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ABSTRACT

Transcription factors (TFs) are important drivers of
cellular decision-making. When bacteria encounter a
change in the environment, TFs alter the expression
of a defined set of genes in order to adequately re-
spond. It is commonly assumed that genes regulated
by the same TF are involved in the same biological
process. Examples of this are methods that rely on
coregulation to infer function of not-yet-annotated
genes. We have previously shown that only 21% of
TFs involved in metabolism regulate functionally ho-
mogeneous genes, based on the proximity of the
gene products’ catalyzed reactions in the metabolic
network. Here, we provide more evidence to support
the claim that a 1-TF/1-process relationship is not a
general property. We show that the observed func-
tional heterogeneity of regulons is not a result of the
quality of the annotation of regulatory interactions,
nor the absence of protein–metabolite interactions,
and that it is also present when function is defined
by Gene Ontology terms. Furthermore, the observed
functional heterogeneity is different from the one ex-
pected by chance, supporting the notion that it is a bi-
ological property. To further explore the relationship
between transcriptional regulation and metabolism,
we analyzed five other types of regulatory groups
and identified complex regulons (i.e. genes regu-
lated by the same combination of TFs) as the most
functionally homogeneous, and this is supported by
coexpression data. Whether higher levels of related
functions exist beyond metabolism and current func-
tional annotations remains an open question.

INTRODUCTION

Transcription factors (TFs) are important drivers of bac-
terial decision-making. They convey environmental cues
into the gene expression machinery by binding to specific
metabolites. In turn, they promote the recruitment, or dis-
missal, of the RNA polymerase in a defined set of promot-
ers. Classical examples, such as lacI (1) or trpR (2), intro-
duced the notion that individual TFs mediate defined re-
sponses, such as lactose utilization or tryptophan biosyn-
thesis. The assumption followed that all the genes regulated
by the same TF (termed regulons (3,4)) were involved in the
same biological process. There are now various examples of
widely studied TFs that are involved in more than one bio-
logical process, but they are considered special cases, termed
‘global regulators’ (5), and the wide variety of processes in
which they take part is easily rationalized by the large sizes
of these regulons. Moreover, it is common to refer to TFs
by the biological process they are involved in, such as ‘reg-
ulator of response to oxidative stress.’

The increasing availability of data on regulatory inter-
actions and gene expression has allowed the development
of several algorithms that predict new regulatory interac-
tions (6–8), new gene functions (6,9,10), or describe mod-
ules of coregulated genes (11,12). Given the complexity of
the data, the methods rely on several assumptions, includ-
ing: (i) genes regulated by the same TF will be involved in
the same biological process and (ii) genes regulated by the
same TF are expected to be coexpressed. These supposi-
tions are mostly used to either enrich the results with true
positives or evaluate the efficiency of the method. However,
there has been no systematic study to date that quantita-
tively analyzed whether this is a general property of TFs or
an attribute of a few classical examples.

We have shown before that local TFs have a gradient of
functional homogeneity and that less than one-fourth of
TFs have a one-to-one correspondence with biological pro-
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cesses in terms of the connectivity of the metabolic sub-
networks directly affected by the regulatory action of the
TF (13). Here, we show that the observed gradient is not
a result of missing metabolite-protein interactions, or low-
confidence interactions, and is different from what would be
expected by chance. We provide support that the gradient is
a biological property by reassessing the functional homo-
geneity of each regulon using Biological Process Gene On-
tology (GO) terms. In order to find an alternative to gen-
eral regulons (i.e. genes regulated by the same TF irrespec-
tive of effect or additional regulation) for predictive algo-
rithms, we explore four other types of regulons and quantify
their functional complexity by two different methods. Our
results indicate that complex regulons, defined as a group
of genes regulated by the same combination of TFs, are the
most functionally homogeneous type of regulons. Finally,
we measure the coexpression of genes in each type of regu-
lon and show that, consistent with our results, complex reg-
ulons are the most highly coexpressed.

MATERIALS AND METHODS

GENSOR unit assembly

GENSOR units were assembled using the semiautomatic
pipeline reported in (13). Data from RegulonDB v10.0 (14)
were obtained from two custom-made datasets available
at GitHub and the TF-transcription unit (TF-TU) and
TU-genes datasets available at the RegulonDB website. All
data from EcoCyc (15) were obtained using the Pathway
Tools software v22.0 (16), the Perlcyc API, and custom Perl
scripts. Canonical metabolic pathways and enzymatic regu-
latory interactions were obtained from EcoCyc. Enzymatic
regulatory interactions were only added to a GENSOR unit
if the regulatory metabolite and the regulated enzyme were
already present in the GENSOR unit. A modified version
of the pipeline was used to assemble GENSOR units using
as input a custom group of genes.

Connectivity

Connectivity was calculated in three steps: (i) all enzymes in
the GENSOR unit were identified. (ii) All metabolic fluxes
in the GENSOR unit were identified by connecting reac-
tions that shared a metabolite, irrespective of it being a sub-
strate or a product. (iii) Enzymes participating in metabolic
fluxes of more than one reaction were identified and termed
‘connected enzymes.’ (iv) The following formula was ap-
plied:

C = Ec

Et + (Mf − 1)

where Ec is the number of connected enzymes (calculated in
iii), Et is the total number of enzymes in the GENSOR unit
(calculated in i) and Mf is the number of metabolic fluxes
within the GENSOR (calculated in ii). Since the expectation
is that all enzymes are involved in one metabolic flux, any
extra metabolic fluxes are penalized in the denominator (see
Appendix S1). Essentially, connectivity reflects the fraction
of enzymes in the GENSOR unit that cooperate with others
in a metabolic flux (i.e. a pathway), penalized by the number

of unexpected fluxes. Enzymatic regulation is considered in
the metric by additionally labeling as ‘connected enzymes’
any enzyme that is regulated by a metabolite also present
in the GENSOR unit. Final calculations were performed
using a custom Perl script available at GitHub.

Metabolic pathways, TUs and gene ontology terms

Genes belonging to metabolic pathways were automatically
retrieved using Pathway Tools v22.0. TUs were obtained
from RegulonDB downloadable datasets, and those with
only 1 gene were eliminated. Gene Ontology (GO) terms
(17,18) were obtained from the PortEco Filtered Annota-
tion File version 24/05/2017, available at the AmiGO web-
site. Members of a GO term were expanded to include the
genes that directly belong to it, plus all the genes that belong
to its children terms. All analyses were performed using only
the Biological Process branch of the ontology.

Identification of dominant GO terms

We obtained the fraction of genes in a GENSOR unit
present in each of the 2860 Biological Process (BP) GO
terms. The GO term with the highest fraction of genes was
selected as the dominant GO term.

In case of ties, the most specific term (farthest from the
root) was selected. Only GENSOR units with more than
one gene annotated in the BP branch of the ontology were
considered in the analysis. Genes that were not annotated in
at least one term of the BP branch were excluded from the
analysis. Genes that belonged to multiple GO terms were
considered in all their terms.

Regulatory groups and regulons

Regulatory groups were defined as depicted in Table 2. Reg-
ulons were identified through a custom Perl script using in-
formation from RegulonDB in the following manner (see
also Supplementary Figure S9):

• General regulons. One regulon per TF; includes all the
genes that have at least one annotated binding site for the
TF in their promoter region.

• Strict regulons. One or two regulons per TF; includes the
subset of genes in a general regulon that are regulated un-
der the same effect (activation/repression).

• Simple regulons. Zero or one regulon per TF; includes all
the genes with identified binding sites for only one TF in
their promoter region.

• Complex regulons. Zero, one or more regulons per TF;
includes all the genes that have annotated binding sites for
the same combination of TFs in their promoter region.

• Conformation regulons. Zero, one or more regulons per
TF; includes all the genes that have annotated binding
sites in their promoter region for the same functional con-
formation of a TF, either in complex with a metabolite
(holo conformation) or by itself (apo conformation).

• Conformation + effect regulons. Zero, one or more reg-
ulons per TF; includes the subset of genes in a confor-
mation regulon that are regulated under the same effect
(activation/repression).
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Global TFs (ArcA, CRP, IHF, Fis, FNR, HNS, Lrp)
were considered in all regulatory groups, except general
regulons, since by definition (5) they are involved in more
than one biological process and could introduce bias to our
results. GENSOR units based on regulatory effect of the
TF were assembled using as starting point all the genes
in any regulon of the above-mentioned regulatory groups,
except for complex regulons. Genes were separated into
two groups: repressed and activated genes. Genes known
to be dually regulated by the same TF were considered
in both groups. GENSOR units were assembled for each
subgroup. Complex regulons were classified in activated or
repressed depending on the effect of all the TFs involved
in the regulon. For example, the regulon CRP(–)/AraC(–
)/XylR(–) would be classified as repressed. Complex regu-
lons where TFs had different regulatory effects (e.g. CRP(-
)/AraC(+)/XylR(–)) were omitted from the analysis. All
regulons were calculated from RegulonDB datasets using
a custom Perl script available at GitHub.

Randomization of regulons

Sets of random regulons were created using a custom Perl
script. For each regulatory unit, the script created a list of
the genes that belonged to all of its regulons and then recre-
ated each regulon by assigning random genes from the list
until the regulon reached its original number of genes. As-
signment of random genes allowed repetition. The process
was repeated 100 times for each regulatory unit, in order to
obtain 100 sets of random regulons (Appendix S2). Ran-
dom regulons for connectivity analysis were created with
the same algorithm, with the exception that the number of
enzymes was maintained, as opposed to number of genes.
Enzymes were identified using Pathway Tools v22.0.

Coexpression of regulons

Coexpression analysis was performed using expression data
from the COLOMBOS compendia (19) across 4077 mi-
croarray contrasts. The Spearman correlation of gene ex-
pression across all conditions was computed for all possi-
ble combinations of gene pairs in a regulon. The median
of the obtained Spearman correlations was calculated and
used as the representing coexpression value of the regulon.
Regulons with less than two genes were excluded from the
analysis.

RESULTS

Assembly of GENSOR units and calculation of connectivity

We used the GENSOR unit framework (13) to further an-
alyze the relationship between regulons and the metabolic
effects of their gene products. A general regulon was de-
fined as the group of genes directly regulated by a TF, re-
gardless of the effect (positive, negative, or dual) of the TF
and regulation from other TFs. For each TF, we automat-
ically retrieved from RegulonDB (14) its known effectors,
active and inactive conformations, regulated genes, and the
effects of the regulatory interactions. From EcoCyc (15), we
retrieved the gene products and any protein complex that

belonged to a GENSOR unit. If the gene products were en-
zymes, we extracted the catalyzed reactions and their sub-
strates, products, and directionality. Finally, we included
canonical metabolic pathways in a simplified way. In each
GENSOR unit, we linked pairs of metabolites that were
present in the same canonical pathway, taking into account
the directionality of the pathway (i.e., that one metabolite
can be transformed into the other). Only one meta-reaction
(called ‘complementary pathway reaction’ in RegulonDB)
was added to link the metabolites, regardless of the num-
ber of intermediate reactions between them in the pathway
(Supplementary Figure S3). The end result was a multilevel
network that included TUs, proteins, protein complexes,
and metabolites; such a network was termed a Genetic Sen-
sory Response unit, or GENSOR unit for short. GENSOR
units integrate the transcriptional and metabolic level in a
single network, providing a higher-level view of their inter-
play and their physiological relevance (Supplementary Fig-
ure S4).

We have previously reported (13) a connectivity metric
that measures the functional homogeneity of a GENSOR
unit in terms of the ability of its metabolic reactions to cre-
ate a metabolic flux by sharing substrates or products, as
in a pathway. In brief, connectivity takes into account the
number of enzymes (Ec) whose catalyzed reactions create
a metabolic flux, the total number of enzymes (Et) and the
total number of metabolic fluxes (Mf) present in the GEN-
SOR unit (see Materials and Methods). The connectivity
formula returns a value from 0 to 1. Zero indicates total
functional heterogeneity, where none of the reactions in the
GENSOR unit happen consecutively. A value of 1 indicates
a paradigmatic GENSOR unit where all the reactions are
involved in the same metabolic flux and therefore are func-
tionally related (Appendix S1). We calculated the connec-
tivity of 201 GENSOR units and eliminated those with less
than two enzymatic reactions to avoid artificial values of 0.
The resulting connectivity distribution (Figure 1A), based
on a different version of RegulonDB, replicated previous
results (13) where the largest proportion of GENSOR units
had a connectivity value of 1, followed by those with con-
nectivity of 0 and a continuum in between.

Functional heterogeneity in regulons is not explained by enzy-
matic regulation, low-confidence regulatory interactions, or
chance

Once we reproduced our previous results, we explored arti-
facts that could be responsible for the observed connectiv-
ity gradient. As a first step, we examined the role of enzy-
matic regulation in the connectivity of GENSOR units. It is
known that enzymatic regulation plays an important role in
regulatory genetic programs (20). For example, anthranilate
synthase is the enzyme that catalyzes the first step of tryp-
tophan biosynthesis, and it can be allosterically inhibited
by L-tryptophan, the end product of the pathway (21). This
type of interactions can create functional links between en-
zymes and metabolites that are missed in the connectivity
metric but are important because they increase the func-
tional homogeneity of GENSOR units. We retrieved 422
enzyme-metabolite interactions annotated in EcoCyc and
that were included in 87 GENSOR units. The connectiv-
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Figure 1. Connectivity analysis. (A) Connectivity distribution of GENSOR units calculated using the previously reported algorithm on later database
versions. (B) Distribution of modified connectivity to consider enzymatic regulation in GENSOR units, compared to (A). (C) Connectivity distribution of
GENSOR units containing only regulatory interactions with strong evidence, compared to GENSOR units including all reported regulatory interactions.
(D) Mean connectivity distribution of GENSOR units assembled from 100 random regulons, compared to real GENSOR units. All distributions in (C)
and (D) include enzymatic regulation.

ity calculation was slightly modified by expanding the def-
inition of a connected enzyme (Ec in Equation 1), from ‘an
enzyme whose catalyzed reaction shares at least one sub-
strate or product with another reaction in the GENSOR
unit’ to ‘an enzyme whose catalyzed reaction shares at least
one substrate or product with another reaction in the GEN-
SOR unit or is allosterically regulated by the substrate or
product of the reaction catalyzed by another enzyme in the
GENSOR unit.’ The resulting connectivity distribution us-
ing the modified connectivity (Figure 1B) did not differ sig-
nificantly from the original distribution (Wilcoxon–Mann–
Whitney test; P-value > 0.05). This result suggests that the
gradient of functional complexity originally observed is not
a consequence of missing metabolite-enzyme interactions.
Nevertheless, metabolite-enzyme interactions add useful in-
formation to GENSOR units, so we included them and used
the modified version of connectivity in all further analyses.

The gradient of connectivity could also be explained by
spurious regulatory interactions. RegulonDB classifies each
regulatory interaction as strong or weak according to the
evidence provided by the methods used to identify it (22).
For instance, binding experiments of the purified TF are
considered strong evidence, while changes in gene expres-
sion in a TF mutant strain are considered weak evidence.
Certain combinations of multiple independent weak evi-
dence can also add up to a strong evidence. It is possi-

ble that interactions with low levels of confidence, such as
those inferred from a mutant phenotype (i.e. the TF mu-
tant strain shows a phenotype in which the regulated gene
is involved) do not happen in reality and introduce noise in
the connectivity of the GENSOR unit that includes them.
We used RegulonDB evidence codes to eliminate all the reg-
ulatory interactions with weak evidence and then we as-
sembled high-confidence GENSOR units. If the connectiv-
ity gradient observed is being biased by low-confidence in-
teractions, the connectivity distribution of high-confidence
GENSOR units should differ. Figure 1C shows that this is
not the case, since the distribution is not significantly differ-
ent (Wilcoxon–Mann–Whitney; P-value > 0.05), even con-
sidering that the total GENSOR units tested decreased by
18% and the average size of the assembled GENSOR units
decreased from 7.5 enzymes to 5.4. As we have shown be-
fore (13), there was no correlation between the connectiv-
ity value of a GENSOR unit and its size (Supplementary
Figure S5). Eighty-three percent of regulatory interactions
with strong evidence included evidence of gene expression
changes related to TF activity. The high percentage sup-
ports that our high-confidence GENSOR units not only rely
on TF binding evidence, but also reflect functional interac-
tions. These results show that low-confidence interactions
are not introducing bias to our results and are not respon-
sible for the connectivity gradient.
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The prevalence of the connectivity gradient led us to ex-
plore whether it could be expected by chance, meaning that
we are not measuring a biological property but the result of
a metric’s artifact. In order to do this, we took the com-
plete set of genes in the Transcriptional Regulatory Net-
work (TRN) and recreated the 201 regulons by randomly se-
lecting genes from the set. The only property of the regulons
that remained was the number of enzymes, because, as men-
tioned before, the connectivity value does not depend on the
GENSOR unit size (Supplementary Figure S5). We assem-
bled GENSOR units using the random regulons as starting
points and obtained their connectivity distributions. For de-
termination of statistical significance, we repeated this pro-
cess 100 times and obtained the mean connectivity distri-
bution (Figure 1D). The resulting distribution was signifi-
cantly different from the original connectivity distribution
(Wilcoxon–Mann–Whitney; P-value < 2.2e-16), suggesting
that the connectivity gradient observed in regulons is not an
artifact. The three previous results support that the gradi-
ent of connectivity reflects underlying biological principles,
reinforcing the notion that functional homogeneity is not a
general property of individual regulons.

The gene ontology also reveals functional heterogeneity in
regulons

So far we have supported the functional heterogeneity of
GENSOR units in terms of the connectivity metric. Next,
we explored whether other methods of functional quantifi-
cation yield the same results. Our connectivity metric re-
flects the functional homogeneity of a GENSOR unit un-
der the assumption that proximity in the metabolic net-
work implies similar function, as in a metabolic pathway.
This assumption is commonly accepted, as enzymes and
metabolites that are present in the same metabolic pathway
(e.g. KEGG or EcoCyc pathways), and therefore are close in
the larger metabolic network (23), work together to produce
a final product. Nevertheless, there are other approaches to
describe functional homogeneity, and of relevance are those
based on the GO terms (17,18), a functional classification
of genes mainly based on homology and phenotypic effects
of genes. One of the most used approaches is GO Enrich-
ment Analysis, which relies on statistical analysis to identify
functional terms that are over- or underrepresented in a set
of genes of interest, given the background of the functional
annotations of each gene in the genome (24,25). Essentially,
the GO Enrichment Analysis answers the question, ‘Which
biological processes are significantly enriched in a GEN-
SOR unit?’ Unfortunately, the results are not a true reflec-
tion of functional homogeneity, because genes tend to be-
long to more than one GO term and different subsets of
genes in a GENSOR unit could account for different en-
riched processes, giving no direct information on whether
there is one process where all the genes in the GENSOR
unit are working together. For a better reflection of func-
tional homogeneity, we focused on two different questions:
‘How general is the biological process that can simultane-
ously describe all the genes in a GENSOR unit?’ and ‘What
is the fraction of a GENSOR unit that can be explicitly ex-
plained by a biological process?’

To answer the first question, we identified the GO term
that described all the genes in each GENSOR unit and fo-
cused on the tree structure of the ontology to quantify the
specificity of the term. We obtained, for each GENSOR
unit, the subset G of genes that are present in the Biological
Process (BP) branch of GO. Eighty-two percent of the 2702
genes present in any GENSOR unit are present in the BP
branch. To avoid uninformative results, 15 GENSOR units
with less than two annotated genes were excluded from the
analysis. For the remaining 186 GENSOR units, we identi-
fied the farthest downstream GO term from the root of the
ontology that included all the genes in the GENSOR unit,
in other words, the biological process that is most represen-
tative of, or dominant, in the GENSOR unit. Since terms
closer to the root are more general in their definition, pick-
ing the term farther from it implies that it will also be the
most informative. The root term, Biological Process, was la-
beled as level 1, its immediate children as level 2, and so on
until level 11. The worst-case scenario would be a GEN-
SOR unit whose most representative GO term is in level 1
of the ontology, indicating that no other term in the ontol-
ogy can fully describe that GENSOR unit. This scenario
would also imply functional heterogeneity, given that the
genes have functions spread across the ontology.

To validate this interpretation, we obtained the dominant
GO term of global regulators (ArcA, CRP, Fis, FNR, HNS,
IHF, Lrp), which by definition are involved in several bio-
logical processes. The dominant GO term of all global reg-
ulators was indeed the level 1 term Biological Process, the
most general term. Results for the complete set of GEN-
SOR units showed that 69.1% also had the level 1 term Bio-
logical Process as the dominant GO term (Figure 2A). Ad-
ditionally, 9.2% of GENSOR units had a level 2 GO term as
its best descriptor. Taken together, these results agree with
connectivity results in that around three-fourths of GEN-
SOR units are functionally heterogeneous. The high per-
centage of functionally heterogeneous GENSOR units is
not a consequence of the ontology having more terms in
levels 1 and 2; in fact, these levels only include 20 terms, ac-
counting for 0.005% of total BP GO terms (Supplementary
Figure S6A). It is neither due to tested genes being present
only in levels 1 and 2, since 99.8% of tested genes are present
in terms from levels 3 and higher.

Another explanation could be that the more general
terms are the only ones with enough genes annotated to de-
scribe all the genes in a GENSOR unit, but that is also not
the case, since 124 GO terms of level 3 and higher contained
more genes than the largest GENSOR unit (Supplementary
Figure S6B-C). A possible functional bias is that TFs are
annotated in the ontology with terms related to transcrip-
tion, as opposed to the processes they regulate. To explore
this possibility, we excluded autoregulated TFs from the
analysis. Results were not significantly affected, since 74.4%
of GENSOR units still obtained a dominant GO term in
levels 1 or 2. It is also possible that expecting a complete
regulon to be explained by a single GO term is extremely
stringent, and perhaps two GO terms are enough to explain
most regulons. However, that is not the case, since allow-
ing two dominant GO terms only increased by 30.8% our
interpretative power, leaving 47.5% of GENSOR units still
dispersed in three or more biological processes. This anal-
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Figure 2. GO analysis. (A) Distribution of levels of the GO term that best
describes each GENSOR unit. (B) Distribution of the highest fraction of
genes of each GENSOR unit that are present in the same GO term. Only
descriptive GO terms (level 3 and higher) were considered in this analysis.
In both analyses, GENSOR units with less than two genes annotated in
the ontology were excluded.

ysis supports the notion that functional heterogeneity is a
general property of regulons.

The second question, ‘What is the highest fraction of a
GENSOR unit that can be explicitly explained by a bio-
logical process?’ was answered by eliminating the two most
general levels of the ontology and repeating the analysis.
By eliminating the most general processes, we identified the
most representative GO term of each GENSOR unit that
was still informative. We obtained the fraction of genes in
the GENSOR unit that were included in the best GO term;
the closer the fraction is to 1, the more functionally ho-
mogeneous the GENSOR unit. The best scenario would be
GENSOR units with a value of 1, meaning that all of their
genes are involved in an informative Biological Process. Fig-
ure 2B shows that the gradient of complexity observed in
the connectivity analysis was also present here: most GEN-
SOR units cannot be entirely described through a single, in-
formative Biological Process, and the fraction of genes that
belong to the most representative process varies from 0.2
to 1. Notably, level 6 is the most populated in the ontology
(Supplementary Figure S6A), with 25.5% of all terms be-
longing to it, but only 10.3% of GENSOR units had their
most representative GO term at that level (Supplementary
Figure S6D), suggesting that the analysis was not biased by
properties of the ontology. Level 3, the most general in this

analysis, was the most represented level (36.7%) in GEN-
SOR units (Supplementary Figure S6D), further support-
ing their functional heterogeneity. The fraction of genes in
the dominant GO term was not affected by the size of the
GENSOR unit (Supplementary Figure S7).

Functionally heterogeneous GENSOR units are not the
less studied TFs. For example, MetJ is a TF associated with
biosynthesis and transport of methionine (hence its name).
As expected, its regulated genes are included in methionine-
related GO terms such as ‘methionine biosynthetic process’
or ‘protein methylation,’ but they only include a small frac-
tion of the regulon. Interestingly, MetJ’s dominant GO term
is ‘organonitrogen compound metabolic process,’ which in-
cludes 58% of the regulated genes and is not directly related
to methionine.

As mentioned before, connectivity and GO analyses rely
on different properties of functional relationships, but both
suggest that only around a quarter of TFs regulate func-
tionally homogeneous genes. Scores do not show any clear
correlation between the metrics (Supplementary Figure S8),
but they overlapped in 15 GENSOR units that scored per-
fect functional homogeneity in both analyses: AllS, BetI,
BirA, CynR, DhaR, FabR, FeaR, GcvA, HipAB, MazE,
MazE-MazF, MhpR, TreR, XapR and YqjI. The dominant
GO term of these regulons and a more detailed descrip-
tion of their GENSOR units can be found in Table 1. Ef-
fectors are known for nine of them. In most cases, the an-
notated biological process is directly related to the effector,
for example, AllS is involved in the ‘allantoin assimilation
pathway’ and it binds to allantoin (26). In other cases, the
relationship is more indirect but still present, for instance,
BetI’s effector is choline (27) and is annotated as being in-
volved in ‘response to stress’ because choline can be con-
verted into glycine betaine, a thermo- and osmoprotectant
(28) by genes directly regulated by BetI. These GENSOR
units reflect the most functionally local TFs: they are in-
volved in a single biological process and placed at the bot-
tom of the TRN hierarchy since they do not regulate other
TFs.

Complex regulons are the most functionally homogeneous
type of regulons

Having further supported the notion that the genes directly
regulated by a TF are not generally involved in the same bi-
ological process, we focused on exploring the functional ho-
mogeneity of other types of regulons, defined slightly differ-
ently. Our underlying assumption was that transcriptional
regulation plays a central role in cellular decision-making:
when a cell is faced with a change in the environment, a co-
herent response must be orchestrated mainly through the
action of TFs. The resulting hypothesis is that there is a type
of regulatory unit in the TRN that also acts as a functional
unit. We selected three previously reported (29) types of reg-
ulatory groups: simple, complex, and strict regulons (Table
2). Their definitions (Table 2, Supplementary Table S1, Sup-
plementary Figure S9) combine two properties of TFs: their
effects on genes and their shared occupation of promot-
ers with other TFs. Based on previous reports on the rele-
vance of TF conformation information (29), we also consid-
ered the groups of genes directly regulated by a specific TF-
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Table 1. Functionally homogenous GENSOR units. Regulated biological processes shown are obtained from the most representative GO term identified.
Summaries describe active conformations and end-metabolites of the metabolic fluxes mediated by the TF of the GENSOR unit

GENSOR
unit Known Effectors

Dominant GO term (level of
term) Mechanistic summary of GENSOR unit

Genes in
regulon

AllS allantoin allantoin assimilation
pathway (7)

AllS, in the presence of allantoin, positively regulates the
expression of genes required to produce ammonium and
oxalurate.

3

BetI choline response to stress (3) BetI, by itself, negatively regulates the expression of genes
required to produce betaine and A(H2).

4

BirA biotinyl-5′-AMP monocarboxylic acid
biosynthetic process (7)

BirA, in the presence of biotinyl-5′-AMP, negatively
regulates the expression of genes required to produce
coenzyme A, 5′-deoxyadenosine, AcpP,
adenosylhomocysteine,
S-adenosyl-4-methylthio-2-oxobutanoate, oxidized
[2Fe-2S] ferredoxin, methionine, malonyl-[acp] methyl
ester, unsulfurated [sulfur donor] and biotin.

5

CynR cyanate cyanate catabolic process (6) CynR, in the presence of cyanate, positively regulates the
expression of genes required to produce carbamate.

4

DhaR organic substance metabolic
process (3)

DhaR, by itself, positively regulates the expression of genes
required to produce DHAP, PtsH and pyruvate

4

FabR monocarboxylic acid
metabolic process (7)

FabR, by itself, negatively regulates the expression of genes
required to produce 3-oxo-decanoyl-[acp],
3-oxo-dodecanoyl-[acp], trans tetradec-2-enoyl-[acp], trans
hexadecenoyl-[acp], (2E)-dodec-2-enoyl-[acp],
3-ketopimelyl-[acp] methyl ester,
3-oxo-cis-delta7-tetradecenoyl-[acp],
3-oxo-cis-delta9-hexadecenoyl-[acp], 3-oxo-octanoyl-[acp],
3-oxo-palmitoyl-[acp], 3-oxo-hexanoyl-[acp],
3-oxo-myristoyl-[acp], trans hex-2-enoyl-[acp],
crotonyl-[acp], acetoacyl-ACP and acetoacetyl-[acp]

2

FeaR cellular biogenic amine
catabolic process (7)

FeaR, by itself, positively regulates the expression of genes
required to produce perhydrol, oxopropanal, RCHO,
ammonium and phenylacetate.

2

GcvA purine, glycine nitrogen compound
metabolic process (3)

GcvA, by itself, dually regulates the expression of genes
required to produce [glycine-cleavage complex H protein]
N6-dihydrolipoyl-L-lysine, methylene-H4PteGlu(n) and
ammonium.

5

HipAB organic substance metabolic
process (3)

HipAB, by itself, negatively regulates the expression of
genes required to produce ppGpp and pppGpp.

5

MazE nucleobase-containing
compound catabolic process
(5)

MazE, by itself, negatively regulates the expression of genes
required to produce cytidylate, dAMP, 5′-IMP, 5′-UMP,
dGMP, dCMP, dTMP, xanthosine-5-P, dIMP,
mononucleotide and dUMP.

3

MazE-
MazF

nucleobase-containing
compound catabolic process
(5)

MazE-MazF, by itself, negatively regulates the expression
of genes required to produce cytidylate, 5′-IMP, 5′-UMP,
dCMP, dAMP, dIMP, dGMP, xanthosine-5-P,
mononucleotide, dTMP and dUMP.

3

MhpR 3-(2,3-
dihydroxyphenyl)
propanoate,
3-(3-hydroxyphe
nyl)propanoate

aromatic compound
catabolic process (5)

MhpR, in the presence of 2,3-DHP, positively regulates the
expression of genes required to produce succinate,
(2Z)-2-hydroxypenta-2,4-dienoate, acetyl-CoA, fumarate
and pyruvate MhpR, in the presence of 3HPP, positively
regulates the expression of genes required to produce
succinate, (2Z)-2-hydroxypenta-2,4-dienoate, acetyl-CoA,
fumarate and pyruvate

6

TreR trehalose
6-phosphate,
trehalose

cellular metabolic process (3) TreR, by itself, negatively regulates the expression of genes
required to produce glucose-6-P, PtsH and glucopyranose.

2

effector complex and those directly regulated by a specific
TF-effector complex under the same effect. For instance,
the genes activated by the complex TyrR-phenylalanine be-
long to a different regulon than those repressed by TyrR-
tyrosine. In total, we analyzed six types of regulatory groups
(Table 2, Supplementary Table S1, Supplementary Figure
S9). We obtained the groups of genes in the TRN derived
from each definition and used them as the starting points to
assemble GENSOR units. As positive controls, we also used
the GENSOR unit assembly pipeline on groups of genes de-

fined by pathways and GO terms. As negative controls, we
generated 100 sets of random gene groups for each type of
regulatory grouping (see Materials and Methods). To com-
pare the functional homogeneity of regulatory groups, we
obtained their connectivity distribution and identified dom-
inant GO terms as described in the previous sections.

Connectivity values (Figure 3A and Table 2) showed that
the highest-scoring regulatory group, with a median of 0.8,
contains complex regulons, that is, groups of genes regu-
lated by the same combination of TFs. The rest of the reg-
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Table 1. Continued

GENSOR
unit Known Effectors

Dominant GO term (level of
term) Mechanistic summary of GENSOR unit

Genes in
regulon

XapR xanthosine nucleobase-containing small
molecule metabolic process
(4)

XapR, in the presence of xanthosine, positively regulates
the expression of genes required to produce xanthine,
hypoxanthine, guanine and nicotinamide ribose. XapR, by
itself, positively regulates the expression of genes required
to produce xanthine, hypoxanthine, guanine and
nicotinamide ribose.

2

YqjI nickel, Fe+2 cellular response to stimulus
(3)

YqjI, by itself, negatively regulates the expression of genes
required to produce (2,3-dihydroxybenzoylserine)3, Fe+2
and a siderophore.

2

Table 2. Definitions of regulatory units and controls used to assemble GENSOR units

Regulatory groups/controls Definition Total regulons

General Regulons Genes directly regulated by a TF. Irrespective of effect, TF conformation, or
coregulation with other TFs.

201

Strict Regulons Genes directly regulated by a TF, under the same effect (+/−), irrespective of TF
conformation, or coregulation with other TFs.

294

Simple Regulons Genes directly regulated one and only one TF. Irrespective of effect or TF
conformation.

107

Complex Regulons Genes directly regulated by a combination of TFs, irrespective of effect or TF
conformation.

398

Conformation Regulons Genes directly regulated by a specific conformation (TF-effector complex) of a
TF, irrespective of effect, or coregulation with other TFs.

221

Conformation + effect
regulons

Genes directly regulated by a specific conformation (TF-effector complex) of a
TF, under the same effect (+/−), or coregulation with other TFs.

304

GO term Genes annotated in the same GO term, plus all the genes on its children terms 2860
Pathway Genes that belong to the same metabolic pathway 420
Transcription unit Genes transcribed on the same mRNA molecule 1037

ulatory groups had a median connectivity of 0.6, except
for simple regulons, with a lower value of 0.5 (Supplemen-
tary Table S2). Pathways, the positive controls, had a me-
dian of 1, as expected. All regulatory groups had a distri-
bution significantly different from random values (Supple-
mentary Figure S10). Consistent with connectivity results,
GO analysis also scored complex regulons as the most func-
tionally homogeneous regulons, with a median fraction of
genes of 1.0 (Figure 3B). The rest of the regulons showed
a median of ∼0.7, with the lowest being general regulons,
at 0.67 (Supplementary Table S2). The positive controls,
groups of genes belonging to a GO term, had only 1.0 val-
ues, as expected. Again, all regulatory groups had a dis-
tribution significantly different from random values (Sup-
plementary Figure S11). It is possible that the regulatory
effect (activation/repression) of the TF over the regulated
genes could be playing an important role in our results. To
explore this possibility, we split all regulons into repressed
or activated genes, assembled GENSOR units for each sub-
group and obtained their connectivity and GO analysis val-
ues (Supplementary Figure S12). Interestingly, including
the regulatory effect did not have a significant impact in
the analysis, nor altered our previous conclusions. Complex
regulons are the regulatory group with the highest propor-
tion of small sized regulons (Supplementary Figure S13),
but neither connectivity nor GO analysis show a correlation
between size of the regulon and heterogeneity (Supplemen-
tary Figure S14). Through connectivity and GO analysis,
two independent evaluations, we demonstrated that com-
plex regulons are the most functionally homogeneous regu-

latory group of those tested, which fits with a model of TF
coordination to orchestrate a cellular decision. Our results
suggest that functionality in the TRN should be understood
in terms of the cooperation between TFs and not at the level
of individual TFs.

Gene expression data support functional homogeneity of
complex regulons

To place our results within a more biologically relevant con-
text, we quantified the coexpression of each regulon of each
type of regulatory group. Our underlying assumption was
that functionally related genes should be more frequently
coexpressed than random genes, given that the execution of
a biological process requires the presence of all the genes in-
volved in it. Therefore, complex regulons, as the most func-
tionally homogeneous type of regulatory unit, should also
have the most coexpressed regulons. We measured coex-
pression by using the COLOMBOS database (19), a com-
pendium of microarray experiments that includes expres-
sion data for 4321 genes across 4077 contrast conditions.
For each regulon, we selected all the possible gene pairs
and calculated the Spearman correlation of their expres-
sion values across all conditions. The median of the corre-
lations of all gene pairs in a regulon was used as the coex-
pression score of the complete regulon. The Spearman cor-
relation has been previously reported as the best statistic for
coexpression analysis (30). As a control, we included TUs,
genes that are transcribed on the same mRNA molecule
and therefore coexpressed. Results showed that most reg-
ulatory groups have a median coexpression correlation co-
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Figure 3. Functional homogeneity of different regulatory units. (A) Box-
plots of connectivity distributions of regulatory groups and 100 random-
izations of each set of regulons. Pathways are shown as control. (B) Box-
plots of distributions of the highest fraction of genes of each GENSOR
unit that are present in the same GO term, for each type of regulatory
group and 100 randomizations of the genes that belong to each regulon.
GO terms are shown as control. Conf stands for Conformation Regulons
and Conf+Eff stands for Conformation + effect regulons. Regulon defini-
tions can be found on Table 2.

efficient of around 0.2 (Figure 4A), except for complex reg-
ulons, with a median of 0.40, higher than the TU median of
0.38. Similar to connectivity and GO analysis results, con-
sidering the regulatory effect of the TF over the regulated
genes did not appear to have a significant impact on the
results (Supplementary Figure S15). Given that correlation
coefficients are not very high, we were not able to make in-
ferences about coexpression properties of different regula-
tory groups. However, we have obtained evidence that com-
plex regulons are the most coexpressed regulatory unit, as
frequently coexpressed as TUs, which agrees with their ob-
served functional homogeneity.

DISCUSSION

The common model of transcriptional regulation mediated
by TFs states that an individual TF detects a specific sig-
nal, changes conformation, and activates/represses a fixed
set of genes. In turn, the regulated genes jointly orchestrate
a response to the presence of the initial signal. Genomic
studies allow the reevaluation of models, in order to identify
the true general principles. We have shown before (13) that

Figure 4. Boxplots of the distribution of coexpression values for each reg-
ulatory group, compared to their random sets. Transcription units (TUs)
are shown as control.

feedback between signals and the orchestrated response is
a common occurrence. In this work, we expanded our anal-
ysis on the functional homogeneity of regulons by consid-
ering enzymatic regulation, the quality of data annotations,
expectations by chance, and other definitions of functional-
ity and regulons. All results confirmed that only one-fourth
of known TFs regulate functionally homogeneous genes,
demonstrating that genes directly regulated by a TF are
not generally involved in the same biological metabolic pro-
cess. Additionally, we have shown that complex regulons are
the most homogeneous regulatory unit in the TRN, which
is supported by their also being the most frequently coex-
pressed.

The functional heterogeneity measured here assumes that
all the regulatory interactions in a regulon happen simulta-
neously, mainly due to the lack of information on growth
conditions under which each regulatory interaction is ac-
tive. It is possible that once this information becomes avail-
able, estimates of functional homogeneity of condition-
dependent regulons will increase. However, there are reports
of ChIP-seq (8), ChIP-exo (31,32), and microarray (7) ex-
periments where regulated genes are involved in functions
unrelated to the phenotype being studied, suggesting that
even under very specific conditions our conclusions stand:
direct targets of an individual TF are not necessarily in-
volved in the same process. The most practical implication
of our results is that coregulation is a dangerous assumption
from which to propagate functional annotations for less-
studied genes, given that this will be correct in only ∼25%
of the instances, as has been shown in this analysis of a
comprehensive collection of regulons in E. coli (Figures 1B,
2B). Confidence that coregulation implies shared function
can increase to around 50% if annotations are propagated
to genes regulated by the same combination of TFs (Sup-
plementary Figures S10C and S11C). TFs are commonly
classified as local or global; one of the common features
of global regulators is that the gene products they directly
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regulate are involved in several functional classes. Results
presented here show that involvement in many functional
classes is also a property of local TFs, suggesting that this
criterion should not be used alone for the classification of
newly discovered TFs. It is certainly difficult to believe that
our observations are unique to the biology of E. coli.

From a wider perspective, we consider three main possi-
ble explanations for the functional heterogeneity observed
in general regulons: (i) we did not evaluate the regulatory
groups that drive defined biological processes; (ii) there is
not yet a functional framework that can describe the rela-
tionship between a regulon and its physiological effects; (iii)
regulation of gene expression does not rely only on TFs. The
first explanation relies on the fact that we only tested six reg-
ulon definitions. Although we considered several mechanis-
tic properties of TFs in these definitions, it is possible that
there is a definition of a regulon that has perfect correspon-
dence with known biological processes, but we have yet to
identify it.

The second explanation, that our current functional clas-
sifications of genes are not able to capture the functional
regulatory logic, relies on the notion that regulation drives
cellular decision-making. So far, function has been studied
from the perspective of biochemical properties, homology,
and phenotypic effects of mutants (17,33,34), not always
taking into account regulation. Although in this work we
did not comprehensively consider all available functional
annotations, other widely used classifications, such as COG
functional terms (34) and MultiFun terms (35), rely on sim-
ilar evidences as those used by the GO Consortium, and
we chose the latter given its higher level of curation and
maintenance efforts. It is noteworthy that in the original
MultiFun publication (35) it was mentioned that regula-
tion was not considered in the gene classification because
even operons are not always related in metabolic terms.
In fact, connectivity and GO analysis of TUs also show
some functional heterogeneity (Supplementary Figure S16).
There could be an unexplored level of functional complexity
where TFs are the main drivers, and more work is needed to
explain how apparently different processes are in fact part
of a larger response to a specific signal. Isolated examples
of this interpretation efforts exist (36,37), and they provide
evidence of our lack of a standardized functional vocab-
ulary to interpret regulation; for instance, each ChIP-seq
experiment requires a new effort by an expert curator. In
the Jacob/Monod paradigm, it is counterintuitive that two
genes regulated by the same TF are not involved in a com-
mon function. It may well be that the results shown here
are more due to the current limitations in gene annotations
and that the heterogeneity observed shows our ignorance of
a regulatory logic waiting to be discovered.

The third explanation, that TFs are not the main drivers
of cellular decision-making, is more feasible when one
places TFs in the wider context of the cell. Bacteria do
not rely solely on TFs to regulate their physiology; they
also depend on ribosome abundance (38), RNA polymerase
availability (39) and intrinsic stochasticity (40), not to men-
tion posttranslational and posttranscriptional modifica-
tions. There are estimates for the TF Cra, suggesting that
it only accounts for 32% of changes in gene expression of
target genes in central metabolism (41). In this bigger pic-

ture, individual TFs are just one of the players in cellular
decision-making, a resource to fine-tune the expression of
genes that are not necessarily involved in the same process.

The observation that complex regulons are the most ho-
mogeneous regulatory unit agrees with the third explana-
tion, since it supports that genetic programs are encoded
beyond individual TFs. In this scenario, general regulons
show the regulatory potential of TFs, but the specific subset
of genes in the regulon that is expressed at a certain time is
defined by the combinatory logic of the TFs bound to each
gene’s promoter. The possible combinations of TFs, pro-
moters, number of sites, TF effects and order of TF bind-
ing far exceed the possible biological processes regulated by
a simple model of one signal –– one TF –– one response
(42–46). It has been shown that the large number of possi-
ble combinations allows for faster evolution of regulatory
networks (43), which is known to happen (47,48). The high
functional homogeneity of complex regulons highlights the
importance of further exploring the combinatory logic of
TFs on promoters. Although the TRN of E. coli has been
widely studied, we are just beginning to explore the com-
plexity of its relationships to metabolism and physiology.
Dissection of the molecular decision-making processes as-
sociated with changes of growth conditions at a genomic
level is now possible with current technologies and will no
doubt bring an invaluable resource to further expand our
understanding of microbial cell biology.
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