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Abstract: Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant
renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating mor-
phological, textural, and functional features that best describe the malignancy status of a given renal
tumor. The integrated discriminating features may lead to the development of a novel comprehensive
renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between
benign and malignant renal tumors and specify the malignancy subtypes for optimal medical man-
agement. Informed consent was obtained from a total of 140 biopsy-proven patients to participate
in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who
had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign
angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired,
and renal tumors were segmented for all patients to allow the extraction of discriminating imaging
features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric
spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular
invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-
in/wash-out slopes to estimate the functional features by quantifying enhancement variations across
different CE-CT phases. These features were subsequently combined and processed using a two-stage
multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor
as benign or malignant and identify the malignancy subtype as well. Using the combined features
and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a
sensitivity of 95.3%± 2.0%, a specificity of 99.9%± 0.4%, and Dice similarity coefficient of 0.98± 0.01
in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%± 5.0% in
discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were
further validated using a randomly stratified 10-fold cross-validation approach. The obtained results
using the proposed MLP-ANN classification model outperformed other machine learning classifiers
(e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence,
integrating morphological, textural, and functional features enhances the diagnostic performance,
making the proposal a reliable noninvasive diagnostic tool for renal tumors.
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1. Introduction

Renal cancer is one of the most common malignancies, being the sixth most prevalent
type of cancer among men and the eighth most prevalent among women. For the past
several decades, an increasing number of new patients have been diagnosed with renal
cancer. The year 2020 saw approximately 74,000 diagnoses of renal cancer in the United
States [1,2], and 15,000 patients are expected to have died from renal cancer in that same
time period [1,2]. Roughly two thirds of the time, renal cancer is diagnosed before it
has metastasized, in which case the 5 y survival rate is 93%. Once it has spread to the
lymph nodes or the surrounding abdominal structures (i.e., other organs or tissues), the
5 y survival rate falls to 70%. In the worst case of metastasis to distant parts of the body,
the 5 y survival rate is a mere 12% [1,2]. In addition, the National Cancer Institute had an
approximated cost estimate of $5.1 billion for renal cancer care in the United States by the
end of 2020 [3].

Renal cancer is a heterogeneous disease in which the renal cells become malignant
(cancerous) and form tumors called renal masses. These renal masses, if not detected early
and treated promptly, will lead to mortality. The most common, and also the most aggres-
sive, renal cancer is renal cell carcinoma (RCC), accounting for 70% of all cases [4,5]. In turn,
70% of RCC are clear cell renal cell carcinoma (ccRCC), and of the remaining nonclear cell
subtypes (nccRCC), the most prevalent are papillary (paRCC) and chromophobe (chrRCC)
renal cell carcinomas, accounting for 15% and 5% of all RCC, respectively [6]. The World
Health Organization (WHO) taxonomy of RCC [6] has clinical significance because the var-
ious subtypes can have very different prognoses [6–8]. Differential diagnosis of RCC must
look out for the benign tumors angiomyolipoma (AML) and oncocytoma (ONC), which
are easily confused with RCC using conventional diagnostic techniques [9–13]. AMLs with
low fat content are particularly prone to misdiagnosis [14]. Diagnostic error leads to un-
necessary surgical intervention for benign lesions, to the point where 15–20% of surgically
resected “RCC” may actually be AML [15]. Therefore, accurate characterization of such
renal masses at an early stage is crucial to the identification of appropriate intervention
plans and/or treatment courses.

1.1. Current Diagnostic Techniques and Their Limitations

Evidence of renal cancer can be found in complete blood count (CBC) to check for
the number of red blood cells; urine tests to look for blood, bacteria, or cancerous cells in
urine; and blood chemistry tests to quantify renal function by checking the levels of certain
chemicals in the blood. These signs are suggestive at best, and inadequate for diagnosis or
typing of renal cancer. Only biopsy, performed using interventional radiology, can provide
a definite diagnosis of renal cancer, and thus remains the gold standard [1,2]. However,
it can only be used as the last resort due to its high invasiveness, cost, and turnaround
and recovery times (approximately a week). Therefore, the investigation of noninvasive
imaging modalities (e.g., computed tomography (CT), magnetic resonance imaging (MRI),
and ultrasounds) to provide an early, reliable, accurate, cost-effective, and rapid diagnosis
of renal tumors is underway [16–19].

1.2. Related Work

One of the most important diagnostic imaging modalities for the accurate diagnosis
of renal tumors is contrast-enhanced CT (CE-CT) [20,21]. Besides specifying the location,
shape, and size of a tumor, CE-CT can also distinguish RCC from benign lesions with
77–84% accuracy based on their different uptake of the contrast agent [18,22,23]. For this
purpose, texture analysis (TA) is performed on the CE-CT images to extract quantitative
features [24,25]. As a radiomic technique, TA has seen an array of applications in typing,
staging, and grading tumors and even in predicting treatment response and survival
rates [24]. A recent study by Deng et al. [26] utilized TA techniques along with CE-CT to
discriminate malignant from benign renal tumors. Their study included 501 renal tumors
of which 354 were RCCs and 147 were benign lesions. From the portal-venous phase,
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they manually placed a region of interest (ROI) in the largest CE-CT cross-section of the
tumor volume. Then, they extracted four textural features, namely entropy, kurtosis, mean
positive pixel density, and skewness. Utilizing logistic regression, they found that higher
values of entropy were significantly associated with a greater likelihood of malignancy
(p = 0.022). As a diagnostic indicator of RCC, the entropy feature had high specificity
(85.5%), but quite low sensitivity (31.3%) [26].

Another study was conducted by Kunapuli et al. [27] to explore the potential of CE-CT
along with TA to identify malignant renal tumors. Their dataset included images of 100
malignant (70 ccRCC, 20 paRCC, and 10 chrRCC) and 50 benign (20 AML and 30 ONC)
tumors. After segmenting renal tumors manually using image-rendering software, 2D
and 3D TAs were performed on tumor with the largest diameter and the entire tumor
volume, respectively. Fifty-one 2D and 3D textural features were extracted from each of
four different CT phases, yielding a total of two-hundred and four features per subject.
These comprised 8 histogram features (i.e., first-order textural features), 40 s-order textural
features (20 grey-level co-occurrence matrix (GLCM) and 20 grey-level difference matrix
(GLDM)), and 3 spectral features derived from the 2D Fourier transform. Recursive feature
elimination [28] was used to reduce the number of features to 10 per phase, or a total of
40. Their classification algorithm incorporating these features, using relational functional
gradient boosting, had a reported 82% accuracy and an 0.83 area under the curve. The
classifier was developed to discriminate between malignant and benign tumors only, and
the authors did not investigate the subtype classification of malignant RCC [27].

Kocak et al. [29] conducted a study to classify ccRCC renal tumors from nccRCC ones
using CE-CT along with TA. A total of 68 RCCs were included for internal validation
(N = 48 ccRCC and N = 20 nccRCC). For external validation purposes, they included
an additional 26 RCC from a public dataset (N = 13 and N = 13 nccRCC). Their study
utilized MaZda image-rendering software [30] to manually segment renal tumors on the
largest/middle cross-section. This was followed by an extraction of 275 textural-related
features from each subject in both the enhanced CT phase and the unenhanced phase. In
addition, a wrapper-based nested cross-validation approach was employed to select the
reproducible features in both phases and to optimize their classification model. Artificial
neural networks (ANNs) were used, and a classification accuracy of 86.7%, a sensitivity of
80%, and a specificity of 89.6% on internal data and an accuracy of 84.6%, a sensitivity of
69.2%, and a specificity of 100% on external data were reported in differentiating ccRCC
from nccRCC. Although their study reported a good overall classification performance
between ccRCC and nccRCC, they were limited by their low sensitivity. In addition, they
reported a very poor diagnostic performance to differentiate chrRCC from paRCC and
from ccRCC. They suggested that CE-CT is more powerful at providing useful textural
features than the unenhanced CT.

A bigger study was performed by Sun et al. [31] to compare between the diagnostic
performance of machine learning approaches and four expert radiologists in differentiating
malignant from benign renal tumors, as well as ccRCC from nccRCC malignant tumors
using CE-CT. Their study included 254 malignant tumors (ccRCC = 190, nccRCC = 64
(chrRCC = 38, paRCC = 26)), 26 AML benign tumors, and 10 ONCs. After performing
manual delineation of the tumor lesions, they used open-source software packages to
extract and analyze textural features and used another open-source software to complete
their analysis. Then, they utilized a support vector machine (SVM) classifier with a radial
basis function along with a 10-fold cross-validation approach to obtain the final diagnosis.
They reported sensitivities of 90%, 86.3%, and 73.4% using SVM compared to 73.7–96.8%,
73.7–96.8%, and 28.1–60.9% obtained by the 4 expert radiologists in differentiating ccRCC
from nccRCC, ccRCC from AML and ONC, and nccRCC from AML and ONC, respectively.
Hence, they concluded that machine learning approaches along with textural features have
potential power, as well as low-variance performance in diagnosing renal tumors.

Lee et al. [32] used TA and CE-CT in their study to differentiate between ccRCC ma-
lignant and AML benign renal tumors. Their study included 80 renal tumors (ccRCC = 41
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and AML = 39). They combined several hand-crafted textural features extracted from a
2D manually annotated central image of the entire mass with automated deep features
extracted by different ImageNet pretrained convolutional neural network (CNN) classifica-
tion models, namely AlexNet [33], VGGNet [34], GoogleNet [35], and ResNet [36]. Then,
they used the combined features to train and test a random forest (RF) classifier. Using
a leave-one-out cross-validation approach, their combined model achieved a diagnostic
accuracy of 76.6% ± 1.4%, outperforming the individual diagnostic results using either the
hand-crafted features alone or the deep features alone.

Oberai et al. [37] investigated the potential power of CNN along with multiphasic
CE-CT images to differentiate benign from malignant renal masses. Their study included
143 patients (malignant = 97 and benign = 46). After performing manual segmentation
of the whole tumor volume, they selected the largest axial segmented tumor image from
each CE-CT phase to input in the CNN for training and validation. Using an 8-fold cross-
validation approach, they reported an accuracy of 78%, a sensitivity of 70%, and a specificity
of 81%. However, their dataset had an approximately 2:1 class imbalance, which might
contribute to the reduced diagnostic performance. Although their study included different
types of malignant tumors, they did not investigate the subtyping of malignant class.

Zhou et al. [38] conducted a study to distinguish between malignant and benign
renal tumors using CE-CT along with an ImageNet-pretrained InceptionV3 model. This
model was then cross-trained using transfer learning on their own dataset of 192 renal
tumors (malignant: ccRCC = 117 and nccRCC = 17, benign: renal cyst = 50 and AML = 8).
Several image-level models were considered, using whole CT slices, ROIs, and rectangular
subregions of the CT-CT data. Then, during the transfer learning, different number of
layers were frozen, resulting in two-patient level models based on the optimal image-level
models. Using a five-fold cross-validation approach, they reported a 69% accuracy using
the slice dataset, a 97% accuracy using the ROI dataset, and a 93% accuracy using the RBR
dataset. In spite of achieving a high accuracy in differentiating malignant from benign renal
tumors, 50 out of 58 benign cases were renal cysts, which are much easier to distinguish
from RCC compared to AML. In addition, they did not investigate discriminating ccRCC
from nccRCC renal tumors.

Shehata et al. [39] published a recent study to differentiate malignant RCC from benign
AML renal tumors, as well as to identify the malignant RCC subtype using CE-CT. Their
data included 105 biopsy-confirmed cases (ccRCC = 40, nccRCC = 30, and AML = 35). After
performing manual segmentation to delineate the renal tumor, they extracted 22 first- and
second-order textural features, as well as two functional features represented by wash-in
and wash-out slopes. These features were subdivided into four groups. To differentiate
RCC from AML, they obtained four preliminary diagnoses using separate RF classifiers
on each feature group, then used weighted-majority voting to produce the final diagnosis.
They reported a 96% accuracy, a 100% sensitivity, and an 89% specificity. Subsequently, for
cases diagnosed as RCC, they utilized SVM classifiers along with the weighted-majority
voting technique to specify the subtype of malignancy as ccRCC or nccRCC, for which the
reported accuracy was 71.4%. In spite of correctly identifying 70 of 70 RCC cases, their
system was not specific enough. This could be a consequence of the imbalance between
the RCC and AML group sizes. In addition, their technique did not achieve a sufficient
diagnostic performance in malignancy subtyping.

Most of the studies referenced above were pure applications of TA to CE-CT imaging.
That is to say, they did not integrate other features (e.g., morphological and functional) with
two- or three-dimensional textural features to diagnose RCC. Only a few studies addressed
typing of RCC, i.e., discrimination between ccRCC and nccRCC, which is vital information
for deciding the course of treatment from the beginning. To overcome these limitations, we
developed RC-CAD, a two-stage system for comprehensive computer-assisted diagnosis of
renal cancer based on CE-CT imaging. RC-CAD (Figure 1) incorporates 3D morphological
features, first- and second-order 3D textural features, and time-dependent metrics of renal
function (wash-in/-out slopes) to provide a high diagnostic accuracy of cancerous renal
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tumors. The developed RC-CAD system has the ability to (i) discriminate malignant (RCC)
from benign (AML) renal tumors and (ii) specify the subtype of malignant tumors as
ccRCC vs. nccRCC. To the best of our knowledge, the developed CE-CT-based RC-CAD
system is unique with the ability to integrate 3D morphological features with 3D textural
features and functional features for early discrimination of RCC malignant tumors from
AML benign tumors and determine the subtype of malignancy as ccRcc or nccRCC.

Figure 1. The proposed renal cancer computer-assisted diagnosis (RC-CAD) system.

It is worth noting that this paper extends our recent work [39] with the following
substantial modifications: (i) increasing the sample size from 105 (70 RCC vs. 35 AML) to
140 renal tumors (70 RCC vs. 70 AML) to ensure data balancing and to avoid any possible
classification bias towards the majority class, (ii) applying a new parametric spherical
harmonic technique to estimate the morphological features from the segmented renal
tumors to capture the surface complexity/irregularity between different types of renal
tumors, (iii) integrating/concatenating the estimated morphological features with the first-
and second-order textural features and functional features, and (iv) modeling a two-stage
classification using a multilayer perceptron artificial neural network (MLP-ANN) whose
inputs comprise all the aforementioned discriminant features. The first stage decides if
the renal tumor is malignant (RCC) or benign (AML). In the former case, the second stage
identifies the malignancy subtype as ccRCC or nccRCC.

2. Materials

Patients who had undergone renal biopsy for suspected cancer (N = 140) ranged from
15 to 87 years of age (mean = 50.5 years and standard deviation = 13.4 years). There were
72 patients who were males, while the remaining 68 were female. Informed consent was
obtained from the patients themselves or their parents/legal guardians (age < 18 years) to
participate in this study. Biopsy reports confirmed that 70 patients had RCC (40 ccRCC and
30 nccRCC, of which 17 were paRCC and 13 were chrRCC), while the other 70 had benign
AML tumors. Study participants had undergone a multiphase CT examination prior to
biopsy. Imaging was performed with a Brilliance CT 64 multislice scanner (Philips Medical
Systems, Best, The Netherlands). A mechanical injector was used to administer contrast
agent into an antecubital vein with a dose of 120 mL at a rate of 4.0 mL/s. The abdomen
scanning included three main phases: a precontrast phase, a portal-venous phase, and a
delayed-contrast phase acquired at t = 0, t = 80, and t = 300 s, respectively. All images were
acquired using the following parameters: slice thickness = 2.5 mm; pitch = 0.984; rotation
time = 0.75 s.
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3. Methods

The proposed RC-CAD system pipeline (see Figure 1) performs the following steps
to obtain the final diagnosis: (i) constructs 3D models of renal tumors from manually
segmented 2D ROIs, (ii) applies a new parametric spherical harmonic technique to estimate
the morphological features of the tumor boundary, (iii) constructs a rotation-invariant
gray-level co-occurrence matrix (GLCM) to extract the textural features of the tumor
volume, (iv) estimates the wash-in/wash-out slopes inside the 3D region, and (v) performs
two-stage classification using an MLP-ANN whose inputs comprise all aforementioned
discriminant features. The first stage decides if the renal tumor is malignant (RCC) or
benign (AML). These steps are presented in detail next.

3.1. Renal Tumor Preprocessing

To provide a more accurate extraction of morphological, textural, and functional
discriminating imaging features, for each subject, each CT slice intersecting the renal tumor
was accurately and manually segmented by expert radiologists to define the 2D ROI. Then,
all 2D ROIs were stacked together to construct the 3D renal tumor object (3D ROI), as
shown in Figure 2.

Figure 2. Visualization of the segmentation process to obtain 3D renal tumors.

3.2. Extracting Imaging Features

For accurate identification of malignant renal tumors and the associated subtype, all
3D segmented volumes were characterized by their morphological, textural, and functional
features, as described below.

Morphological features: To enhance both the sensitivity and specificity of early renal
cancer diagnosis, morphological features of the tumor are incorporated into the algorithm.
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These features were designed to quantify the complex shape of the tumor boundary. This
was motivated by the hypothesis that rapidly growing, malignant tumors develop more
irregular/complex shapes relative to more slowly growing, benign tumors. Therefore, the
utilization of such shape descriptors would enhance the performance of the automatic
diagnosis. Examples of this phenomenon are illustrated in Figure 3.

Naturally, in order to measure the irregularity of the boundary, we must first construct
an accurate shape model of the tumor. In this paper, we incorporated a state-of-the-art
spectral decomposition in terms of spherical harmonics (SHs) [40] to construct this shape
model. An arbitrary point in the interior of the tumor, or more specifically, the interior of
its convex kernel, was selected as the origin (0, 0, 0). In this coordinate system, the tumor’s
surface may be considered a function of the polar and azimuthal angle, f (θ, ϕ), which can
be expressed as a linear combination of basis functions Yτβ defined on the unit sphere.
Starting with a discrete approximation of the surface, i.e., a triangular mesh, the proposed
algorithm uses an attraction–repulsion technique [41] to map this mesh to the unit sphere.
The mapping fixes the image of each mesh vertex at the unit distance from the origin, while
preserving the mesh topology and maintaining the distance between adjacent vertices as
much as possible.

Figure 3. Visualizing 3D surface complexity differences between different renal tumors (benign are
shown in blue, while malignant are shown in red).

Each iteration α of the attraction-repulsion works as follows. Let Cα,i be the coordinates
of the node on the unit sphere corresponding to mesh vertex i at the beginning of iteration α.
Denote the vector from node i to node j by dα,ji = Cα,j − Cα,i; then, the Euclidean distance
between nodes i and j is dα,ji =

∥∥dα,ji
∥∥. Finally, let Ji denote the index set of neighbors of

vertex i in the triangulated mesh. Then, the attraction step updates the position of each
node to keep it centered with respect to its neighbors:

C′α+1,i = Cα,i + CA,1 ∑
j∈Ji

(
dα,jid2

α,ji + CA,2
dα,ji

dα,ji

)
, (1)

The quantities CA,1 and CA,2 are implementation-defined parameters that determine
the strength of the attractive force. The next step, repulsion, inflates the spherical mesh to
prevent it from degenerating (the attraction step by itself would allow nodes to become
arbitrarily close to one another).

C′′α+1,i = C′α+1,i +
CR
2I

I

∑
j=1;j 6=i

dα,ji

d2
α,ji

, (2)

Just as the attraction step, the repulsion step uses an implementation-defined param-
eter CR to set the strength of the repulsive force. Subsequently, the nodes are projected
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back onto the sphere by giving them the unit norm, and these are their coordinates at the
beginning of the next iteration, Cα+1,i = C′′α+1,i/‖C′′α+1,i‖.

At the terminal iteration α f of the attraction–repulsion algorithm, the surface of the renal
tumor is in a one-to-one correspondence with the unit sphere. Each node Ci = (xi, yi, zi) of
the original mesh is mapped to a corresponding point Cα f ,i = (sin θi cos φi, sin θi sin φi, cos θi)

with polar angle θi ∈ [0, π] and azimuthal angle φi ∈ [0, 2π). Considering these points as
samples of a continuous function f (θ, ϕ) defining the boundary, the tumor shape may be
estimated by fitting an SH series to the sample nodes, since the SHs form an orthogonal
basis for functions on a sphere. The SH Yτβ of degree τ and order β is defined as:

Yτβ =


cτβG|β|τ cos θ sin(|β|ϕ) −τ ≤ β ≤ −1
cτβ√

2
G|β|τ cos θ β = 0

cτβG|β|τ cos θ cos(|β|ϕ) 1 ≤ β ≤ τ

(3)

where cτβ is the SH factor and G|β|τ is the associated Legendre polynomial of degree τ and
order β.

In practice, of course, the SH series is truncated by discarding harmonics above
degree N, yielding an Nth order approximation. N = 70 suffices to accurately model the
surface of renal tumors. Finally, the renal tumor object is reconstructed from the SHs of
Equation (3). The first few harmonics describe the rough extent of the tumor, while higher
degree harmonics provide the finer details of its surface. Therefore, benign tumors are
accurately represented by a lower-order SH model, while malignant tumors, with their
more complex morphology, require higher-order SH model to describe their shape.

Figure 4 shows the morphology approximation for three different renal tumors: ma-
lignant ccRCC, malignant nccRCC, and benign AML tumors. A summary of the attraction–
repulsion algorithm is provided below.

Figure 4. Renal tumors’ reconstruction meshes showing the morphological differences among
malignant ccRCC, malignant nccRCC, and benign AML tumors.

Initialization:
• Triangulate the surface of the tumor.
• Smooth the triangulated mesh with Laplacian filtering.
• Initialize the spherical parameterization with an arbitrary, topology-preserving map

onto the unit sphere.
• Fix values of CA,1, CA,2, CR, and threshold T.

Attraction–repulsion:
• For α = 0, 1, . . .

– For i = 1, . . . , I
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* Calculate C′α+1,i using Equation (1)

– For i = 1, . . . , I

* Calculate C′′α+1,i using Equation (2)

* Let Cα+1,i = C′′α+1,i/‖C′′α+1,i‖
– If maxi ‖Cα+1,i − Cα,i‖ ≤ T Then, let α f = α + 1, and Stop.

Textural features: Recently, TA has become a popular research topic, particularly
in the field of medical imaging. New techniques of TA provide different quantitative
patterns/descriptors by combining the grey values of each pixel/voxel in a tumor im-
age/volume. As a result of these abilities, TA has been used in the diagnosis of several
tumors and their related subtypes with encouraging classification abilities [24,25,42–48].
Therefore, in this manuscript, TA techniques were applied on the segmented 3D renal tu-
mor volumes to precisely extract first- and second-order textural features that best describe
the homogeneity/heterogeneity between renal tumors with different diagnoses. The use
of such comprehensive textural features relies on the fact that malignant tumors mostly
show high textural heterogeneity when compared to benign ones. The success of these
findings would enhance the sensitivity and the specificity towards an early identification of
renal cancer tumors. Figure 5 demonstrates the lesion texture differences of two malignant
ccRCC subjects, two malignant nccRCC subjects, and two benign (AML) subjects.

Figure 5. An illustrative example showing differences in texture between various renal tumor types.

First-order textural features: These textural features include any quantity that can be
derived from the gray-level histogram of the tumor volume. In particular, mean, variance,
standard deviation, entropy, skewness, kurtosis, cumulative distribution functions, and the
grey-level percentiles [49] were extracted.

Figure 6 shows the average normalized histogram curves for all benign subjects (blue)
vs. malignant (red). To construct these curves, the grey-level range was normalized first by
dividing by the maximum grey-level value obtained from all subjects. Then, all histograms
were constructed for all subjects within the new normalized grey-level range from 0 to
255. For each subject, the individual grey-level probability was obtained by dividing the
histogram values by the corresponding number of voxels. Then, all normalized histograms
from a particular group (malignant or benign) were averaged pointwise to obtain the
final curve.
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Figure 6. A visualization of the average normalized histogram curves for all benign subjects (blue)
vs. malignant (red).

Second-order textural features: Since the first-order textural features might not be
sufficient, with their range of values exhibiting significant overlap across classes, especially
between subtypes of malignant tumor, second-order textural features were incorporated
into the system. These features describe the joint distribution of gray values in multiple
voxels that are considered to be neighbors of each other. In particular, the grey-level
co-occurrence matrix (GLCM) [50] was used to capture the heterogeneous appearance of
renal tumors.

To construct the GLCM, we must count the number of times an ordered pair of two
grey values occurs in two neighboring voxels within the renal tumor object. This technique
is continued until all conceivable occurrence frequencies within the grey-level range of
the renal tumor item are found, which covers all possible pairs of neighbors. For this,
we first contrast stretched the renal tumor object’s original grey-level range to fit the
desired span 0–255, yielding a GLCM matrix with a size of 256× 256. Then, all feasible pair
combinations were identified to construct the GLCM matrix (i.e., neighbors with gray levels
i and j contribute to row i, column j of the GLCM). To define our neighborhoods, we used
a distance criterion that voxels must be separated by ≤

√
2 mm, making the calculations

rotation invariant (see Figure 7). The resultant GLCM was then normalized and used
to extracting the following second-order texture features [49,50]: contrast, dissimilarity,
homogeneity, angular second moment (ASM), energy, and correlation.

Figure 7. Visualization of the rotation-invariant neighborhood calculation system used to construct
the grey-level co-occurrence matrix (GLCM). The GLCM can be constructed by counting the oc-
currence frequency of different grey-level pairs in-plane and in adjacent planes accounting for the
26-neighbor voxels (blue) of the central voxel (red).

The definitions of all first- and second-order textural features are provided in Tables 1 and A1
in Appendix A.
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Table 1. Definition of first- and second-order textural features.

Textural Feature Definition

First-Order

Mean The average grey value of voxels within the tumor.
Variance Second central moment of gray values.
Standard deviation Square root of variance.
Skewness (Skew) Asymmetry of the distribution of gray values about the mean. If Skew < 0, that

means the grey level spreads out more to the left of the mean than to the right, and
if Skew > 0, that means the grey level spreads out more to the right of the mean
than to the left. Skew will equal zero in the case of normal distributions.

Kurtosis (Kurt) Measures the tail weight, or tendency to extreme values, of the object grey-level
distribution. The normal distribution has Kurt = 3; distributions with heavier tails
have Kurt > 3; distributions with less weight in the tails have Kurt < 3.

Entropy A measure of randomness of grey values within an input image.
CDFs A distribution function that accumulates voxel-wise grey values from the whole

tumor object with minimum value = 0 and maximum value = 1.
Percentiles Grey values percentiles corresponding to the CDFs (from 10% to 100%)

Second-Order

Contrast Measures the disparity in grey-level values between neighbors.
Dissimilarity Finds to what extent voxels are different from their neighbors.
Homogeneity Expresses the inverse difference moment among neighbors.
Angular second moment (ASM) Determines the gray levels’ local uniformity (orderliness).
Energy The square root of the ASM.
Correlation Determines the grey-level linear dependency in neighborhood blocks.

Functional features: Discriminating RCC from AML, as well as ccRCC from nccRCC
might be achieved using time-dependent characteristics of CE-CT imaging. The most
relevant CE-CT findings for this purpose are generally homogenous and prolonged en-
hancement patterns [51]. The time dependency can be expressed by the slopes of wash-in
and wash-out. Wash-in is described as the rate of increasing attenuation (in HU) from the
precontrast to portal-venous phase. Similarly, wash-out is the rate of decrease in attenua-
tion between the portal-venous and delayed-contrast phase [52]. Higher slopes of wash-in
and wash-out are typically associated with malignancy. Moreover, nccRCC demonstrates
wash-in and wash-out slopes intermediate between those of AML and those of ccRCC [53].
Therefore, we constructed both wash-in and wash-out slopes for all renal tumor subjects
for the classification of the renal tumor status. Examples of wash-in/-out slopes showing
the differences across ccRCC, nccRCC, and AML are shown in Figure 8.

Figure 8. Example of the wash-in and wash-out slopes construction process for various types of renal
tumors. When compared to nccRCC (green) and AML (blue), ccRCC tumors exhibit higher and faster
wash-in/-out slopes (red).
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3.3. Feature Integration and Renal Tumor Classification

Following the extraction of morphological, textural, and functional features from
all given renal tumors, RC-CAD proceeds with two-stage diagnostic classification. The
first stage aims to differentiate malignant (RCC) from benign (AML) tumors. In the case
of malignancy, the second stage provides the classification of RCC tumors as ccRCC
or nccRCC.

The multilayer perceptron (MLP) artificial neural network (ANN) consists of at least
three layers: an input layer, one or more hidden layers, and an output layer, each with
arbitrarily many activation/processing units, known as nodes/neurons. Each layer is
fully connected to the next layer in sequence. Neurons use nonlinear activation functions
to give the MLP-ANN the capability to divide the feature space into arbitrarily complex
regions. The MLP-ANN mainly utilizes supervised backpropagation learning technique in
the training phase, in which gradient descent methods are utilized to update the connection
weights and additive biases in order to minimize the loss function. To achieve our goal, we
utilized the MLP-ANN in both classification stages to obtain the final diagnosis. Classifier
performance was assessed using five different feature sets (Table 2) as the ANN input in
both stages. Feature Set 1 includes first-order histogram textural features (N = 6; mean,
variance, standard deviation, skewness, kurtosis, and entropy); Feature Set 2 includes
first-order percentile textural features (N = 10; from the 10th to the 100th percentile in
10% point steps); Feature Set 3 includes second-order GLCM textural features (N = 6;
contrast, dissimilarity, homogeneity, ASM, energy, and correlation); Feature Set 4 includes
SH reconstruction error (SHRE) morphological features (N = 70); and Feature Set 5 includes
functional features (N = 2; wash-in slope and wash-out slope). At each classification stage,
the individual feature sets were concatenated to obtain the combined features (N = 94) and
were fed to a MLP-ANN to obtain the final diagnosis.

Table 2. Details of the extracted feature sets used in the two-stage renal tumor classification.

Texture Features

Feature Set 1: First-order (histogram features) 6 features
Feature Set 2: First-order (percentiles) 10 features
Feature Set 3: Second-order (GLCM) 6 features

Shape Features

Feature Set 4: Spherical harmonic reconstruction errors 70 features

Functional Features

Feature Set 5: Wash-in/out slopes 2 features

Combined Features

Feature Sets 1, 2, 3, 4, and 5 94 features

4. Results

The diagnostic performance of the RC-CAD system on our dataset of 140 renal tumors
was assessed using leave-one-subject-out (LOSO) cross-validation. The system’s diagnostic
capabilities were assessed, evaluated, and compared in both classification stages using
the individual feature sets, as well as the combined features. Each classification process
was repeated 10 times, and the results were tabulated in terms of the mean ± the standard
deviation to provide a more quantitative expression of the diagnostic performance.

The first stage classification (RCC vs. AML) performance for the RC-CAD system
was first evaluated using individual Feature Sets 1, 2, 3, 4, and 5 (see Table 2) along with
different MLP-ANN classification models. Then, the RC-CAD system was evaluated using
the combined features, resulting in a noticeably enhanced diagnostic performance. A
summary of the first stage performance in terms of the sensitivity, specificity, and Dice
similarity coefficient (DSC) [54,55] is presented in Table 3.
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Table 3. Diagnostic performance results of the first stage classification (RCC vs. AML) using
different individual feature sets along with multilayer perceptron artificial neural network (MLP-
ANN) classification models. The RC-CAD system diagnostic performance using the combined
features outperformed the diagnostic abilities using individual feature sets. Sens: sensitivity, Spec:
specificity, DSC: Dice coefficient of similarity, hln: size of hidden layer n.

RCC vs. AML Classification Performance (Mean ± SD ≈)

Feature Set Sens% Spec% DSC MLP-ANN

Set 1 94.1 ± 1.5 97.9 ± 1.5 0.96 ± 0.01 hl1 = 10 nodes
Set 2 92.4 ± 2.9 95.1 ± 3.5 0.94 ± 0.02 hl1 = 10 nodes
Set 3 94.9 ± 2.2 95.3 ± 2.5 0.95 ± 0.02 hl1 = 10 nodes
Set 4 92.0 ± 2.4 96.6 ± 2.0 0.94 ± 0.02 hl1 = 10 nodes, hl2 = 5 nodes
Set 5 82.7 ± 4.1 91.7 ± 2.0 0.87 ± 0.02 hl1 = 10 nodes

RC-CAD 95.3 ± 2.0 99.9 ± 0.4 0.98 ± 0.01 hl1 = 50 nodes, hl2 = 25 nodes
Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max validation
failure = 6, min gradient = 10−7, training gain (µ): initial µ = 0.001, µ decrease factor = 0.1, µ increase factor = 10,
max µ = 1e10).

The diagnostic performance of the second stage classification (ccRCC vs. nccRCC) of the
RC-CAD system was evaluated using the same LOSO cross-validation approach. As before,
specially tailored MLP-ANN models were used with different feature sets. The best second
stage classifier performance was obtained using the concatenated feature set (Table 4).

Table 4. Results from the second stage classification (ccRCC vs. nccRCC) using individual feature
sets (1, 2, 3, 4, and 5) along with the multilayer perceptron artificial neural network (MLP-ANN)
classification models. The RC-CAD system diagnostic performance using the combined features
outperformed the diagnostic abilities using individual feature sets. Acc: accuracy, hln: size of hidden
layer n.

ccRCC vs. nccRCC Classification Performance (Mean ± SD ≈)

Feature Set Acc% MLP-ANN Architecture

Set 1 76.8 ± 2.6 hl1 = 10 nodes
Set 2 75.7 ± 3.8 hl1 = 10 nodes
Set 3 83.3 ± 5.6 hl1 = 10 nodes
Set 4 81.4 ± 5.1 hl1 = 10 nodes, hl2 = 5 nodes
Set 5 76.2 ± 2.33 hl1 = 10 nodes

RC-CAD 89.6 ± 5.0 hl1 = 50 nodes, hl2 = 25 nodes
Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max validation
failure = 6, min gradient = 10−7, training gain (µ): initial µ = 0.001, µ decrease factor = 0.1, µ increase factor = 10,
max µ = 1e10).

Figure 9 demonstrates a difficult case presentation for two ccRCC, two nccRCC, and
two AML renal tumors. This figure visualizes the texture differences, wash-in and wash-
out slope differences, and morphological differences between the different types of renal
tumors, which emphasizes the potential power of the integration process of such features
in providing a precise identification of a given renal tumor.

To ensure that our system is not prone to overfitting and to validate the reproducibility
and robustness of RC-CAD, we performed a randomly stratified 10-fold cross-validation
approach in both stages using the combined features. Likewise, the classification process
was repeated 10 times using the same MLP-ANN classification model, and the results are
tabulated in terms of the mean ± the standard deviation (Table 5).
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Figure 9. A difficult case presentation showing the textural differences, wash-in and wash-out slope differences, and shape
differences between two ccRCC, two nccRCC, and two AML renal tumors.

Table 5. Diagnostic performance comparison for both classification stages between the developed RC-
CAD system and other classification approaches (e.g., random forest (RF) and support vector machine
(SVM)). Using leave-one-subject-out (LOSO) and a randomly stratified 10-fold cross-validation
approach, the diagnostic abilities of the RC-CAD outperformed the others. Let Sens: sensitivity, Spec:
Specificity, DSC: Dice similarity coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean ± SD ≈)

Method Validation Sens% Spec% DSC

RC-CAD (Proposed) LOSO 95.3 ± 2.0 99.9 ± 0.4 0.98 ± 0.01
10-fold 89.0 ± 3.4 91.0 ± 2.7 0.90 ± 0.02

RFs LOSO 89.0 ± 1.7 92.7 ± 2.7 0.91 ± 0.02
10-fold 88.4 ± 1.0 90.7 ± 3.0 0.89 ± 0.01

SVMQuad
LOSO 82.9 ± 0.0 88.6 ± 0.0 0.85 ± 0.00
10-fold 81.9 ± 2.2 87.7 ± 2.5 0.84 ± 0.02

Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean ± SD ≈)

Method Validation Acc%

RC-CAD (Proposed) LOSO 89.6 ± 5.0
10-fold 78.6 ± 5.7

RFs LOSO 53.7 ± 3.7
10-fold 51.9 ± 2.6

SVMQuad
LOSO 52.9 ± 0.0
10-fold 54.3 ± 3.0

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl1 = 50 nodes,
hl2 = 25 nodes, goal = 0, max validation failure = 6, min gradient = 10−7, training gain (µ): initial µ = 0.001,
µ decrease factor = 0.1, µ increase factor = 10, max µ = 1e10); RF (method: Bag, number of learning cycles = 30);
SVM (kernel function: quadratic, box constraint = 1).

To highlight the advantages of using the MLP-ANN classifier, we compared RC-
CAD with other, well-known machine learning classifiers (e.g., SVMQuad and RF). As
documented in Table 5, the diagnostic performance obtained by the developed RC-CAD
system outperformed all other machine learning classifiers in both classification stages,
which justifies the potential of such MLP-ANN classifiers being utilized for the developed
RC-CAD system. It is worth mentioning that, in each classification stage, a grid search
algorithm was employed to find the optimal set of hyperparameters, with the classification
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accuracy optimization criterion, for each of the classifier techniques being evaluated. The
results of the hyperparameter optimization are appended to Table 5.

For the comparison with RC-CAD, we applied the existing state-of-the-art approach [27]
using a total of 10 textural markers extracted from the portal-venous phase only along with
the gradient boosting classification technique. In addition, we applied the state-of-the-art
deep learning CNN approaches proposed by Lee et al. [32] and Oberai et al. [37] on our
own datasets (first stage: N = 140; second stage: N = 70). To highlight the advantages of
the RC-CAD system, all results are compared in Table 6. The diagnostic performance of
RC-CAD exceeded that of other approaches in both classification stages.

Table 6. Diagnostic performance comparison for both classification stages between the developed
RC-CAD system and the state-of-the-art approaches by [27,32,37]. The diagnostic abilities of the
RC-CAD outperformed all other methods in both classification stages. Let Sens: sensitivity, Spec:
Specificity, DSC: Dice similarity coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean ± SD ≈)

Method Sens% Spec% DSC

RC-CAD (Proposed) 95.3 ± 2.0 99.9 ± 0.4 0.98 ± 0.01
Kunapuli [27] 81.4 ± 0.0 95.7 ± 0.0 0.88 ± 0.00
Oberai [37] 88.9 ± 1.7 87.4 ± 1.4 0.91 ± 0.01

Lee [32]

AlexNet 84.0 ± 1.7 93.4 ± 1.9 0.88 ± 0.02
GoogleNet 88.3 ± 1.7 95.1 ± 1.9 0.91 ± 0.01

ResNet 88.0 ± 3.5 95.7 ± 0.9 0.91 ± 0.02
VGGNet 86.9 ± 0.6 91.4 ± 2.4 0.89 ± 0.01

Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean ± SD ≈)

Method Acc% ccRCC/40 nccRCC/30

RC-CAD (Proposed) 89.6 ± 5.0 35 ± 2 28 ± 3
Kunapuli [27] 60.6 ± 2.7 28 ± 1 15 ± 1
Oberai [37] 84.3 ± 3.1 34 ± 1 25 ± 2

Lee [32]

AlexNet 71.7 ± 1.9 31 ± 2 19 ± 2
GoogleNet 68.0 ± 1.5 32 ± 1 15 ± 1

ResNet 70.3 ± 2.5 32 ± 0 17 ± 2
VGGNet 72.6 ± 2.3 33 ± 1 18 ± 1

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl1 = 50 nodes,
hl2 = 25 nodes, goal = 0, max validation failure = 6, min gradient = 10−7, training gain (µ): initial µ = 0.001,
µ decrease factor = 0.1, µ increase factor = 10, max µ = 1e10).

5. Discussion

The developed RC-CAD system demonstrated high diagnostic performance in terms
of accuracy, sensitivity, specificity, and DSC in discrimination between benign (AML) and
malignant (RCC) and in classification of the RCC subtype into ccRCC or nccRCC. This early
and precise identification of the malignancy status of a given renal tumor and its associated
subtype can enable clinicians to provide the appropriate early intervention/treatment plan
and improve the outcomes. CE-CT was utilized as it is an imaging modality with the
ability to provide different aspects of features, including but not limited to, morphological
features, textural features, and functional features. The integration of these features is
effective in determining the malignancy status of a given renal tumor when combined with
a powerful machine learning classifier such as the MLP-ANN.

The grade of malignancy of a given renal tumor largely specifies the morphology of
the tumor. Typically, malignant tumors demonstrate a more complex morphology than
benign ones. Therefore, morphological features based on using spherical harmonics were
utilized to capture possible surface complexity differences between malignant and benign
renal tumors, as well as differences between different subtypes of malignancy.

First- and second-order textural features have been widely utilized to identify a given renal
tumor status as malignant or benign, as well as to describe the malignancy subtype [26,27,29,
31,32,38]. These features capture all possible textural homogeneity/heterogeneity across renal
tumors with different diagnoses. In line with these studies, the extracted textural features
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provided high diagnostic performance in discriminating malignant ccRCC and nccRCC
from benign (AML) renal tumors.

Additionally, functionality was utilized in identifying the malignancy status of a given
renal tumor. The slopes of wash-in and wash-out can capture the existing differences in the
enhancement characteristics [51,52]. In this study, the results obtained by the functionality
metrics demonstrated the efficacy of such features in discriminating between benign (AML)
and malignant (RCC) and identifying the malignancy subtype as ccRCC or nccRCC.

Although individual features have provided a reasonable diagnostic performance,
they are not sufficient to rule out surgical intervention in (what may turn out to be) benign
lesions. Therefore, the integration process of these features is critical to enhance the
diagnostic accuracy to the point of clinical utility. The integration process produced a
reliable and accurate RC-CAD system with an enhanced diagnostic performance in both
classification stages as documented in Tables 3–5.

This study has some limitations: (i) benign tumors only included AMLs and did
not include any ONCs; (ii) the datasets in this study were all collected from the same
geographical area, and thus, we did not account for population diversity; (iii) demographics
such as age and sex were not included in our analysis; (iv) differentiation between paRCC
and chrRCC was not performed due to the limited number of subjects; and (v) the RC-CAD
system in its current form still requires expert knowledge to segment the renal tumor
manually before the handcrafted features are extracted. Despite these limitations, the
RC-CAD system demonstrated the efficacy and feasibility of integrating various types
of features to account for different aspects, making the developed RC-CAD a reliable
noninvasive diagnostic tool.

6. Conclusions and Future Work

The developed RC-CAD system demonstrated a high classification sensitivity of
95.29%± 2.03%, a specificity of 99.86%± 0.43%, an ad DSC of 0.98± 0.01 in differentiating
benign AML from malignant RCC renal tumors. In addition, the RC-CAD achieved an
overall classification accuracy of 89.57%± 5.03% in distinguishing ccRCC from nccRCC
to provide the proper management plan. Integrating accurate morphological features
with functional features and multiple first-order and second-order textural features was
adequate to significantly enhance the diagnostic capabilities. Future work will obtain data
from a larger cohort spanning different geographical areas to test the RC-CAD system’s
generalizability. In addition, new types of renal tumors including oncocytomas and malig-
nant lymphomas will be included to expand the subclassification abilities of the RC-CAD
system. This greater amount of data will necessitate a fully automated segmentation
approach to be incorporated into the system, as manual segmentation will become too
burdensome. Furthermore, fully automated extraction of diagnostic image features might
be achieved using state-of-the-art deep learning approaches (e.g., convolutional neural
networks and stacked auto-encoders).
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Appendix A

In this Appendix, we detail the mathematical formulas used to extract the textural features:

Basic notation:

• µ: mean;
• n: total number of voxels in the object;
• vi: gray-level value of Voxel i;
• σ2: variance;
• σ: standard deviation;
• Ng: the normalized grey levels;
• p: the normalized histogram counts;
• ε: an initial random small number;
• Ng: grey-levels (normalized 0–255);
• GN : the GLCM (normalized 0–1);
• x̄, σx(i): the row margins (mean and standard deviation);
• ȳ, σy(i): the column margins (mean and standard deviation).

Table A1. Texture features formulas.

Feature Formula

First-Order

Mean (µ) 1
n

n

∑
i=1

vi =
v1 + v2 + · · ·+ vn

n
(A1)

Variance (σ2) ∑n
i=1(vi − µ)2

n
(A2)

Entropy (Ent) −
Ng

∑
i=1

p(i) log2
(

p(i) + ε
)

(A3)

Skewness (Skew) 1
n

n

∑
i=1

(
vi − µ

σ

)3

(A4)

Kurtosis (Kurt) 1
n

n

∑
i=1

(
vi − µ

σ

)4

(A5)
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Table A1. Cont.

Feature Formula

Second-Order

Contrast
Ng

∑
i=0

Ng

∑
j=0

(i− j)2GN(i, j) (A6)

Dissimilarity
Ng

∑
i=0

Ng

∑
j=0
|i− j|GN(i, j) (A7)

Homogeneity
Ng

∑
i=0

Ng

∑
j=0

GN(i, j)
1 + (i− j)2 (A8)

ASM
Ng

∑
i=0

Ng

∑
j=0

(
GN(i, j)

)2 (A9)

Energy
√

ASM (A10)

Correlation ∑
Ng
i=0 ∑

Ng
j=0 GN(i, j)ij− x̄ȳ

σx(i)σy(j)
(A11)
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