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Single-cell sequencing (SCS) now promises the landscape of genetic diversity at single

cell level, and is particularly useful to reconstruct the evolutionary history of tumor.

There are multiple types of noise that make the SCS data notoriously error-prone, and

significantly complicate tumor tree reconstruction. Existing methods for tumor phylogeny

estimation suffer from either high computational intensity or low-resolution indication

of clonal architecture, giving a necessity of developing new methods for efficient and

accurate reconstruction of tumor trees. We introduce GRMT (Generative Reconstruction

of Mutation Tree from scratch), a method for inferring tumor mutation tree from SCS data.

GRMT exploits the k-Dollo parsimony model to allow each mutation to be gained once

and lost at most k times. Under this constraint on mutation evolution, GRMT searches

for mutation tree structures from a perspective of tree generation from scratch, and

implements it to an iterative process that gradually increases the tree size by introducing

a new mutation per time until a complete tree structure that contains all mutations is

obtained. This enables GRMT to efficiently recover the chronological order of mutations

and scale well to large datasets. Extensive evaluations on simulated and real datasets

suggest GRMT outperforms the state-of-the-arts in multiple performance metrics. The

GRMT software is freely available at https://github.com/qasimyu/grmt.

Keywords: next-generation sequencing, single-cell sequencing, Bayesian optimization, intra-tumor heterogeneity,

tumor tree

1. INTRODUCTION

Tumor progression follows a dynamic evolutionary process that is activated by the genetic lesions
of a single founder cell (Nowell, 1976). The descendants of the cell gain a growth advantage to
resist apoptosis and develop into subclones through accumulation of somatic mutations. After
many generations of clonal expansion, distinct cell populations emerge in the tumor and relate
with an evolutionary tree that depicts their chronological relationship. Each cell population
constitutes a subclone that is uniquely characterized by a complement of genetic mutations.
The genetic diversity of the subclones is called as the intra-tumor heterogeneity (Nowell, 1976;
Greaves and Maley, 2012; Swanton, 2012), and provides the cues of key mutations that drive tumor
growth. Therefore, accurately disentangling the clonal composition and underlying evolutionary
relationship is essential for finding the driver mutations (Xi et al., 2018, 2020) that dominate
the tumor progression, and helps design of personalized cancer therapies (Stratton et al., 2009;
Swanton, 2012).
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With the breakthrough of whole-genome amplification
(WGA) (Zong et al., 2012) and single cell isolation (Brasko et al.,
2018) technologies, single-cell DNA sequencing (SCS) (Gawad
et al., 2016) now promises a high-resolution landscape of
the genetic diversity at single cell level. SCS allows for the
reconstruction of tumor evolutionary tree by exploiting the
mutation profiles of single cells. However, the current WGA
procedures in SCS inevitably introduce different types of noise
that contribute considerably to the genotyping errors, making
the data obtained from SCS experiments notoriously error-prone.
Allele dropout (ADO) is a prominent technical issue that results
in false negative (FN) errors in SCS data (Navin, 2014). The
reported FN rates in current SCS-based studies vary from 0.1
to 0.43 (Hou et al., 2012; Xu et al., 2012; Gawad et al., 2014;
Wang et al., 2014). False positive (FP) calls also present with an
elevated rate compared to bulk-sequencing. A consensus based
trick is often employed to attenuate the effect of FP errors by
filtering the mutations only observed in one single cell (Zhang
et al., 2015; Zafar et al., 2016), however this approach may result
in removal of true biological mutations unique to single cell.
Unobserved sites can also be a critical issue caused by ADO and
non-uniform coverage. The missing rate may exceed 50% due
to the low quality of sequencing data (Hou et al., 2012). Lastly,
cell doublets act as another type of noise in SCS data that result
from unintended libraries from two or more cells (Roth et al.,
2016; Zafar et al., 2017). The cell doublet rate can be as high
as 10% in oral pipette and droplet encapsulation cell isolation
techniques (Hou et al., 2012; Xu et al., 2012; Macosko et al.,
2015). Critically, aforementioned issues often occur together in
SCS data, making it much complicated to accurately infer the
evolutionary tree.

There has been a great interest of developing computational
tools for reasoning tumor trees by addressing the aforementioned
issues in SCS data (Jahn et al., 2016; Kuipers et al., 2017;
Zafar et al., 2017, 2019; El-Kebir, 2018; Chen et al., 2020;
Myers et al., 2020; Sadeqi Azer et al., 2020). SCITE (Jahn
et al., 2016) exploits a Markov Chain Monte Carlo (MCMC)
based approach to jointly search the best scoring mutation tree
and FN rate. OncoNEM (Ross and Markowetz, 2016) adopts
a heuristic search algorithm to find best-performing subclonal
tree refined by unobserved clones. SCG (Roth et al., 2016)
depends on a hierarchical Bayesian model to group single cells
into subclones. These methods are built by following the infinite
sites model (ISM) that each site gets mutated only once and
the mutation will not be lost once acquired. The assumption
may often not hold for human tumor evolution where loss of
mutations frequently occurs due to copy number alterations
(CNAs). To relax the constraint, SiFit (Zafar et al., 2017)
adopts the finite site model (FSM) to permit back mutation and
parallel evolution, and infers a maximum likelihood estimation
of the cell lineage tree. Another method called BEAM (Miura
et al., 2018) aims to improve the quality of SCS data using
classical molecular evolutionary phylogenetics without explicit
restrictions on evolutionary model. SPhyR (El-Kebir, 2018) infers
tumor phylogeny based on the Dollo parsimony evolutionary
model (Dollo, 1893) that is slightly more restrictive than
FSM and only allows back mutation. As loss of mutations

is the main factor that contributes to homoplasy in tumor
evolution, the Dollo parsimony model is a good tradeoff
between ISM and FSM. Recently, RobustClone (Chen et al.,
2020) is proposed to efficiently reconstruct subclonal evolution
tree via robust principal component analysis. Several methods
additionally incorporate other information to improve tumor
tree inference (Satas et al., 2020; Wu, 2020). For instance,
ScisTree (Wu, 2020) utilizes genotype uncertainty available
from the results of genotype callers to model non-uniformly
distributed errors in genotypes.

While the existing methods perform acceptably well, there
are certain drawbacks that limit their applications. First,
MCMC based methods like SCITE and SiFit suffer from high
computational intensity when applied to large datasets (Chen
et al., 2020). Second, methods that search for subclonal trees
(e.g., SPhyR and RobustClone) may fail to detect low-prevalence
subclones and thus result in an incomplete and low-resolution
indication of clonal architecture. Third, most of the existing
methods are based on ISM that is not in line with the
underlying tumor evolution where loss of mutations occurs
frequently. Finally, to the best of our knowledge, mutation
tree that represents the highest-resolution indication of tumor
evolutionary process is reported by only one method SCITE.
As SCITE does not scale well on large datasets, methods for
efficient and accurate reconstruction of mutation tree are still
highly needed.

In this study, we introduce a novel method called GRMT for
Generative Reconstruction of Mutation Tree from scratch using
SCS data. GRMT employs the k-Dollo parsimony model to add
a constraint on mutation evolution, i.e., each mutation can be
gained once and lost at most k times. Unlike previous approaches
that yield different tree topologies via structure transformation
(e.g., swap of nodes or subtrees), GRMT searches for mutation
tree structures from a perspective of tree generation from
scratch. Formally, reconstruction of mutation tree is depicted as
a generative process that begins with the initial tree that only
encompass root node, proceeds with attachment of a new node
per time that represents gain or loss of a mutation to the tree,
and terminates with the complete structure that contains all
mutations. To prevent overfitting, we define a score metric to
evaluate the goodness of each tree, and early stopping of tree
generation is activated when the monitored metric is less than a
pre-defined threshold. In GRMT framework, chronological order
of mutations is expressed by a tree growing process, therefore
the proposed generative model is intuitively more suitable for
deciphering the evolutionary history of the tumor. In addition,
we employ Bayesian optimization (BO) algorithm to efficiently
infer the error rates in SCS data. We apply GRMT to various
simulated datasets to show its superior performance in mutation
tree inference, and also demonstrate the effectiveness of GRMT
in real data.

2. MATERIALS AND METHODS

Given the observed mutation dataD, the FP rate (FPR) α and FN
rate (FNR) β in D, and the parameter k of the k-Dollo parsimony
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model, the workflow of reasoning optimal mutation tree is as
follows: (1) for each of the M mutations, generate k + 1 nodes
of which one represents gain of the mutation and the rest denote
loss of the mutation, yielding in total (k + 1)M isolated nodes
as well as a root node indicating no mutations; (2) initialize the
tree T ∗1 to only contain the root node; (3) generate new trees
{Tt+1} by connecting a free node to the previous tree T ∗t ; (4)
evaluate all proposals in step 3 to keep the best tree T ∗t+1; (5)
iteratively repeat steps 3 and 4 until there are no free nodes or
the score of T ∗t+1 is less than a predefined threshold. During
the whole process, a globally optimal tree T ∗ is updated when
a new better tree is found. The cells are then attached to T ∗

via maximizing likelihoods. An illustration of the mutation tree
inference procedure is shown in Figure 1. The tree encompassed
by dotted lines is the best solution found by our method. The
following sections give a description of methodological details
of GRMT.

2.1. Formulating Mutation Data
We present the mutation states of N cells at M genomic loci as
a N × M binary matrix E, where Eij = 1 and Eij = 0 denote
the presence and absence of mutation j in cell i, respectively.
The observed mutation data D is a noisy version of E, and the
probability distribution of Dij can be formulated as:

p(Dij|Eij) =

(

p(0|0) p(1|0)
p(0|1) p(1|1)

)

=

(

1− α α

β 1− β

)

(1)

For ternary mutation matrix D whose elements take value from
{0, 1, 2}, where 0 denotes normal state, 1 denotes heterozygous
mutation, and 2 means that a heterozygous mutation is recorded
as homozygous due to allele dropout, we use the similar
probability distribution of Dij as adopted in Jahn et al. (2016):

p(Dij|Eij) =

(

p(0|0) p(1|0) p(2|0)
p(0|1) p(1|1) p(2|1)

)

=

(

1− α − αβ/2 α αβ/2
β/2 1− β β/2

) (2)

Given a mutation tree, each cell is attached to the internal
node of the tree that maximizes the likelihood of the observed
mutation data. Provided that the i-th cell is derived from the n-
th internal node, the likelihood can be calculated as p(Di|Sn) =
∏M

j=1 p(Dij|Snj). Here Sn is a vector with length ofM and denotes

the underlying mutation state associated with the n-th internal
node. The value of Sn can be deduced by traversing the path
from the root to the n-th internal node that gives the evolution
history of mutations along that path. If loss of mutation occurs
after a mutation is gained, the corresponding element of Sn is
set to 0. Suppose the best locations of attachments for all cells
are represented by ξ = (ξ1, ξ2, ..., ξN) under a tree T , then the
log-likelihood is given by:

l(D|T ,α,β) =

N
∑

i=1

log
(

p(Di|Sξi )
)

(3)

2.2. Constructing Mutation Tree
Given FPR α and FNR β , we aim to find the tree T ∗ that
best explains the observed mutation data. To explicitly model
the loss of mutations due to copy number alterations and
loss of heterozygosity that are frequently observed in cancer
genomes, the k-Dollo parsimony model is employed in GRMT
to add a constraint on mutation evolution, i.e., each mutation
can be gained once and lost at most k times. Formally, the
internal nodes of the mutation tree is denoted by a vector
S = (r, a+, a−, a−, . . . , a−, b+, b−, b−, . . .), where r signifies
the root of the tree, a+ represents gain of mutation a, and a−
suggests loss of mutation a and appears k times in the vector.
In addition, the structure of the mutation tree is depicted by a
vector T of the same length to S , and each element of T indicates
the index of parent of the corresponding node in S (we use 0
to denote root node and –1 to indicate no parent). The internal
nodes of T are denoted by V = {v|T (v) 6= −1}.

We start with T ∗1 = (0,−1,−1, . . . ,−1) that only contains
the root node, and iteratively increase the size of the tree through
introduction of a new node per time. Specifically, neighborhoods
of the precursor tree T ∗t are generated as a set of trees {Tt+1}
where each T c

p ∈ {Tt+1} contains t + 1 nodes and derives from
connecting node c to the split point p (internal node) of T ∗t , by
following the restriction that the node symbolized by a− can only
be connected to an internal node of T ∗t where mutation a has
been gained and not yet lost. This results in at most t(Mk+M +
1 − t) neighborhoods. To find the most probable tree from all
proposals in {Tt+1}, we propose a metric to score each T c

p .
With an assumption of uniform prior probability distribution

of cell attachment points, the posterior probability that the i-th
cell derives from the node p of T ∗t is measured as:

p(ξi = p|Di, T
∗
t ) =

p(Di|ξi = p, T ∗t )
∑

v∈Vt
p(Di|ξi = v, T ∗t )

(4)

where Vt denotes the internal nodes of T
∗
t . We then calculate the

expected number of cells attached to node p as:

πp(T
∗
t ) =

N
∑

i=1

p(ξi = p|Di, T
∗
t ) (5)

Note that, the tree T c
p is generated by adding edge <p, c> to T ∗t ,

the expected number of cells transferring from node p to node c
can be measured as:

π̄p = πp(T
∗
t )− πp(T

c
p ) (6)

Similarlly, the expected number of cells that are originally located
in nodes {v|v ∈ Vt , v 6= p} of T ∗t and now attached to node c of
T c
p is formulated as:

π̃p = πc(T
c
p )− π̄p (7)

Based on above definitions, we propose a scoremetric to compare
different trees in {Tt+1}:

s(T c
p ) = λπ̄p + (1− λ)π̃p (8)

Frontiers in Genetics | www.frontiersin.org 3 June 2021 | Volume 12 | Article 692964

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yu et al. Generative Reconstruction of Mutation Tree

FIGURE 1 | An illustration of the mutation tree reconstruction procedure adopted in GRMT. Our method generatively recover the mutation tree from a perspective of

tree generation from scratch based on the k-Dollo parsimony model. (A) An example of the observed mutation data with 6 cells and 5 mutations denoted by a 6×5

matrix, the elements 1 and 0 marked in red color represent false positive and false negative, respectively, and the symbol “?” means missing data. (B) GRMT

generatively rebuilds the mutation tree by iteratively increasing the tree size. Parameters α, β, k, λ, and κ are set to 0.077, 0.071, 0, 0.7, and 0.5, respectively. The

value contained in each root node denotes s(T ∗t ) of the best tree T ∗t at time t. The tree encompassed by dotted lines is the optimal solution found by our method. (C)

The cells are attached to mutation tree by maximizing likelihoods, and the value contained in root node of the mutation tree represents the log-likelihood of the

observed mutation data.

where λ is a hyper-parameter controlling the weights of the
two terms. Conceptually, π̄p is the direct “cell flow” from node
p to c, and π̃p is the “cell flow” from other nodes to c via p.
We give higher weight (λ > 0.5) to the term π̄p to encourage
tree expansion toward the direction of larger direct “cell flow.”
Finally, the best tree at time t+1 is inferred as:

T
∗
t+1 = argmax

Tt+1

s(Tt+1) (9)

A globally best tree T ∗ is maintained and updated when a new
better tree is found, i.e., l(D|T ∗t+1,α,β) > l(D|T ∗,α,β). During
each iteration, only the probability p(ξi = c|Di, T

c
p ) needs to

be calculated for each cell, therefore the mutation tree can be
reconstructed with high efficiency. The tree grows until no free
nodes are available or s(T ∗t+1) is less than a predefined threshold
κ . A brief illustration of the mutation tree inference procedure is
provided in Algorithm 1.

2.3. Inferring the Error Rates
We formulate finding optimal α and β as the following
optimization problem:

(α∗,β∗) = argmax
α,β

f (α,β) (10)

where f (α,β) = l(D|T ∗,α,β) represents the log-likelihood
associated with the best tree T ∗ given parameters x = (α,β).
As the computational complexity of assessing the value of f (x) is
exponentially increased with the data size, the values of x should
be judiciously selected for evaluation to reduce the computational
cost. To achieve this, we propose an approach to generate a
priority ordering of the values of x to evaluate by developing a
search algorithm based on the BO. Formally, we place a Gaussian
process (GP) prior on f (x) to infer it’s posterior probability
distribution at a candidate point x. To find the solution, we first
sample t candidate points according to an initial space-filling
design, and evaluate all points to obtain the values f (x1 : t) =

Algorithm 1 Algorithm for mutation tree reconstruction. D is a
mutation matrix representing the observed genotypes of all cells,
α is the FPR, β is the FNR, and k is the parameter of the k-Dollo
parsimony model. The algorithm starts with the tree T1 where
only the root node presents in the tree and others are free nodes,
and terminates if no free nodes are available or the score metric s
is less than a predefined threshold κ .

1: function BUILDMUTATIONTREE(D,α,β , k, λ, κ)
2: Initialize:

3: M← number of columns of matrix D;
4: ζ ← M(k+ 1)+ 1;
5: T ∗1 ← vector (0,-1,-1,...,-1) that has ξ elements;
6: T ∗ ← T ∗1 , L

∗ ← l(D|T ∗,α,β);
7: for t = 2 to ζ do

8: generate neighborhoods of the precursor tree T ∗t−1 as
{Tt};

9: calculate score of each tree T c
p ∈ {Tt} as s(T

c
p ) =

λπ̄p + (1− λ)π̃p;
10: T ∗t ← argmax

T c
p
s(T c

p );

11: if s(T ∗t ) < κ then

12: break;
13: end if

14: if l(D|T ∗t ,α,β) > L∗ then
15: L∗ ← l(D|T ∗t ,α,β);
16: T ∗ ← T ∗t ;
17: end if

18: end for

19: return T ∗;
20: end function

[f (x1), f (x2), . . . , f (xt)]. Leveraging the t evaluated points up to
now, we compute the posterior probability distribution on f
as follows:

f (x)|f (x1 : t) ∼ N
(

µt(x), σ
2
t (x)

)

(11)
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where the posterior mean µt(x) and posterior variance σ 2
t (x)

can be computed efficiently using the GP prior (Rasmussen and
Williams, 2005).

Based on the posterior distribution, we adopt the expected
improvement (EI) (Mockus andMockus, 1991) as the acquisition
function to decide the next point xt+1 to evaluate by maximizing
the EI function, i.e., xt+1 = argmaxx EIt(x). The EI function
EIt(x) measures the expected improvement over the current
largest observed value f ∗t = maxi≤t f (xi) and is defined as:

EIt(x) : = Et

[

[f (x)− f ∗t ]
+
]

(12)

where g+ = max(g, 0) denotes the positive part, and Et

represents the expectation taken under the posterior distribution
f (x)|f (x1 : t). We repeatedly select a point to evaluate per time
by following above presented procedure until the maximum
number of steps is reached. Finally, the best values of (α,β) are
returned as the solution. We integrate a previously developed BO
package (Martinez-Cantin, 2014) into the framework of GRMT
for parameter optimization.

2.4. Simulating Single-Cell Mutation Data
We simulate single-cell mutation data by first generating a
mutation tree and then sampling single cells from the tree. The
chronological order of mutations is emulated from a tree growing
perspective based on the k-Dollo parsimony model. By following
the simulation strategy employed in Jahn et al. (2016), single-
cell mutation data are produced from the simulated mutation
tree via cell attachment and mutation state inference. Each cell
is randomly attached to one of the internal nodes of the mutation
tree, and the mutation state of the cell is fetched through
exploring the mutation evolution trajectory from the root to
the attachment point. The generated mutation data is further
tuned according to predefined FP, FN, doublet and missing rates.
Detailed description of the simulation procedure is provided in
Supplementary Methods.

2.5. Performance Metrics
To examine the performance of the proposed method in
deciphering the underlying genotype matrix (GTM) and
the chronological order of mutations, we compare GRMT
to four state-of-the-art (SOTA) methods including SCITE,
SiFit, SPhyR and RobustClone in various simulated datasets.
infSCITE (Kuipers et al., 2017) and SiCloneFit (Zafar et al.,
2019) are excluded from performance evaluation as we fail to get
their results within an acceptable time frame. Two performance
metrics adopted by Miura et al. (2018) and Chen et al. (2020)
are employed to evaluate the consistency between the predicted
and ground truth GTM: (1) the percentage of missing bases
(MBs) correctly imputed and (2) the error rate of the GTM. The
evaluations are performed with doublet samples excluded. To
evaluate the construction errors of mutation trees, two metrics
including CASet and DISC proposed by DiNardo et al. (2020)
are utilized to measure distances between the recovered mutation
tree and the ground truth. Specifically, we use CASet∩ andDISC∩
distances calculated using common mutations of the input trees,
and each input tree is preprocessed to aggregate the mutations of

which the chronological order is unknown by using the following
strategy: (1) if an internal node p has only one child node c and no
cells are attached to p, the chronological order of the mutations
represented by p and c is unknown, therefore we aggregate p
and c into a single internal node; and (2) this procedure is
repeated until no internal nodes meet the condition. An example
is illustrated in Supplementary Figure 1. The performance of
mutation tree construction of GRMT, SCITE, and SPhyR are
compared. The specific formulations for the evaluation metrics
are provided in Supplementary Methods.

2.6. Simulated and Real Data
We build 6 simulated datasets (denoted by D1-D6) under
different scenarios defined by several controlling factors: number
of cellsN, number of mutationsM, FPR α, FNR β , missing rate η,
doublet rate ρ and parameter k of the k-Dollo parsimony model.
Each dataset is generated by changing at most two of the factors
while keeping the remaining fixed. The default values are set to
N = 200, M = 200, α = 0.01, β = 0.2, η = 0.1, ρ = 0.1, and k = 0,
unless indicated otherwise. The specific settings for each dataset
are as follows: β ∈ {0.1, 0.2, 0.3} for D1, η ∈ {0.1, 0.2, 0.3} for D2,
N ∈ {100, 500, 1,000} for D3,M ∈ {100, 500, 1,000} for D4,M ∈
{100, 200} and k = 1 for D5, ρ = 0 and β ∈ (0.05, 0.3) for D6.
In addition, 50 replicates of mutation trees are simulated per pair
(M, k) for datasets D1-D5, and 100 mutation trees are generated
for dataset D6. This results in 1100 GTMs for comprehensively
evaluating the performance of GRMT. We also obtain real SCS
data of a metastatic colorectal cancer (Leung et al., 2017) and a
high grade serous ovarian cancer (McPherson et al., 2016; Roth
et al., 2016) to further examine the effectiveness of GRMT.

2.7. Evaluations
We first apply GRMT and other methods to simulated datasets
D1-D5 generated under various conditions. The FPR and FNR
required as the inputs of each method are set to the ground truth
values. For SCITE and SiFit, the number of restarts and length
of each MCMC chain are set to 3 and 200,000, respectively, and
all other parameters use the default values. We adopt the default
settings as documented in SPhyR and RobustClone. The hyper-
parameters are configured as λ = 0.7 and κ = 1 for GRMT
on both simulated and real datasets. The performance metrics
quantifying the quality of recovered GTM and mutation tree are
measured to make a comparison between different methods. We
then assess the ability of GRMT in accurately estimating the FNR
on simulated dataset D6.

3. RESULTS

3.1. Systematic Evaluation on Simulated
Data
3.1.1. The Effect of FN Errors
We first evaluate the effect of FN errors on GTM and
mutation tree inferences, and make a comparison between
different methods on the dataset D1. As shown in Figure 2, the
distributions of four performance metrics are analyzed under
different β values in {0.1, 0.2, 0.3}. It is observed that the
ratio of correctly imputed MBs consistently decreases with the
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β for all methods. For instance, SiFit yields 95.22, 94.6, and
94.48% median accuracies when β changes from 0.1 to 0.3.
SCITE outperforms other existing methods on all evaluations
with median accuracy ranging from 98.19 to 98.75%. Compared
to the competitors, our method achieves high robustness against
β value. It delivers a median accuracy of 98.92% at β = 0.1, and
results in 0.51% accuracy loss when β increases to 0.3. Further
comparison results between the predictedGTMand ground truth
indicate the proposed method has enhanced ability to precisely
correct erroneous mutation calls. GRMT presents better results
than SiFit, SPhyR and RobustClone by reducing the error rate by
a large margin across all investigated β values, and also exhibits
advantage over SCITE. In addition, analysis of CASet and DISC
distances between the reconstructed and ground truth mutation
trees gives similar comparison results. Since SPhyR primarily
aims to infer subclonal trees, it results in low-resolution profiles
of the mutation trees that present relatively low similarity to the
ground truth. SCITE achieves more robust results than SPhyR,
the median value of CASet distance increases from 0.083 at β =
0.1 to 0.13 at β = 0.3, and the DISC metric is also better than that
of SPhyR. By comparison, our method generates more consistent
mutation tree structure across all testing conditions. For instance,
the median CASet distance is as low as 0.036 at β = 0.1 and 0.058
at β = 0.3, and the corresponding DISC distances are also smaller
than those of SCITE (0.129 vs. 0.226 and 0.226 vs. 0.351). The
comparison results suggest our method is able to cope with FN
errors in SCS data.

3.1.2. The Effect of Missing Data
We then evaluate the effect of missing data on the GTM and
mutation tree reasoning on the dataset D2. Similar evaluation
strategy is applied to benchmarking tests under different η

values in {0.1, 0.2, 0.3}. Compared to the results on evaluation
of β , SiFit, SPhyR and RobustClone show smaller variances
in recovering GTMs with respect to η as shown in Figure 2,
implying their higher robustness against missing rate than FNR.
SCITE performs best among the existing methods by effectively
eliminating the effects of missing data, and delivers the lowest
variance in each metric with respect to η. By comparison, our
method produces results comparable to SICTE by correctly
interpolating at least 98.3% missing entries and reducing error
rate to below 0.01 on most tests. For reconstructing mutation
tree, SPhyR, SCITE and GRMT show similar performance as in
correcting FN errors on dataset D1, and our method still gets
better results than the competitors. For instance, the median
values of CASet distances derived from GRMT, SCITE and
SPhyR are 0.073, 0.132, and 0.208 at η = 0.3, respectively, and
the corresponding DISC distances are 0.248, 0.363, and 0.428.
These results indicate our method has superior performance in
imputing missing data.

3.1.3. The Effect of Number of Cells and Mutations
We proceed to assess the effectiveness of GRMT on large SCS
datasets D3 and D4. As expected, GRMT and SCITE yield
improved results when more cells are employed to recover the
GTM and mutation tree. For instance, our method reduces the
median error rate from 0.89% at N = 100 to 0.32% at N = 1000,

representing an elevated capability when compared to SCITE
(corresponding values are 1.09 and 0.36%). The performance of
SiFit tends to deteriorate when the number of cells increases,
which may result from under-convergence of the model caused
by the high computational complexity in inferring lineage
relationship among a large number of cells. SPhyR outperforms
SiFit and RobustClone at larger values of N, and shows better
robustness to the change in number of cells.

The number of mutations also acts as one of the main
factors that heavily affect the results of existing methods. With
more mutations incorporated into the analysis, the mutational
difference between cells get enhanced and the effects of technical
errors are substantially attenuated, enabling an elevated accuracy
of SiFit, SPhyR and RobustClone as depicted in Figure 2. SCITE
performs comparably to GRMT atM = 100, but shows degraded
capability at larger values of M due to low efficiency of the
MCMC scheme in deciphering evolutionary history of a large
number ofmutations. Generally, ourmethod presents best results
under different test conditions, and gains higher robustness to the
change in number of mutations. For instance, the errors in GTM
are corrected to account for a small median percent of 0.35 atM
= 1,000, and the CASet distance slightly increases from 0.039 at
M = 100 to 0.051 atM = 1,000.

3.1.4. Evaluation on Mutation Loss Data
To examine the ability of reasoning tumor evolutionary history
involved with mutation loss, we apply GRMT to dataset D5. We
run GRMT under two ways, i.e., k = 0 and k = 1, and compare the
resulting metrics with the SOTAs. As shown in Figure 3, with k =
1 GRMT shows better metrics when compared to the results with
k = 0, and yields generally better inferences than the ISM based
methods. For instance, the median values of the CASet distance
derived fromGRMT (k = 1), GRMT (k = 0), SCITE and SPhyR on
200 × 100 GTMs are 0.046, 0.055, 0.068, and 0.119, respectively,
and the corresponding values on 200 × 200 GTMs are 0.045,
0.053, 0.106, and 0.142. The overall performance of GRMT with
either k = 0 or k = 1 is better than the competitors, especially in
deducing the underlying mutation trees.

3.1.5. Estimating the False Negative Rate
To examine the ability of GRMT in estimating the FNR, we apply
GRMT to dataset D6. For the BO algorithm, the number of initial
sampling points and iterations is set to 50 and 15, respectively.
The results depicted in Figure 4 imply the FNR is accurately
estimated by GRMTwith high correlation (correlation coefficient
of 0.94 and p-value of 1.88×10−48) to the ground truth that
generates the data, suggesting GRMT performs well in inferring
FNR from the highly disturbed mutation data.

3.1.6. The Effect of Hyper-Parameters
The parameters λ and κ are two important hyper-parameters in
GRMT, and control the expansion direction and depth of the
mutation tree, respectively. To investigate the effect of λ and κ

on inference results, we compare the performance metrics under
different combinations of λ and κ values. The λ changes from
0.6 to 0.85, and κ varies from 0.4 to 10. The produced dataset
consists of 50 100×100 GTMs per (λ, κ) pair, for which the
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FIGURE 2 | Performance comparison results of different methods in inferring GTM and tumor tree on simulated datasets. Four performance metrics including

proportion of correctly imputed MBs, error rate of recovered mutation data, CASet and DISC distances measuring quality of reconstructed tumor tree are calculated

with respect to each of four controlling factors. These factors include false negative rate (β), missing rate (η), number of cells (N) and number of mutations (M).

mean value of each metric is measured. As shown in Figure 5,
each metric changes obviously with κ , and shows similar patterns
across different λ values. The recovered GTM yields the best
results when λ = 0.7 and κ ≤ 1, while presents dropped accuracy
with κ > 1 across all λ values. Since larger κ values will result
in early stopping of the tree expansion, the cells near to ends
of the branches cannot be correctly attached to right positions
of the mutation tree, which contributes to the elevated error
rate of the GTM. Inversely, small κ value encourages depth
expansion of the tree, thus gives a relatively high probability of
introducing unexpected edges that violate to the ground truth. As
expected, the CASet distance approximately follows a V shaped
relationship with κ and the minimum is reached near κ = 1.8.
The inferredmutation tree exhibits decreased DISC distance with
the baseline tree when κ increases from 0.4 to 3, and shows little
changes in DISC distance at κ > 3. Taken together, (λ = 0.7, κ =
1) is an appropriate choice that provides a good tradeoff among
different metrics.

In addition, we examine the performance of GRMT
and the competitors on various simulated mutation trees
with different levels of structural complexity. The structural
complexity of mutation tree is controlled by parameter γ

as described in Supplementary Methods. The results in

Supplementary Figures 2, 3 demonstrate our method is
more accurate in handling mutation trees with complex
structure. More details on the evaluations can be found in
Supplementary Results.

3.1.7. Runtime Performance
We analyze the computational efficiency of the investigated
methods on datasets D3 and D4. Figure 6 shows the results
of elapsed time of each method respect to the number of cells
and mutations. It is observed that GRMT presents comparable
performance with SPhyR and RobustClone, and is significantly
more efficient than SCITE and SiFit. For instance, GRMT
requires average 65 s to process 1000×200 mutation data, while
SCITE and SiFit need 2,864 and 9,265 s, respectively. To further
examine the efficiency of GRMT on larger datasets, we simulate a
dataset consisting of 2,000× 500 GTMs with α = 0.01, β = 0.2, η
= 0.1, and ρ = 0.1. The calculated performance metrics shown
in Supplementary Figure 4 indicate our method outperforms
the competitors in all performance metrics. The average per-
sample processing time of GRMT, SCITE and SiFit are 7, 270,
and 1,974 min, respectively, suggesting GRMT scales well to
large datasets.
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FIGURE 3 | Comparison results on mutation loss data. The performance of GRMT gets improved when modeling loss of mutation with k = 1. The evaluations are

performed on 200 × 100 and 200 × 200 GTMs.

3.2. Reconstructing Evolutionary Histories
From Real Data
3.2.1. Applying GRMT to Metastatic Colorectal

Cancer Dataset
We use GRMT to recover the evolutionary history of a metastatic
colorectal cancer from patient CRC1 (Leung et al., 2017).
The dataset contains 178 single cells sampled from primary
and metastatic cancer tissues. Variant calling finds 16 single-
nucleotide variants (SNVs) from the cells, resulting in a 178×16
binary mutation matrix with approximately 6.7% missing rate.
The FPR and FNR are estimated as α = 1.52 and β = 7.89%,
respectively.

We first test GRMT under the ISM assumption, i.e., k = 0.
With the fixed error rates (α = 1.52%, β = 7.89%), GRMT achieves
a log-likelihood of –396.11 and the inferred mutation tree is
depicted in Supplementary Figure 5. Previous studies (Zafar
et al., 2017; El-Kebir, 2018) have reported identification of three
subclones with somatic mutations as well as the population
without mutations, we mark each population with a specific

color. Most of the diploid cells are attached to the root
of the mutation tree (marked in gray), implying they are
normal stromal cells. The tumor is initiated by the mutation
in the KRAS oncogene, and develops with the subsequent
mutations in the APC and TP53 tumor suppressor genes.
These mutations delineate the first subclone (marked in blue)
consistingmostly of diploid cells. Subsequent mutations acquired
in genes like the ROBO2 tumor suppressor gene and CCNE1
oncogene result in emergence of the second subclone (marked
in green) that contains mostly primary aneuploid cells. Further

accumulation of mutations in ZNF521, TRRAP, and RBFOX1

result in the metastatic clade that forms the third subclone

(marked in red), and mark the point of tumor dissemination
to the liver. The subclone consists of metastatic cells only, and
most of cells acquire additional mutations in EYS and GATA1

genes. By learning the error rates from the data, our method

achieves a higher log-likelihood of –351.96, and estimates the
parameters as α = 1.04 and β = 7.90%, respectively. The
reconstructed mutation tree in Supplementary Figure 6 suggests
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FIGURE 4 | Comparison between estimated FNR and the ground truth. GRMT accurately estiamtes the FNR with high correlation to the ground truth that generates

the data.

approximately one-third of the primary aneuploid cells have the
TPM4 mutation and constitute a separate clade of the second
subclone.

We then evaluate GRMT by allowing each mutation to be
lost at most one time, i.e., k = 1. Under the fixed error rates
(α = 1.52%, β = 7.89%), GRMT gets a elevated log-likelihood
of -314.06. The recovered mutation tree in Figure 7 implies
there are 11 mutation losses, and loss of mutation events mainly
occur in the primary andmetastatic aneuploid cells. For instance,
the mutation in POU2AF1 acquired in the primary aneuploid
cells is lost in 5 metastatic cells. The evolutionary branches
associated with loss of mutation enhance the resolution of clonal
architecture by refining the inner-clone cell diversity. We further
analyze the results derived from learning the error rates from the
data. GRMT yields a significantly improved log-likelihood of –
282.09 with α and β estimated as 1.07 and 5.72%, respectively.
The inferred mutation tree in Supplementary Figure 7 contains
10 mutation losses, and also suggests the mutation in TPM4 only
occurs in the primary aneuploid cells.

SCITE is also applied on this dataset with α = 1.52%
and β = 7.89%. SCITE outputs a mutation tree (shown in
Supplementary Figure 8) with a log-likelihood of –337.71. It
also identifies the three subclones and the normal population
following similar evolutionary patterns as the ones inferred
by GRMT.

3.2.2. Applying GRMT to High Grade Serous Ovarian

Cancer Dataset
We further examine GRMT on a high grade serous ovarian
cancer (HGSOC) dataset (McPherson et al., 2016; Roth et al.,
2016). The original HGSOC dataset consists of 420 cells and
43 mutations. Following the previously adopted strategy (Roth
et al., 2016), we exclude low-quality cells that show high rates of
mutation missing, resulting in a 392×43 GTMwith 8.6%missing
rate. Due to the FPR and FNR are unknown for this dataset,
we use GRMT to jointly infer the error rates and the mutation
tree with k ∈ {0, 1}. With k = 0, our method estimates the
α and β as 4.39% and 34.1% with a log-likelihood of -7320.5.
The reconstructed mutation tree in Supplementary Figure 9

provides a high-resolution landscape of the clonal architecture,
and suggests multiple highly divergent subclones exists in the
tumor, which is similar to the previously reported result (Roth
et al., 2016). The tumor is initiated by the mutation in the TP53
tumor suppressor gene, then evolves into two branches one of
which forms a separate clade after accumulating mutations in
genes like BRCA1 tumor suppressor gene and CENPI oncogene
(marked in cyan). Another branch further splits into two clades
after acquiring the mutation in YTHDF3. One of the clades
(marked in red) consists of 113 cells of which 112 cells derive
from the left ovary, while another clade excludes the LOv1
cells. This clade is characterized by an initial set of mutations
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FIGURE 5 | Analysis of the effects of hyper-parameters λ and κ on inference results of GRMT. The λ changes from 0.6 to 0.85, and κ varies from 0.4 to 2. Four

performance metrics are measured under different (λ, κ ) pairs.

FIGURE 6 | Computational efficiency of the investigated methods. The running time with respect to each of the two controlling factors including number of cells (N)

and number of mutations (M) are measured.
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FIGURE 7 | Mutation tree inferred by GRMT with α = 1.52%, β = 7.89% and k = 1 on metastatic colorectal cancer dataset. GRMT yields a improved log-likelihood

of –314.06. The tree contains 11 mutation losses (prefixed by “”), and loss of mutation mainly occur in the primary and metastatic aneuploid cells. The normal

population (marked in gray) consists of diploid cells, the first subclone (marked in blue) consists mostly of diploid cells, the second subclone (marked in green)

contains mostly primary aneuploid cells, and the third subclone (marked in red) consists of metastatic cells only.

that present in non-LOv1 cells (marked in green), and further
extended by the mutations absent in LOv2 cells (marked in
blue). By allowing loss of the mutations with k = 1, GRMT
achieves a significantly improved log-likelihood of -6676.88 by
learning the error rates as α = 2.73% and β = 29.7%. The inferred
mutation tree (Supplementary Figure 10) has 42mutation losses
and yields a higher resolution indication of the clonal architecture
refined by mutation loss events.

We also apply SCITE on this dataset with α = 4.39%
and β = 34.1%. SCITE infers a mutation tree (shown in
Supplementary Figure 11) with the log-likelihood of -7312.88.
It also identifies divergent subclones that evolve through similar
patterns as the ones found by GRMT.

4. DISCUSSION

With the ability of delivering the genetic diversity at single
cell resolution, SCS is particularly useful to decipher intra-
tumor heterogeneity in cancer. In this study, we develop a
new computational method GRMT for accurate and efficient
reconstruction of mutation tree based on SCS data. As loss
of mutation is the dominant factor that contributes to the
homoplasy of SNVs in cancer (El-Kebir, 2018), GRMT leverages
the k-Dollo parsimonymodel to impose a restriction onmutation

evolution that each mutation can be gained once and lost
at most k times. We elaborate a generative framework to
reconstruct mutation tree from scratch by iteratively introducing
new node to the tree per mutation event. To best explain the
observed error-prone mutation data, BO based parameter tuning
is employed to infer the maximum likelihood estimation of the
error rates. Compared to the existing tools, the advantages of

GRMT lie in three aspects: (1) the generative model enables

accurate and fast inference of chronological order of mutations;

(2) the BO algorithm is more efficient than MCMC based
approaches in estimating the FPR and FNR; (3) the good

tradeoff between computational efficiency and inference accuracy

makes GRMT scales very well to large datasets. We perform
extensive evaluation of GRMT on simulated and real datasets

to demonstrate its superior performance in profiling clonal
architecture from SCS data.

One limitation of GRMT lies in the fact that it does not
explicitly model doublet events, thus may suffer from degraded
performance when applied to datasets with high doublet rates,
and we plan to elaborate on this issue in the future. In
addition, there are several potential directions for future research
to improve the performance of GRMT. First, the errors in
genotypes is non-uniformly distributed across the cells, thus
exploiting genotype uncertainty available from SNV callers can

Frontiers in Genetics | www.frontiersin.org 11 June 2021 | Volume 12 | Article 692964

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yu et al. Generative Reconstruction of Mutation Tree

result in an improved inference (Wu, 2020). This suggests a
Bayesian framework that utilizes this information may yield
more accurate results. Second, inclusion of other data sources
may also be a feasible direction to refine the results solely
derived from SCS data. A previous study (Malikic et al., 2019)
proposes to infer tumor evolutionary history from combined
bulk and SCS data, where the fitness of the model to bulk data
is also optimized. Finally, copy number information inferred
from sequencing data (Yuan et al., 2019; Satas et al., 2020)
may be useful to restrict the mutations that have undergone
losses, thus shrinks the search space of candidate mutation
trees.
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