1.0000)

1.0000 
(1.0000–1.0000)

0.9946 
(0.9931–
0.9961)

0.6920 
(0.6118–0.7656)

0.6500 
(0.5472–
0.7413)

Premature atrial 
depolarization

0.9827 
(0.9726–
0.9905)

0.9924 
(0.9905–
0.9943)

0.5315 
(0.4386–0.6286)

0.9990 
(0.9982–0.9996)

0.8806 
(0.7922–0.9531)

0.9933 
(0.9915–
0.9951)

0.6809 
(0.6026–0.7499)

0.6629 
(0.5765–
0.7380)

Atrial premature 
contractions 
(premature atrial 
contractions)

0.9669 
(0.9461–
0.9839)

0.9925 
(0.9905–
0.9944)

0.4694 
(0.3714–0.5686)

0.9991 
(0.9983–0.9997)

0.8679 
(0.7660–0.9574)

0.9933 
(0.9915–
0.9951)

0.6352 
(0.5466–0.7161)

0.6093 
(0.5124–
0.6977)

Premature ventric-
ular depolarization

0.9716 
(0.9591–
0.9823)

0.9867 
(0.9842–
0.9891)

0.4972 
(0.4210–0.5731)

0.9982 
(0.9973–0.9991)

0.8654 
(0.7966–0.9271)

0.9884 
(0.9859–
0.9906)

0.6504 
(0.5854–0.7085)

0.6316 
(0.5611–
0.6948)

Frequent ven-
tricular extraphase 
contractions

0.9275 
(0.8592–
0.9829)

0.9967 
(0.9952–
0.9978)

0.2973 
(0.1599-0.4500)

1.0000 
(1.0000–1.0000)

1.0000 
(1.0000–1.0000)

0.9966 
(0.9952–
0.9978)

0.5443 
(0.3993–0.6699)

0.4583 
(0.2757–
0.6207)

Sick sinus 
syndrome

0.9982 
(0.9964–
0.9994)

0.9976 
(0.9964–
0.9986)

0.6042 
(0.4633–0.7436)

1.0000 
(1.0000–1.0000)

1.0000 
(1.0000–1.0000)

0.9975 
(0.9964–
0.9986)

0.7763 
(0.6797–0.8618)

0.7532 
(0.6332–
0.8529)

Arrhythmia 0.9812 
(0.9744–
0.9866)

0.9834 
(0.9804–
0.9863)

0.6416 
(0.5827–0.6993)

0.9964 
(0.9950–0.9977)

0.8704 
(0.8220–0.9114)

0.9866 
(0.9838–
0.9891)

0.7394 
(0.6969–0.7840)

0.7387 
(0.6926–
0.7837)

Cardiac 
insufficiency

0.9968 
(0.9936–
0.9991)

0.9973 
(0.9961–
0.9983)

0.7069 
(0.5832–0.8149)

0.9995 
(0.9990–0.9999)

0.9111 
(0.8163–0.9811)

0.9978 
(0.9968–
0.9987)

0.8013 
(0.7113–0.8754)

0.7961 
(0.7000-
0.8724)

Subarachnoid 
hemorrhage

0.9975 
(0.9946–
0.9994)

0.9969 
(0.9957–
0.9981)

0.8000 
(0.7169–0.8785)

0.9996 
(0.9991-1.0000)

0.9655 
(0.9221-1.0000)

0.9973 
(0.9961–
0.9985)

0.8774 
(0.8258–0.9234)

0.8750 
(0.8191–
0.9224)

Basal ganglia 
hemorrhage

0.9927 
(0.9860–
0.9976)

0.9949 
(0.9933–
0.9964)

0.7083 
(0.6209–0.7911)

0.9994 
(0.9987–0.9999)

0.9444 
(0.8941–0.9885)

0.9955 
(0.9939–
0.9969)

0.8156 
(0.7563–0.8688)

0.8095 
(0.7425–
0.8657)

Lobar hemorrhage 0.9824 
(0.9546–
0.9993)

0.9986 
(0.9977–
0.9994)

0.6774 
(0.5000-0.8401)

0.9999 
(0.9996-1.0000)

0.9545 
(0.8500-1.0000)

0.9987 
(0.9978–
0.9995)

0.8035 
(0.6786–0.9024)

0.7925 
(0.6511–
0.8980)

Ventricular 
hemorrhage

0.9987 
(0.9967–
0.9999)

0.9988 
(0.9979–
0.9996)

0.7714 
(0.6110–0.9091)

0.9999 
(0.9996-1.0000)

0.9643 
(0.8710-1.0000)

0.9990 
(0.9982–
0.9996)

0.8619 
(0.7604–0.9426)

0.8571 
(0.7441–
0.9412)

Hemorrhage in the 
thalamus

0.9793 
(0.9610–
0.9930)

0.9956 
(0.9941–
0.9969)

0.5469 
(0.4200-0.6567)

0.9994 
(0.9987–0.9999)

0.8750 
(0.7659–0.9706)

0.9963 
(0.9947–
0.9974)

0.6899 
(0.5858–0.7771)

0.6731 
(0.5566–
0.7692)

Intracerebral 
hemorrhage

0.9886 
(0.9750–
0.9972)

0.9969 
(0.9956–
0.9981)

0.7143 
(0.6076–0.8193)

0.9995 
(0.9990–0.9999)

0.9259 
(0.8511–0.9828)

0.9974 
(0.9963–
0.9985)

0.8118 
(0.7366–0.8796)

0.8065 
(0.7273–
0.8772)

Subdural 
hematoma

0.9910 
(0.9799–
0.9987)

0.9976 
(0.9964–
0.9986)

0.5952 
(0.4358–0.7429)

0.9997 
(0.9994-1.0000)

0.9259 
(0.8077-1.0000)

0.9978 
(0.9968–
0.9988)

0.7414 
(0.6138–0.8382)

0.7246 
(0.5806–
0.8333)

Chronic subdural 
hematoma

0.9840 
(0.9567–
0.9987)

0.9970 
(0.9958–
0.9982)

0.6364 
(0.5091–0.7551)

0.9996 
(0.9991-1.0000)

0.9211 
(0.8235-1.0000)

0.9974 
(0.9963–
0.9985)

0.7643 
(0.6697–0.8422)

0.7527 
(0.6493–
0.8364)

Intracra-
nial hemorrhage 
(non-traumatic)

0.9971 
(0.9955–
0.9985)

0.9961 
(0.9947–
0.9976)

0.5714 
(0.4339–0.7060)

0.9988 
(0.9981–0.9995)

0.7568 
(0.6176–0.8919)

0.9973 
(0.9961–
0.9983)

0.6558 
(0.5298–0.7615)

0.6512 
(0.5217–
0.7595)

Cerebral infarction 
caused by occlu-
sion or stenosis of 
the anterior artery 
into the brain

0.9837 
(0.9729–
0.9922)

0.9956 
(0.9941–
0.9970)

0.3095 
(0.1739–0.4510)

0.9994 
(0.9987–0.9999)

0.7222 
(0.5000-0.9375)

0.9963 
(0.9948–
0.9976)

0.4711 
(0.3037–0.6090)

0.4333 
(0.2666–
0.5833)

Table 2  (continued) 
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Model AUC 
(95%CI)

Acc (95%CI) Sn (95%CI) Sp (95%CI) PPV (95%CI) NPV 
(95%CI)

MCC (95%CI) F1 score 
(95%CI)

Cerebral infarction 
caused by cerebral 
artery thrombosis

0.9710 
(0.9327–
0.9947)

0.9949 
(0.9933–
0.9965)

0.3269 
(0.2037–0.4615)

0.9994 
(0.9987–0.9999)

0.7727 
(0.5909–0.9460)

0.9955 
(0.9939–
0.9970)

0.5007 
(0.3676–0.6256)

0.4595 
(0.3188–
0.5927)

Cerebral artery 
stenosis, cerebral 
infarction

0.9842 
(0.9761–
0.9910)

0.9925 
(0.9904–
0.9943)

0.4490 
(0.3469–0.5532)

0.9994 
(0.9988–0.9999)

0.8980 
(0.8055–0.9737)

0.9931 
(0.9911–
0.9949)

0.6320 
(0.5426–0.7168)

0.5986 
(0.4960–
0.6906)

Cerebral artery 
occlusion, cerebral 
infarction

0.9822 
(0.9580–
0.9955)

0.9973 
(0.9961–
0.9983)

0.5750 
(0.4186–0.7180)

0.9995 
(0.9990–0.9999)

0.8519 
(0.7058–0.9643)

0.9978 
(0.9968–
0.9987)

0.6987 
(0.5614–0.8099)

0.6866 
(0.5422–
0.8044)

Cerebral infarction, 
others

0.9821 
(0.9673–
0.9934)

0.9958 
(0.9942–
0.9972)

0.3469 
(0.2195–0.4889)

0.9999 
(0.9996-1.0000)

0.9444 
(0.8180-1.0000)

0.9959 
(0.9945–
0.9973)

0.5711 
(0.4433–0.6831)

0.5075 
(0.3508–
0.6486)

Lacunar cerebral 
infarction

0.9519 
(0.9260–
0.9761)

0.9911 
(0.9889–
0.9931)

0.5410 
(0.4531–0.6305)

0.9982 
(0.9972–0.9991)

0.8250 
(0.7432–0.9079)

0.9928 
(0.9909–
0.9946)

0.6640 
(0.5909–0.7345)

0.6535 
(0.5766–
0.7289)

Cerebral infarction 0.9891 
(0.9853–
0.9923)

0.9825 
(0.9796–
0.9852)

0.7780 
(0.7414–0.8146)

0.9955 
(0.9938–0.9970)

0.9161 
(0.8866–0.9434)

0.9861 
(0.9833–
0.9886)

0.8353 
(0.8090–0.8614)

0.8414 
(0.8153–
0.8666)

Brainstem 
infarction

0.9915 
(0.9860–
0.9953)

0.9922 
(0.9902–
0.9941)

0.5446 
(0.4457–0.6422)

0.9981 
(0.9970–0.9990)

0.7857 
(0.6901-0.8800)

0.9941 
(0.9923–
0.9957)

0.6505 
(0.5672–0.7291)

0.6433 
(0.5548–
0.7244)

Massive cerebral 
infarction

0.9947 
(0.9888–
0.9992)

0.9976 
(0.9964–
0.9986)

0.7143 
(0.5918–0.8333)

0.9996 
(0.9991-1.0000)

0.9302 
(0.8511-1.0000)

0.9979 
(0.9969–
0.9988)

0.8140 
(0.7290–0.8918)

0.8081 
(0.7158–
0.8889)

Cerebellar 
infarction

0.9735 
(0.9538–
0.9902)

0.9963 
(0.9950–
0.9977)

0.4048 
(0.2571–0.5642)

0.9995 
(0.9990-1.0000)

0.8095 
(0.6429-1.0000)

0.9968 
(0.9956–
0.9981)

0.5709 
(0.4277–0.6985)

0.5397 
(0.3823–
0.6769)

Multiple cerebral 
infarctions

0.9842 
(0.9756–
0.9920)

0.9898 
(0.9878–
0.9919)

0.6522 
(0.5829–0.7222)

0.9978 
(0.9966–0.9988)

0.8759 
(0.8163–0.9265)

0.9918 
(0.9898–
0.9937)

0.7510 
(0.6992–0.8004)

0.7477 
(0.6931–
0.7988)

Basal ganglia 
infarction

0.9855 
(0.9726–
0.9946)

0.9949 
(0.9932–
0.9964)

0.3455 
(0.2222–0.4717)

0.9995 
(0.9990–0.9999)

0.8261 
(0.6667–0.9615)

0.9954 
(0.9938–
0.9969)

0.5323 
(0.3932–0.6480)

0.4872 
(0.3429–
0.6154)

Thalamic infarction 0.9571 
(0.9290–
0.9808)

0.9955 
(0.9940–
0.9969)

0.3043 
(0.1818–0.4444)

0.9996 
(0.9992-1.0000)

0.8235 
(0.6364-1.0000)

0.9959 
(0.9943–
0.9973)

0.4991 
(0.3544–0.6287)

0.4444 
(0.2857–
0.5902)

Vertebral artery 
stenosis

0.9718 
(0.9593–
0.9830)

0.9920 
(0.9901–
0.9939)

0.4343 
(0.3367–0.5341)

0.9991 
(0.9984–0.9997)

0.8600 
(0.7500-0.9524)

0.9928 
(0.9909–
0.9946)

0.6080 
(0.5166–0.6918)

0.5772 
(0.4733–
0.6667)

Vertebral artery 
occlusion

0.9652 
(0.9411–
0.9838)

0.9958 
(0.9942–
0.9972)

0.2955 
(0.1666–0.4250)

0.9997 
(0.9994-1.0000)

0.8667 
(0.6667-1.0000)

0.9960 
(0.9946–
0.9973)

0.5046 
(0.3454–0.6244)

0.4407 
(0.2712–
0.5807)

Basilar artery 
stenosis

0.9898 
(0.9815–
0.9959)

0.9967 
(0.9952–
0.9979)

0.3243 
(0.1749–0.4688)

0.9999 
(0.9996-1.0000)

0.9231 
(0.7500-1.0000)

0.9968 
(0.9955–
0.9981)

0.5461 
(0.3823–0.6727)

0.4800 
(0.2857–
0.6342)

Carotid artery 
stenosis

0.9527 
(0.8986–
0.9923)

0.9965 
(0.9951–
0.9977)

0.2286 
(0.0937–0.3751)

1.0000 
(1.0000–1.0000)

1.0000 
(1.0000–1.0000)

0.9965 
(0.9951–
0.9977)

0.4773 
(0.3055–0.6116)

0.3721 
(0.1713–
0.5455)

Internal carotid 
artery stenosis

0.9752 
(0.9574–
0.9875)

0.9920 
(0.9899–
0.9939)

0.5299 
(0.4380–0.6230)

0.9990 
(0.9982–0.9996)

0.8857 
(0.8088–0.9559)

0.9929 
(0.9910–
0.9947)

0.6817 
(0.6050–0.7485)

0.6631 
(0.5802–
0.7383)

Internal carotid 
artery occlusion

0.9911 
(0.9824–
0.9970)

0.9941 
(0.9925–
0.9957)

0.6163 
(0.5200-0.7177)

0.9983 
(0.9973–0.9991)

0.8030 
(0.6969–0.8919)

0.9957 
(0.9943–
0.9970)

0.7007 
(0.6153–0.7803)

0.6974 
(0.6099–
0.7765)

Middle cerebral 
artery stenosis

0.9710 
(0.9530–
0.9859)

0.9902 
(0.9879–
0.9924)

0.5401 
(0.4524–0.6228)

0.9982 
(0.9972–0.9991)

0.8409 
(0.7586–0.9131)

0.9919 
(0.9899–
0.9938)

0.6696 
(0.5940–0.7337)

0.6578 
(0.5803–
0.7273)

Table 2  (continued) 
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and biochemical detection. These results indicated these 
models could help doctors well distinguish different cir-
culation system diseases (Fig. 3 and Supplementary Data 
3).

Analysis of circulation system disease-specific indicators
To help us better understand the contributions of 50 
features for the circulation system disease prediction 
model and find the circulation system disease-specific 
indicators, we used the SHAP algorithm to compute 
the contribution degree of each feature. For the con-
structed model only utilizing the blood routine, the top 

10 features were lymphocyte percentage (LY%), red blood 
cell count (RBC), absolute value of monocyte (MO#), 
hematocrit (HCT), absolute value of neutrophil (NE#), 
mean erythrocyte hemoglobin concentration (MCHC), 
plateletcrit (PCT), white blood cell count (WBC), plate-
let distribution width (PDW), and mean platelet vol-
ume (MPV) (Fig.  4A). For the constructed model only 
utilizing the biochemical detection data, the top 10 fea-
tures were potassium (K), albumin (ALB), total protein 
(TP), indirect bilirubin (NBIL), direct bilirubin (DBIL), 
sodium (Na), glucose (GLU), triglycerides (TG), cho-
lesterol (CHO), Apolipoprotein A1 (APOA1) (Fig.  4B). 

Model AUC 
(95%CI)

Acc (95%CI) Sn (95%CI) Sp (95%CI) PPV (95%CI) NPV 
(95%CI)

MCC (95%CI) F1 score 
(95%CI)

Middle cerebral 
artery occlusion

0.9776 
(0.9632–
0.9899)

0.9931 
(0.9913–
0.9948)

0.4574 
(0.3548–0.5568)

0.9996 
(0.9991-1.0000)

0.9348 
(0.8519-1.0000)

0.9934 
(0.9916–
0.9951)

0.6513 
(0.5604–0.7276)

0.6143 
(0.5116–
0.7037)

Cerebral athero-
sclerosis (I67.200)

0.9826 
(0.9748–
0.9896)

0.9920 
(0.9900-
0.9938)

0.6015 
(0.5217–0.6801)

0.9987 
(0.9979–0.9995)

0.8889 
(0.8256–0.9518)

0.9932 
(0.9914–
0.9949)

0.7276 
(0.6609–0.7877)

0.7175 
(0.6468–
0.7807)

Cerebral ath-
erosclerosis 
(I67.200 × 011)

0.9693 
(0.9484–
0.9847)

0.9897 
(0.9874–
0.9920)

0.4615 
(0.3695–0.5596)

0.9977 
(0.9966–0.9987)

0.7500 
(0.6528–0.8507)

0.9919 
(0.9897–
0.9939)

0.5837 
(0.5004–0.6723)

0.5714 
(0.4810–
0.6632)

Internal carotid 
atherosclerosis

0.9727 
(0.9619–
0.9821)

0.9850 
(0.9823–
0.9875)

0.4789 
(0.4131–0.5481)

0.9974 
(0.9962–0.9986)

0.8198 
(0.7431–0.8889)

0.9873 
(0.9849–
0.9897)

0.6201 
(0.5600–0.6800)

0.6047 
(0.5407–
0.6688)

Moyamoya disease 0.9335 
(0.8938–
0.9678)

0.9944 
(0.9926–
0.9959)

0.3279 
(0.2187–0.4375)

0.9996 
(0.9991-1.0000)

0.8696 
(0.7143-1.0000)

0.9947 
(0.9931–
0.9961)

0.5320 
(0.4081–0.6288)

0.4762 
(0.3437–
0.5870)

Sequelae of 
intracerebral 
hemorrhage

0.9819 
(0.9607–
0.9955)

0.9962 
(0.9947–
0.9974)

0.5455 
(0.4181–0.6786)

0.9994 
(0.9987–0.9999)

0.8571 
(0.7273–0.9655)

0.9968 
(0.9955–
0.9979)

0.6821 
(0.5687–0.7836)

0.6667 
(0.5476–
0.7789)

Sequelae of cere-
bral infarction

0.9900 
(0.9837–
0.9943)

0.9866 
(0.9840–
0.9890)

0.7391 
(0.6938–0.7841)

0.9969 
(0.9956–0.9981)

0.9084 
(0.8739–0.9421)

0.9892 
(0.9869–
0.9914)

0.8128 
(0.7817–0.8434)

0.8151 
(0.7831–
0.8458)

Subclavian 
atherosclerosis

0.9681 
(0.9469–
0.9831)

0.9890 
(0.9866–
0.9913)

0.4034 
(0.3181–0.4912)

0.9981 
(0.9970–0.9990)

0.7619 
(0.6551–0.8616)

0.9909 
(0.9886–
0.9929)

0.5497 
(0.4605–0.6257)

0.5275 
(0.4347-
0.6100)

Carotid 
arteriosclerosis

0.9803 
(0.9721–
0.9874)

0.9870 
(0.9842–
0.9894)

0.6707 
(0.6107–0.7297)

0.9970 
(0.9959–0.9982)

0.8777 
(0.8342–0.9214)

0.9896 
(0.9872–
0.9918)

0.7610 
(0.7169–0.8027)

0.7604 
(0.7133–
0.8025)

Systemic 
atherosclerosis

0.9858 
(0.9769–
0.9933)

0.9923 
(0.9902–
0.9944)

0.5377 
(0.4392–0.6316)

0.9986 
(0.9977–0.9994)

0.8382 
(0.7411–0.9231)

0.9937 
(0.9919–
0.9954)

0.6680 
(0.5871–0.7476)

0.6552 
(0.5683–
0.7352)

Arteriosclerosis 
(I70.900 × 003)

0.9739 
(0.9579–
0.9871)

0.9935 
(0.9917–
0.9951)

0.5408 
(0.4400-0.6374)

0.9992 
(0.9986–0.9997)

0.8983 
(0.8113–0.9688)

0.9942 
(0.9925–
0.9957)

0.6943 
(0.6158–0.7688)

0.6752 
(0.5867–
0.7558)

Atherosclerosis 
(I70.900 × 004)

0.9677 
(0.9227–
0.9947)

0.9956 
(0.9941–
0.9972)

0.2564 
(0.1281-0.4000)

0.9994 
(0.9987–0.9999)

0.6667 
(0.4118-0.9000)

0.9963 
(0.9948–
0.9976)

0.4118 
(0.2394–0.5592)

0.3704 
(0.1967–
0.5263)

Internal carotid 
aneurysm

0.9665 
(0.9440–
0.9857)

0.9964 
(0.9950–
0.9977)

0.3250 
(0.1860–0.4706)

0.9999 
(0.9996-1.0000)

0.9286 
(0.7643-1.0000)

0.9965 
(0.9951–
0.9978)

0.5482 
(0.3929–0.6732)

0.4815 
(0.3110–
0.6275)

Venous thrombo-
sis of the lower 
extremities

0.9930 
(0.9862–
0.9987)

0.9972 
(0.9960–
0.9983)

0.6500 
(0.5000-0.8001)

0.9990 
(0.9982–0.9996)

0.7647 
(0.6127–0.8920)

0.9982 
(0.9973–
0.9991)

0.7036 
(0.5859–0.8165)

0.7027 
(0.5797–
0.8158)

95%CI: 95% confidence intervals (Lower–Upper bound)

Table 2  (continued) 
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Interestingly, for the constructed model utilizing the 
blood routine combined with biochemical detection, only 
one feature from the blood routine, LY%, was one of the 
top 10 features (Fig. 4C). These results indicated features 
from biochemical detection made major contributions to 
predicting circulation system disease (Fig. 4D). Addition-
ally, to further validate the importance of these features, 
we also calculated the top 20 features ranked by the other 
four machine learning methods. As shown in the results, 
although there were slight variations in feature rankings 
across different methods, there was considerable over-
lap among the top 20 features, indicating that our model 
interpretation approach demonstrates good stability 
(Supplementary Data 4).

To verify whether the performance of the XGBoost 
was affected by redundant features, we constructed the 
model to distinguish cardiovascular disease patients from 

healthy individuals using only the top 10 features ranked 
by the SHAP algorithm (Fig.  4C). The results showed 
the model built using all 50 features performed better, 
indicating that the performance of our models was not 
impacted by redundant features (Supplementary Fig. 2).

Analysis of characteristic indicators of discrimination 
between various circulation system diseases
After exploring circulation system disease-specific indi-
cators, we also hoped to further explore characteristic 
indicators of discrimination between various circulation 
system diseases. Then, we displayed the SHAP value of 
each feature through a heatmap. Rows and columns were 
clustered separately, and the more similar the features or 
diseases, the closer they were. We found that every cir-
culation system disease had distinctive characteristics 
(Fig.  5A and Supplementary Data 5). At the same time, 

Fig. 2  Construction of circulation system disease prediction model using clinical blood samples. (A) The AUC of 69 circulation system disease prediction 
models. ROC curves of five machine learning methods using different data. (B) Blood routine combined with biochemical detection. (C) Blood routine. 
(D) Biochemical detection
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a network displaying the intersection features among 
various circulation system diseases showed that RBC, K, 
DBIL, and GLU were the top 4 features subdividing vari-
ous circulation system diseases (Fig.  5B). Elevated GLU 
is often associated with diabetes, but we found that GLU 
could also be used to distinguish between different circu-
lation system diseases. DBIL, also known as conjugated 
bilirubin, is produced by the combination of indirect 
bilirubin into the liver by the action of intrahepatic gluc-
uronosyltransferase and glucuronic acid, and its eleva-
tion is usually related to various liver dysfunctions. But 
as we can see in our results, it also has great potential 
for predicting various circulation system diseases. The 
numerical distributions of the top 4 features among vari-
ous circulation system diseases and healthy people were 
different (Fig.  5C). The results proved our models were 
reliable.

Discussion
Cardiovascular disease (CVD) remains the leading cause 
of death globally [2]. Early-stage detection of CVD is an 
important way of reducing this toll. An advanced detec-
tion of cardiovascular disease is required to improve 
therapeutic strategies and patient risk stratification. 
Therefore, an urgent need exists for novel effective, and 
targeted therapies with more precise risk stratification, 
which necessitates a deeper understanding of the under-
lying molecular mechanisms that drive the progression of 
CVD.

From a 6-year population-based cohort of the First 
Affiliated Hospital of Xiamen University, this study 
enrolled 32,822 CVD and 25,794 CVD-free participants. 
We implemented 5 kinds of ML-based data-driven pipe-
line (LR, RF, SVM, XGBoost, and DNN) to identify pre-
dictors from 50 candidate variables covering 22 features 
from the blood routine and 28 features from blood bio-
chemical tests and assessed multiple ML classifiers to 
establish risk prediction models on CVD. Our models 
obtained satisfied discriminative performance with the 

Fig. 3  The AUC of 69 models distinguishes a kind of circulation system disease from others
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best AUC of 0.9921. Further, we attempted to construct 
predictive models to distinguish among 69 common 
CVDs. All these prediction models can discriminate 
among multiple CVDs, with particularly notable per-
formance in distinguishing DCM (AUC = 0.9267) from 
others.

In this study, we developed predictive models using 
blood routine and biochemical test data. These models 
have the potential to be reliable methods for early diag-
nosis and large-scale screening for CVDs in populations. 

Recent studies have shown that bilirubin is not just a 
byproduct of heme degradation but also a crucial endog-
enous antioxidant [34]. The biochemical processes 
underlying the relationship between raised DBIL and 
higher CHD risk remain unclear, although in middle-
aged and older adults, DBIL is independently linked to 
a linear dose-response increased risk for CHD incidence 
[35]. It has been reported that DBIL is more readily avail-
able in an active state because it is soluble in serum and 
only weakly bound to albumin. In the meantime, it may 

Fig. 4  The top 20 features for the circulation system disease prediction model using different data. (A) Blood routine. (B) Biochemical detection. (C) Blood 
routine combined with biochemical detection. The red represents a high value, and the blue represents a low value. If the SHAP value is positive, it rep-
resents the positive effect of the feature on the model, and vice versa. All features are listed in order of importance from top to bottom. (D) The joyplot of 
numerical distributions of K, TP, ALB, and NBIL among various circulation system diseases and healthy people
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Fig. 5  Analysis of specific indicators for differentiation between different circulation system diseases. (A) The heatmap displays SHAP values of 50 features 
for each disease differentiation model. The positive SHAP value is added to the absolute value of the negative SHAP value to form the final SHAP value 
to be displayed. (B) The network shows the intersection top 10 features among different disease differentiation models. The red circles represent various 
circulation system diseases, and the blue circles represent various features. The larger the blue circle, the more the intersection features. (C) The joyplot of 
numerical distributions of RBC, K, DBIL, and GLU among various circulation system diseases and healthy people
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be hard for water-soluble DBIL to penetrate the vascular 
intima of the atherosclerotic plaque and function as an 
antioxidant [36]. This affirmed the significance of circu-
lating bilirubin, including DBIL and NBIL, as predictive 
features in our models. The diagnostic relevance pertains 
to the utility of circulating bilirubin concentrations as a 
novel and reliable marker of cardiovascular disease risk. 
This biomarker can be readily measured in clinical labo-
ratories and implemented in medical practice.

Diabetes mellitus is associated with a significantly 
increased risk of cardiovascular diseases. Chronic hyper-
glycemia is known to induce mitochondrial dysfunction 
and endoplasmic reticulum stress, promote the accumu-
lation of reactive oxygen species (ROS), and consequently 
lead to cardiovascular damage [37]. Similarly, hypertri-
glyceridemia has been implicated in promoting cardio-
vascular disease through multiple mechanisms, including 
the upregulation of signaling pathways that mediate 
inflammation, oxidative stress, thrombosis, endothelial 
dysfunction, and vascular impairment [38]. Furthermore, 
serum cholesterol (CHO) levels have been demonstrated 
to be associated with an increased risk of CVD [39]. Apo-
lipoprotein (APO) A1, the principal apolipoprotein of 
plasma high-density lipoproteins (HDLs), possesses mul-
tiple well-documented cardioprotective functions [40]. 
Our models confirm alignment with these established 
metabolic risk factors—GLU, TG, CHO, and APOA1—
highlighted as top predictors in this study. This alignment 
enhances the models’ clinical utility, demonstrating their 
potential to identify individuals at risk of cardiovascular 
events based on readily accessible parameters.

Furthermore, vascular inflammation and associated 
chronic pro-inflammatory states are considered key fac-
tors in the development of CVD [41]. Previous clinical 
investigations have demonstrated that peripheral blood 
lymphocytes are associated with the prognosis of heart 
failure [42]. Lymphocytopenia in chronic heart failure 
patients may result from programmed lymphocyte death 
due to excessive sympathetic activation and increased 
oxidative stress and pro-inflammatory status [43]. The 
model constructed in our work demonstrates the role of 
lymphocyte percentage in the diagnosis of CVD, which is 
consistent with these previous investigations.

Overall, the predictors derived in our data-driven pipe-
line have been validated by numerous studies, proving 
the reliability of our model; however, it is the first time 
that the ten predictors were combined to establish a 
CVD risk prediction model. Our models underscore the 
importance of blood lipid and glucose levels, as well as 
circulating bilirubin, in the prediction of CVDs.

One notable strength of our study is that all the top 10 
predictors for model development can be easily obtained 
through blood sampling, which provides the general pop-
ulation with the opportunity to perform automated and 

rapid health screening. It also gives clinicians a tool to 
help them diagnose heart problems early on. As a result, 
it will be easier to treat patients effectively and avoid seri-
ous repercussions.

While earlier studies have primarily focused on the pre-
diction and diagnosis of specific cardiovascular diseases, 
such as coronary artery disease [44, 45], atrial fibrilla-
tion [46], major adverse cardiovascular events in patients 
with diabetes [47], and heart failure [48], comprehensive 
approaches that encompass the entire cardiovascular sys-
tem remain relatively underexplored. We performed an 
extensive analysis of 69 prevalent cardiovascular diseases 
and developed diagnostic models. Additionally, our com-
prehensive approach in constructing the model included 
an analysis of distinctions between different CVDs, 
thereby providing physicians with improved diagnostic 
differentiation.

While the analysis of clinical data is commonly 
employed in diagnosis, this practice is less prevalent in 
CVD diagnostics, where available data is often limited to 
advanced imaging modalities and invasive hemodynamic 
assessments [49–51]. The availability of data are essential 
prerequisite for advancements in the clinical application 
of machine learning. Our research utilizes hematological 
data, which is not only more readily accessible but also 
significantly more cost-effective.

Several caveats should be considered. Given the effect 
of biological variables such as sex and age on cardiovas-
cular risk [52], it is imperative to integrate datasets from 
increasing numbers of donors to evaluate the influence of 
these variables on human cardiovascular disease. More-
over, patients with cardiovascular disease, especially 
those of advanced age, often have comorbidities such as 
diabetes mellitus, obesity, and high blood pressure, which 
will need to be considered in the analysis and interpreta-
tion. This study’s limitation is its single-center retrospec-
tive design, with a sample confined to patients from the 
First Affiliated Hospital of Xiamen University. Conse-
quently, some results may not be generalizable to other 
populations. Further validation requires studies involving 
diverse populations and multiple centers.

Conclusions
In summary, our study developed cost-effective, large-scale 
screening models based on blood routine and biochemical 
test data. These models are capable of distinguishing not 
only cardiovascular disease patients from healthy indi-
viduals but also differentiating between various types of 
cardiovascular diseases (Supplementary Fig. 3). We identi-
fied K, TP, ALB, and NBIL as universal indicators for dis-
tinguishing cardiovascular disease patients from healthy 
individuals, while RBC, K, DBIL, and GLU were found 
to be universal indicators for distinguishing between dif-
ferent types of cardiovascular diseases. Additionally, we 
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identified unique hematological and metabolic character-
istics for each type of cardiovascular disease, which could 
provide clinicians with specialized insights for early dis-
ease prevention and diagnosis.
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