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Abstract
Collisions with vehicles can be a major threat to wildlife populations, so wildlife mit-
igation structures, including exclusionary fencing and wildlife crossings, are often 
constructed. To assess mitigation structure effectiveness, it is useful to compare 
wildlife road mortalities (WRMs) before, during, and after mitigation structure con-
struction; however, differences in survey methodologies may make comparisons of 
counts impractical. Location-based cluster analyses provide a means to assess how 
WRM spatial patterns have changed over time. We collected WRM data between 
2015 and 2019 on State Highway 100 in Texas, USA. Five wildlife crossings and ex-
clusionary fencing were installed in this area between September 2016 and May 
2018 for the endangered ocelot (Leopardus pardalis) and other similarly sized mam-
mals. Roads intersecting State Highway 100 were mitigated by gates, wildlife guards, 
and wing walls. However, these structures may have provided wildlife access to the 
highway. We combined local hot spot analysis and time series analysis to assess how 
WRM cluster intensity changed after mitigation structure construction at fine spatial 
and temporal scales and generalized linear regression to assess how gaps in fencing 
and land cover were related to WRM cluster intensity in the before, during, and after 
construction periods. Overall, WRMs/survey day decreased after mitigation struc-
ture construction and most hot spots occurred where there were more fence gaps, 
and, while cluster intensity increased in a few locations, these were not at fence 
gaps. Cluster intensity of WRMs increased when nearer to fence gaps in naturally 
vegetated areas, especially forested areas, and decreased nearer to fence gaps in 
areas with less natural vegetation. We recommend that if fence gaps are necessary in 
forested areas, less permeable mitigation structures, such as gates, should be used. 
Local hot spot analysis, coupled with time series and regression techniques, can ef-
fectively assess how WRM clustering changes over time.
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1  | INTRODUC TION

The distribution of wildlife road mortalities (WRMs) is often affected 
by species, road, and landscape attributes (Ascensão et  al.,  2017; 
Clevenger et al., 2001), and characterizing spatial patterns of WRMs 
is often beneficial for developing and assessing mitigation mea-
sures (Andis et al., 2017). However, counts of WRMs are not always 
a good measure of clustering (Teixeira et al., 2017), and clustering 
and counts of WRMs are often associated with different environ-
mental factors (Bíl et al., 2019; Snow et al., 2014). Additionally, long-
term WRM datasets may be affected by variation in detection rates 
through time due to changes in survey methodology and researcher 
experience, so examining counts may bias conclusions about how 
WRM patterns have changed over time. Finally, mitigation structures 
could cause there to be fewer WRMs along a highway, but because 
they become more concentrated around gaps in fencing (van der Ree 
et al., 2015), researchers may draw different conclusions about the 
effectiveness of mitigation structures depending on whether they 
examine counts or clustering of WRMs.

Different methods exist to examine how WRM spatial clustering 
changes through time, including kernel density estimation and time 
series analyses of clustering algorithms such as hot spot analysis 
and Moran's I analysis. Kernel density estimation creates a proba-
bility surface of a road where hot spots can be identified based on 
a defined isopleth threshold, while hot spot analysis and Moran's I 
use location-based nearest neighbor clustering algorithms to iden-
tify where hot spots occur (Anselin, 1995; Getis & Ord, 1992; Snow 
et al., 2014). While both kernel density estimation and a location-
based approach can be used to identify patterns through time, ker-
nel density estimation is more strongly affected by small sample 
sizes, such as WRM datasets, potentially causing isolated WRMs to 
have a strong influence on the probability surface generation caus-
ing an overestimation of hot spot locations. While a location-based 
approach is also affected by small sample sizes, it is less affected 
by isolated WRMs. Using a location-based approach also allows one 
to explicitly examine how the intensity and distribution of WRM 
clusters changes through time using time series analysis such as the 
Mann–Kendall test (Getis & Ord, 1992; Harris et al., 2017).

Local hot spot analysis measures whether block values are 
high relative to surrounding blocks (Getis & Ord, 1992), while local 
Moran's I analysis measures whether block values are high relative 
to all other blocks (Anselin, 1995). Both measures use a weighting 
factor to determine how much influence neighboring blocks have on 
a particular block. When studying changes in WRMs, researchers are 
typically interested in how WRMs in particular locations change over 
time, and local hot spot analysis is better than both Moran's I and 
kernel density estimation at identifying how this pattern changes 
(Getis & Ord, 1992).

Using local hot spot analysis to identify WRM clusters also al-
lows one to examine how the intensity of a cluster is affected by 
environmental factors and how this relationship changes through 
time. Factors that influence the distribution of WRM clusters in-
clude variation in land cover and land use (Ascensão et  al.,  2017; 

Caceres, 2011), highway characteristics (Clevenger et al., 2003; Grilo 
et al., 2015), and the presence of wildlife mitigation structures, espe-
cially exclusionary fencing (Cserkész et al., 2013). Fencing restricts 
access to roadways to narrow gaps at road intersections and private 
drives which can decrease the overall number of WRMs on the high-
way (Forman et al., 2003); however, it could increase the intensity of 
WRM clusters near these locations by funneling animals toward gaps 
in the fences (Cserkész et al., 2013). The potential for funneling is 
often a concern in wildlife mitigation structure construction (Huijser 
et  al., 2016), so gaps are often mitigated by various structures in-
cluding gates, wildlife guards, and wing walls. These structures are 
not 100% effective at keeping wildlife off roads, and WRMs may 
still result (Allen et al., 2013; van der Ree et al., 2015). Therefore, 
examining how fence gaps influence the intensity of WRM clusters 
may be important in determining how wildlife mitigation structures 
affect WRMs.

We used local hot spot analysis to assess how WRM clusters 
changed through time with the construction of wildlife mitigation 
structures on State Highway 100 (SH100) in Cameron County, Texas, 
USA. We examined how the intensity of WRM clusters changed with 
mitigation structure construction at a fine temporal scale and how 
factors influencing WRM cluster intensity changed from before con-
struction to after construction of wildlife mitigation structures. We 
expected to see fewer WRM clusters in the after construction pe-
riod than the before- and during construction periods coupled with 
increased cluster intensity due to limited access to the road area. We 
also expected that the intensity of WRM clusters would decrease 
with increased distance to wildlife mitigation structures in the after 
construction period only.

2  | METHODS

2.1 | Study area

The study area was a 15-km section of SH100 in Cameron County, 
Texas, USA, between the towns of Laguna Vista and Los Fresnos 
(Figure  1). The highway is a four-lane road with a concrete traffic 
barrier median. This section of SH100 had a speed limit of 105 kmh 
and an average annual daily traffic of between 7,000 and 9,000 
vehicles (Texas Department of Transportation,  2019). Within the 
survey transect, wildlife mitigation structures were built between 
September 2016 and May 2018. The survey transect included the 
entire mitigation area and 1.5 km on either side of it.

Mitigation structures built included 11.9  km of exclusionary 
fencing along the entire mitigation area, five wildlife underpasses, 
18 wildlife guards, three wing walls, and 16 gates. The mitigation 
structures were designed to prevent ocelots (Leopardus pardalis), 
bobcats (Lynx rufus), and other medium to large mammals from ac-
cessing the road, while still providing connectivity across the high-
way (Environmental Affairs Division,  2015). The fencing material 
was 5.1 cm wide black plastic-coated chain-link, 1.8 m tall, and was 
buried 30.5 cm into the ground along most of the fence line. In areas 
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where burial was not possible, the fence was secured to the ground 
away from the highway.

Cameron County is characterized by hot summers with an aver-
age daily temperature in August of 29.6℃ and mild winters with an 
average daily temperature in January of 16.2℃ (National Weather 
Service, 2020). The area receives an average of 69.7 cm of rain per 
year, and most rainfall occurs during occasional tropical storms be-
tween June and October. The primary vegetation types in the study 
area were cordgrass prairie, salt marsh, and thornscrub forest (Elliott 
et al., 2014).

2.2 | Wildlife road mortality surveys

Wildlife road mortality surveys were conducted by vehicle before, 
during, and after the construction of the mitigation structures on 
SH100. The survey transects included the full mitigation area as well 
as a 1.5 km buffer on both sides. Survey frequency, speed, and mark-
ing differed in the three construction periods (Table 1), resulting in 
variation in the total number of surveys conducted among periods. In 
all survey periods, two people conducted the survey, mammals and 
reptiles were recorded, and the GPS location of each mortality was 

F I G U R E  1   Map of the wildlife mitigation area on State Highway 100 showing the three types of fence gaps: gates, wildlife guards, and 
wing walls. The wildlife road mortality survey transect is divided into 151 100-m road segments

TA B L E  1   Comparison of wildlife road mortality survey methodologies among construction periods on State Highway 100, Cameron 
County, Texas

Before During After

Surveys/month 2 8 4

Time period August 2015–August 2016 September 2016–May 2018 June 2018–September 2019

Vehicle speed 40 kmh 48–64 kmh 48–64 kmh

People/Vehicle 2 2 2

Coordinates GPS GPS GPS

Photograph No Yes Yes

Carcass removal Marked but not removed Unmarked and not removed Unmarked and not removed

Taxa recorded Mammalia, Reptilia All All

Note: Surveys per month are the approximate number of wildlife road mortality surveys conducted per month, time period is the dates that surveys 
were being conducted, and carcass removal indicates if carcasses were marked or moved by surveyors.
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recorded. In the before construction period (August 2015–August 
2016), the vehicle was driven around 40 kmh and two surveys were 
conducted per month (total 30 surveys). In the during construction 
period (September 2016–May 2018), the vehicle was driven 48–
64 kmh and two surveys were conducted per week (total 127 sur-
veys). In the after construction period (June 2018–September 2019), 
the vehicle was driven 48–64 kmh and one survey was conducted 
per week (total 67 surveys). The switch to one survey per week was 
due to a previous study on SH100 that showed that most carcasses 
remained identifiable for at least a week (Livingston, 2019). Previous 
studies have recommended slower speeds for vehicle-based surveys 
to accurately detect all road mortalities than what were used in this 
study (Collinson et al., 2014; Santos et al., 2011). However, because 
SH100 is a high-speed, high traffic road, it would have been unsafe 
for the researchers to drive any slower.

Only those species for which fencing provided a barrier to move-
ment were used in analyses to assess how fencing changed WRM 
patterns. These included all mammals larger than rodents as well 
as turtles and tortoises (Table 2). All analyzed taxa were recorded 
during all three survey periods. Snakes, amphibians, birds, and small 
mammals were not included in analyses; see Appendix A for a com-
plete list of species found during WRM surveys.

2.3 | Land cover classification

To identify land cover types around SH100, we created a classi-
fied vegetation map using an image from the National Agriculture 
Imaging Program (NAIP; year taken: 2016). We classified the image 
into 10 classes using the Interactive Supervised Classification Tool 
in ArcMap 10.6 (ESRI, 2017): trees, shrubs, cactus, cordgrass, open, 
bare, paved road, dirt road, water, and bahia. Classification was con-
firmed by visual inspection of the map. These classes were simpli-
fied to three major land cover types: forested (trees, bahia), shrub 
(shrubs, cactus), and open (open, bare, paved road, dirt road). The 

water class was excluded because water was identified using a dif-
ferent method, described below.

We identified permanent sources of fresh and saltwater using 
the National Wetlands Inventory (U.S. Fish & Wildlife Service, 2018). 
Saltwater areas were identified as all locations that had the salt-
water, tidal regime subgroup and included the subtidal, irregularly 
exposed, regularly flooded, and irregularly flooded water regimes. 
Permanent freshwater areas were those that were classified into 
the nontidal regime subgroup and had the permanently flooded, in-
termittently exposed, or semipermanently flooded water regimes. 
In addition to these sources of permanent freshwater, the drain-
age canals around SH100 were included because they had flowing 
water throughout most of the year. We extracted linear water fea-
tures from the National Wetlands Inventory that had the excavated 
tag and created a 3-m buffer around these using ArcMap 10.6 to 
capture the full width of the canals. The locations and sizes of the 
drainage canals were confirmed using published maps available from 
the Cameron County Drainage District (Cameron County Drainage 
District #1, 2010).

To identify agricultural and developed areas, we manually dig-
itized an ESRI orthoimage (year taken: 2018). Developed areas in-
cluded all buildings, wind turbines power stations, utility towers, and 
roads. We manually digitized buildings and used the TxDOT roads 
database (Texas Department of Transportation,  2020) to identify 
most roads in the study area. We digitized any other roads visible in 
the orthoimage manually. Most of these were new roads associated 
with construction of the San Roman Wind Farm and new housing 
developments. We created a 20-m buffer around all paved roads to 
encompass the full road area as well as the right of way and a 10-m 
buffer around all dirt roads. We confirmed agricultural and devel-
oped areas using orthoimagery taken in 2013 and 2016, the Cameron 
County Parcel information from 2019 (Cameron CAD, 2020), and by 
visits to sites.

We combined the water, agriculture, and developed layers 
with the classified vegetation map using the reclassify and raster 

Group Class Before During After
Total 
mortalities

Months of data 11 20 16 –

Target species Mammalia 89 140 114 343

Reptilia 28 4 16 48

Total 117 144 130 391

Nontarget species Aves 5a  50 101 156

Mammalia 36 12 25 73

Reptilia 67 19 40 126

Malacostraca 0 0 6 6

Unknown 1 0 1 2

Total 109 81 186 376

Grand total 226 225 316 767

aWhile birds were not surveyed in the before construction period, we did record a few, primarily in 
the surveys at the end of the period.

TA B L E  2   Total number of wildlife road 
mortalities by class before, during, and 
after construction of wildlife mitigation 
structures on State Highway 100, 
Cameron County, Texas. For a complete 
breakdown of wildlife road mortalities by 
species and time period, see Appendix A
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calculator tools in ArcMap 10.6 producing a final map with seven 
classes: saltwater, freshwater, developed, agriculture, forested, 
shrub, and open.

2.4 | Changes in wildlife road mortalities 
through time

We assessed changes in WRM cluster intensity through time by 
coupling local hot spot analysis and a time series analysis. We di-
vided our WRM location dataset into space time blocks that were 
100-m × 4 months. We used 100-m space blocks because fence gaps 
are highly localized features, and this block size best represented the 
spatial relationship between blocks and gaps. We tried smaller and 
larger block sizes, but the 100-m block performed the best. We used 
4-month time blocks (June–September, October–January, February–
May) because this block size fits both the construction periods and 
seasonal rainfall patterns and movement of wildlife in South Texas.

To assess changes in clustering through time, we ran a local hot 
spot analysis using ArcMap 10.6 on each time block (4-month pe-
riod) to determine the intensity of WRM clustering at each space 
block (100-m segment). The clustering measure we used relies on 
the relative number of WRMs in a time block so comparison of clus-
ter intensity should not be biased by survey frequency and vehicle 
speed, assuming that any detection biases associated with these 
factors are consistent along the entire survey transect. Next, we 
ran the Mann–Kendall test using the “mk.test” function in the trend 
package in R (Pohlert, 2018) on the z-score from the hot spot anal-
ysis, representing cluster intensity, to determine how clustering at 
each space block has changed through time. We applied the false 
discovery rate (FDR) correction for multiple samples and spatial 
autocorrelation when testing for statistical significance of the local 
hot spot analyses and Mann–Kendall test using the “p.adjust” func-
tion in R (R Development Core Team, 2019). The FDR correction is 
superior to more conservative corrections, such as the Bonferroni 
correction, for the identification of spatial and temporal clustering 
because it is less likely to miss a true cluster without identifying false 
clusters (Caldas de Castro & Singer, 2006). Because the FDR correc-
tion, like most multiple sample corrections, is sensitive to low sample 
sizes (Caldas de Castro & Singer, 2006), we assessed spatiotemporal 
trends in WRM clustering visually using both corrected significance 
and uncorrected significance.

2.5 | Impact of fence gaps on wildlife road mortality 
cluster intensity

We also tested how the presence of gaps in the fence influenced 
the intensity of WRM clusters. We were interested in comparing 
cluster intensity in the three construction periods, instead of time 
blocks, so we ran local hot spot analysis on each of the three con-
struction periods (before, during, and after) to create a comparable 
measure of WRM clustering among the three periods. We measured 

the distance from each space block to three different types of fence 
gaps (gates, wildlife guards, and wing walls) and recorded whether 
there was continuous fencing within each space block. In space 
blocks at the edges of the mitigation area, fencing was determined 
by whether or not the majority of the block had fencing. Distances 
to each fence gap type and fence presence were highly correlated to 
each other (r = 0.72–0.88) so we performed a principal components 
analysis (PCA) using the “prcomp” function in R to develop an index 
representing distance to fence gaps. The first principal components 
(PC) axis, hereafter fence gap index, explained 85% of the variation 
in distance to fence gaps, so it was the only axis used in the regres-
sion. Positive values of the first axis represented locations that were 
closer to gaps and unfenced areas (Figure 2).

To assess how local land cover was related to clustering intensity, 
we created 100-m buffers around each space block. We performed 
this analysis at the local scale because WRM risk has been shown 
to be associated with the presence of specific habitat features such 
as freshwater sources, access to roads, or movement corridors 
(Červinka et al., 2015; Grilo et al., 2016), and we expected that this 
distance would be small enough to assess these local scale effects. 
Additionally, at larger spatial scales the influence of fence gaps is 
overshadowed by larger scale landscape effects such as habitat type. 
We calculated the proportion of each cover type within the buffer 
using an iterative version of the tabulate area tool in ArcMap 10.6.

We conducted a generalized linear regression with a Gaussian 
error distribution to assess how cluster intensity was related to 
fence gap index, the proportions of forested, shrub, open, agricul-
ture, developed, and freshwater, and the interactions between the 
fence gap index and land cover variables. No saltwater was located 
within any of the buffers. We did not include distance to wildlife 
crossing in the final models because the variable was never sig-
nificant and did not improve model fit. While road characteristics 
such as traffic volume, road size and type, and speed limit may also 
impact WRMs (Clevenger et al., 2001; Grilo et al., 2015), the vari-
ations in these characteristics were minor along SH100, so they 
were excluded.

We used the MuMIn package in R to perform AICc model selec-
tion and model averaging to model the relationship between cluster 
intensity and fence gap index and land cover (Barton, 2013; Burnham 
& Anderson, 2002). The relevant main effects were always included 
in models containing interactions. Models that were within two 
ΔAICc values of the best model were used for averaging. We calcu-
lated the McFadden pseudo-R2 values for individual models included 
in the averaged model using the pscl package in R (Jackman, 2012).

3  | RESULTS

3.1 | Change in wildlife road mortalities through 
time

In total, we surveyed 3,360  km of road and identified 391 target 
species WRMs (13–44 per time block) and 376 nontarget WRMs 
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(10–60) (Table 2). Most target species WRMs were mammals, with 
Virginia opossum (Didelphis virginiana), eastern cottontail (Sylvilagus 
floridanus), and northern raccoon (Procyon lotor) making up the major-
ity of WRMs throughout all time blocks (Appendix A). In the before 
construction period, there were 5.3 WRMs/survey day, 0.9 WRMs/
survey day in the during construction period, and 2.0 WRMs/survey 
day in the after construction period (Figure  3). There was greater 
variation in WRMs/survey day in the before construction period 
when only two surveys were conducted per month than in either 
of the other periods when more surveys were conducted (Figure 3). 
Visually, the majority of WRMs occurred on the western side of the 
survey transect, an area with most of the wildlife crossings and fence 
gaps (Figure 4).

We identified hot spots in all time blocks, although the major-
ity of these were not significant after applying the FDR correction 
(33 space time blocks out of a possible 1963 space time blocks; 
Figure 5). The majority of hot spots occurred on the western side 
of the survey transect and in similar locations as most of the WRMs. 
Additionally, the Mann–Kendall trend test revealed several increas-
ing and decreasing trends in WRM hot spot intensity; however, none 
of these were statistically significant after applying the FDR correc-
tion (Figure 6).

3.2 | Impacts of fence gaps on mortality trends

The PCA of distance to fence gaps indicated that approximately 85% of 
the variation among fence gap types was explained along the first PC 
axis (PC1), 8.0% on the second axis, 4.1% on the third, and 2.5% on the 
fourth (Figure 2). Distance to gates, wildlife guards, and wing walls were 
negatively correlated with PC1 (r = −0.96, −0.93, −0.93 respectively), 
and fencing was positively correlated with PC1 (r = 0.88; Figure 2).

Seven main effects and six interactions were included in the global 
model, giving a total of 793 possible models. The number of models in-
cluded in the averaged model ranged from 3 (before construction) to 19 
(during construction; Table 3). The range of McFadden pseudo-R2 values 
varied from 0.216–0.222 (after construction) to 0.329–0.333 (during 
construction). Six main effects and four interactions were included in 
the averaged model for the before construction period, all main effects 
and interactions were included in the averaged model for the during 
construction period, and six main effects and three interactions were in-
cluded in the averaged model for the after construction period (Table 3).

Fence gap index had a significant negative relationship with in-
tensity in the before construction period (slope = −1.50, p < .001) and 
during construction period (slope = −0.46, p < .001; Table 4). Forest 
proportion had a significant negative relationship with intensity in 

F I G U R E  2   Biplot showing the 
correlation between the first two principal 
component axes and distance to wildlife 
guard (WG Dist), distance to wing wall 
(WW Dist), distance to gate (Gate Dist), 
and fence presence (Fencing) from a 
100-m road segment on State Highway 
100, Cameron County, Texas (left), and 
a scree plot showing the proportion of 
variance explained along each principal 
components axis (right)

F I G U R E  3   Total number of wildlife 
road mortalities per time block normalized 
by number of survey days along State 
Highway 100, Cameron County, Texas. 
Wildlife road mortalities shown include 
target species (mammals larger than 
rodents, turtles, and tortoises) and all 
species combined (target plus nontarget 
species). Vertical lines delineate the 
periods before, during, and after the 
construction of wildlife mitigation 
structures
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the after construction period (slope = −6.86, p < .001). Shrub pro-
portion had a significant positive relationship with intensity in the 
during construction (slope = 6.52, p = .003) and after construction 
periods (slope = 12.63, p < .001). Open proportion had a significant 
positive relationship with intensity in the during construction period 
(slope  =  2.35, p  <  .001). Agriculture proportion had a significant 
positive relationship with intensity in the after construction period 
(slope = 6.54, p < .01).

In the before construction period, the relationship between 
fence gap index and intensity was affected by shrub proportion, 
open proportion, and developed proportion. At low levels of all three 
habitat variables, there was a strong, negative relationship between 
fence gap index and intensity, while at high proportions of the three 
habitat types, there was a weak positive relationship between fence 
gap index and intensity. In the during construction period, the rela-
tionship between fence gap index and intensity was strongly nega-
tive at low levels of forest proportion and strongly positive at high 

levels of forest proportion. In the after construction period, shrub 
proportion and forest proportion affected the relationship between 
fence gap index and intensity. At low levels of shrub proportion, 
there was a weak negative relationship while at high levels of shrub, 
there was a strong negative relationship between fence gap index 
and intensity. At low levels of forest proportion, there was a weak 
negative relationship between fence gap index and intensity, while 
at high levels of forest proportion, there was a strong positive rela-
tionship. Generally, relationships between intensity and habitat vari-
ables became weaker as fence gap index grew larger.

4  | DISCUSSION

Overall, we found that at a fine temporal scale, the intensity of WRM 
clusters increased or decreased in few locations after construction 
of the mitigation structures on SH100, but none of these changes 

F I G U R E  4   Number of wildlife road 
mortalities by space time block along 
State Highway 100 (SH100), Cameron 
County, Texas. SH100 was divided into 
151 100-m road segments and 13 time 
blocks, and each block was filled with the 
number of wildlife road mortalities during 
that period. The survey transect blocks 
represent road segments and increase 
from west to east. To better relate this 
to the study area map, the approximate 
locations of wildlife crossings and fence 
ends are also indicated by vertical lines 
and the construction periods are indicated 
by horizontal lines

F I G U R E  5   Heatmap of wildlife 
road mortality hot spots along State 
Highway 100, Cameron County, Texas. 
Statistically significant hot spots are those 
that were significant after applying the 
false discovery rate correction, while 
nonsignificant hot spots were those 
that were only significant without the 
correction. The survey transect blocks 
represent road segments and increase 
from west to east. To better relate this 
to the study area map, the approximate 
locations of wildlife crossings and fence 
ends are also indicated by vertical lines 
and the construction periods are indicated 
by horizontal lines
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were significant after applying the FDR correction. Interestingly, 
the fence gap index showed a negative relationship with intensity 
in all three construction periods, although this effect was only sig-
nificant in the before and during construction periods. Perhaps 
unsurprisingly, as forest proportion increased, WRM cluster inten-
sity increased when closer to fence gaps in the during- and after 
construction periods. Generally, our two analyses agreed, indicat-
ing that, as of 1.5 years after construction of mitigation structures 
on SH100, WRM intensity has locally increased. However, although 
these locations were near fence gaps, they were not directly at fence 
gap locations. While intensity did increase in some locations, only 
one of these locations was associated with a statistically significant 
hot spot, indicating that WRMs are decreasing overall along SH100. 
Thus, with more time, we may expect to see additional decreasing 
trends in WRM clustering across most of the study area. Previous 
studies have shown that it may take years for wildlife to regularly use 
wildlife crossings (Clevenger & Waltho, 2005). Many of the wildlife 
crossings on SH100 occur near fence gaps, so as wildlife become fa-
miliar with wildlife crossings, we may see fewer animals attempting 
to cross on the road surface and fewer WRMs as a result.

We can draw several conclusions from these analyses. First, 
there appeared to be a geographical disparity between WRM 
clusters along the length of the transect. Second, when access to 
the highway is limited, habitat strongly affected how WRMs were 

related to distance to fence gaps. Finally, conducting local hot spot 
analysis at fine spatial and temporal scales can provide a unique pic-
ture of how WRM patterns change over time.

4.1 | Wildlife road mortality distribution 
along SH100

As expected, WRMs/survey day decreased after construction of 
mitigation structures indicating that the mitigation structures are 
working to reduce WRMs on SH100. Most WRMs occurred on the 
western end of the survey transect, an area mostly consisting of 
agriculture and thornscrub habitat, with fewer WRMs occurring in 
areas with more open vegetation on the eastern side of the survey 
transect. One possible explanation for this is that there were fewer 
animals living around the eastern end of the survey transect. This 
area was made up primarily of oxeye daisy prairie, cordgrass prairie, 
and salt marsh (Elliott et al., 2014) which tended to have fewer spe-
cies and fewer individuals than forested habitats in Cameron County 
(Yamashita, 2020). The western side of the transect was primarily 
agricultural and forested habitat, and both land cover types have 
been shown to be associated with greater WRM rates (Ascensão 
et  al.,  2017; Puglisi et  al.,  1974; Smith-Patten & Patten,  2008). 
Therefore, while we could not measure this, it is possible that WRM 

F I G U R E  6   Trends in the intensity of wildlife road mortality (WRM) clusters along State Highway 100, Cameron County, Texas, from 
the Mann–Kendall trend test. Decreasing trends indicate that the intensity of WRM clusters decreased over time while increasing trends 
indicate that intensity of WRM clusters increased over time. No trends were statistically significant (at α = 0.05) after the false discovery 
rate (FDR) correction was applied
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rates may be similar along the length of the survey transect. It is also 
likely that wildlife living in disturbed habitats (such as those near ag-
ricultural lands) may be more willing to use road rights of way than 
individuals living in more natural habitats, thus increasing their risk 
of vehicle caused mortality (Forman et al., 2003).

In 2018 and 2019, there were favorable environmental condi-
tions for population growth in many wildlife species in the study 
area, a factor that may have contributed to the limited changes seen 
in WRM clustering. Wildlife mitigation structures such as exclusion-
ary fencing and wildlife crossings have been shown to increase wild-
life populations living around roads (van der Ree et al., 2015), so the 
combination of favorable growth conditions and mitigation struc-
tures may have led to a decrease in the per capita WRM rate. Caceres 
(2011) showed that, in Brazil, abundance was the most significant 
predictor of WRM counts, so natural increases in animal abundance 
around SH100 may have led to increases in WRMs after construc-
tion. Therefore, limited changes seen in WRM cluster intensity may 
reflect increased wildlife populations rather than an ineffectiveness 
of mitigation structures. If wildlife populations are increasing around 

SH100 and wildlife crossings become more effective with time, then 
we would expect the decreasing trend in WRMs to continue.

Another contributing factor may be that there were more fence 
gaps on the western side of the survey transect than the eastern 
side. While this does not explain the high numbers of WRMs be-
fore or during construction, it may have contributed to the lack of 
decrease in WRMs seen after construction. The western side of the 
transect had 12 of 18 wildlife guards, 10 of 16 gates, and two of 
three wing walls offering multiple places for wildlife to access the 
road. The effects of different types of fence gaps were not examined 
in the present study, so it is possible that WRM cluster intensity may 
be higher around more permeable gaps such as wing walls or wildlife 
guards. Therefore, these mitigated fence gaps may not be as effec-
tive as gates at reducing wildlife access to the road.

4.2 | Fence gaps and wildlife road mortality

Interestingly, our regression models indicated that WRM intensity 
increased with increasing distance to fence gaps across all three 
construction periods. However, we found statistically significant 
interactions with different habitat variables in all three construc-
tion periods which may have affected the identified relationship. 
Generally, WRM cluster intensity increased when nearer to (future) 
fence gaps when in areas with a high proportion of natural habitat 
(forested, shrubs, open), while intensity decreased when in areas of 
low natural habitat. Forested habitat had the strongest effect on the 
relationship between fence gaps, especially in the during- and after 
construction periods. Intensity of WRM clusters increased with in-
creasing distance from fence gaps when forest proportion was low, 
and intensity increased with decreasing distance from fence gaps 
when forest proportion was high.

While we did document increases in WRM cluster intensity over 
time in some locations, we did not see evidence that fencing funneled 
animals onto SH100. Our documented locations of increased WRM 
cluster intensity did not occur at fence gaps; rather, they occurred 
200–300 m from a gap. It is possible either that animals moved from 
fence gaps toward those locations while in the right of way before 
getting hit or that animals were climbing over or digging underneath 
the fence to get to the road at those locations. Cserkész et al. (2013) 
examined how WRM counts on a fenced highway were affected by 
distance to highway interchanges and demonstrated fencing fun-
neled animals toward fence gaps. Fence gaps along SH100 occurred 
at high rates (3.1 gaps/km of highway) compared with the Cserkész 
et al. (2013) paper (0.12 gaps/km), thus creating more access points 
and diffusing WRMs across several kilometers of road instead of a 
single access point.

Our study indicated that there was limited change in WRM 
clustering with construction and that fence gaps were import-
ant, but not always significant, predictors of intensity in all three 
construction periods, thus indicating that fence gaps, especially in 
unforested areas, may be located in places previously used as wild-
life travel corridors. In the after construction period, fence gaps 

TA B L E  3   Summary of the averaged regression models for the 
effect of land cover and fence gaps on the intensity of wildlife road 
mortality clustering along State Highway 100, Cameron County, 
Texas

Time period

Before During After

Models Included 3 19 6

(Intercept) NS − −

Fence Gap Index − − NS

Forested NS NS −

Shrub NS + +

Open NS + NS

Agriculture NS NS +

Developed NS NS NS

Freshwater NS NS

Fence Gap × Forested + +

Fence Gap × Shrub + NS −

Fence Gap × Open + NS

Fence Gap × Agriculture NS NS

Fence Gap × Developed + NS NS

Fence Gap × Freshwater NS

Pseudo-R2 Range 0.248–
0.255

0.329–
0.333

0.216–
0.222

Note: The factors included in the model were the distance to fence 
gaps principal components axis (Fence Gap Index), open vegetation 
(Open), shrubs (Shrub), forested, developed, agriculture, freshwater 
(Freshwater), and interactions between fence gap index and the land 
cover variables. The “models included” are the number of models used 
to compute the model-averaged estimates and p values. Significance of 
a factor is indicated by a “+” (positive effect) or a “−” (negative effect). 
The pseudo-R2 range is the range of McFadden pseudo-R2 values for 
each model included in the averaged model.
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probably represented known access points and likely had the high-
est chance of an animal crossing, similar to what McCollister and 
van Manen (2010) found after construction of wildlife mitigation 
structures in North Carolina, USA. Fence gaps represent a nar-
row access point, so assessing how they impact WRMs requires 
a local scale analysis (Červinka et al., 2015). At broader scales, the 
influence of access points to the highway may become masked by 
landscape-level effects such as land cover and the presence of 
freshwater (Yamashita, 2020).

Finally, this study was conducted less than 2 years after the com-
pletion of mitigation structure construction, and it has been shown 
that wildlife may take several years to adjust to the presence of 
wildlife crossings (Clevenger, 2005; Clevenger & Waltho, 2005). It is 
possible that animals along SH100 were still in the “learning” phase 
and WRMs, especially around wildlife crossings, may begin to de-
crease as time passes. There is some visual evidence of this already 
with only three WRMs occurring within 200 m of four of the five 
wildlife crossings in the final two time blocks (8 months; Figure 4), 

Time period Variable Estimate
Adjusted 
SE Z score p value

Before (Intercept) −0.125 0.344 0.364 .716

Fence Gap Index −1.497 0.179 8.368 .000

Agriculture −5.492 11.900 0.462 .644

Developed −1.053 0.980 1.075 .282

Open −0.299 0.497 0.603 .547

Shrub 0.124 1.546 0.080 .936

Fence Gap × Agriculture 10.924 11.470 0.952 .341

Fence Gap × Developed 2.670 0.414 6.458 .000

Fence Gap × Open 1.916 0.336 5.702 .000

Fence Gap × Shrub 4.350 1.048 4.151 .000

Forested 0.166 0.610 0.272 .786

During (Intercept) −1.931 0.311 6.208 .000

Fence Gap Index −0.456 0.117 3.894 .000

Agriculture −8.281 11.569 0.716 .474

Forested 1.533 1.670 0.918 .359

Open 2.345 0.504 4.652 .000

Shrub 6.516 2.222 2.933 .003

Fence Gap × Agriculture 14.936 11.149 1.340 .180

Fence Gap × Forested 4.667 1.324 3.523 .000

Fence Gap × Shrub 1.601 1.590 1.007 .314

Developed 0.489 0.833 0.587 .557

Fence Gap × Open 0.256 0.321 0.799 .424

Freshwater −3.687 11.073 0.333 .739

Fence Gap × Freshwater 1.921 10.058 0.191 .849

Fence Gap × Developed 0.060 0.213 0.282 .778

After (Intercept) −0.721 0.345 2.091 .037

Fence Gap Index −0.201 0.179 1.124 .261

Agriculture 6.540 1.244 5.259 .000

Developed 0.421 0.871 0.484 .629

Forested −6.862 1.757 3.906 .000

Freshwater 14.029 12.871 1.090 .276

Open −0.632 0.612 1.031 .303

Shrub 12.632 2.091 6.040 .000

Fence Gap × Developed 0.550 0.539 1.020 .308

Fence Gap × Forested 5.100 1.390 3.669 .000

Fence Gap × Shrub −3.806 1.463 2.601 .009

Note: Significant effects are bolded.

TA B L E  4   Full model summaries 
for the averaged regression model 
assessing the effects on wildlife road 
mortality clustering on State Highway 
100, Cameron County, Texas, for before, 
during, and after construction periods 
showing the estimated effect, standard 
error, Z score, and p value
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indicating that animals may be preferentially using wildlife crossings 
instead of the roadway. However, it is unclear whether this was a 
result of learning or chance. Around one wildlife crossing (crossing 
2), the large number of fence gaps near the crossing may increase the 
amount of time it takes wildlife to learn to use the crossing.

4.3 | Using wildlife road mortality clusters to 
examine road mortality patterns

Using a location-based clustering method to examine patterns of 
WRMs allowed us to determine the statistical significance of visu-
ally identified WRM hot spots. Knowing whether or not a cluster 
is significant can have important management implications because 
wildlife crossings can be expensive when they are built as a stand-
alone project (Huijser et al., 2009). Solely using counts of WRMs may 
miss important clustering of fewer WRMs which may benefit more 
from a wildlife crossing (Teixeira et  al.,  2017). The combination of 
hot spot analysis and time series analyses provides a framework for 
examining fine scale spatial and temporal patterns of WRMs, thus 
enabling assessment of how fine scale changes (i.e., wildlife mitiga-
tion structures) along a highway affect WRM patterns. This combi-
nation of hot spot and time series analyses can help determine how 
effective different mitigation structures are, an important question 
for managers and transportation agencies. Complementing this anal-
ysis with monitoring of wildlife mitigation structures using camera 
traps or another monitoring technique can allow managers to obtain 
a complete assessment of how wildlife mitigation structures benefit 
the animal community. Finally, hot spot analysis can provide useful 
visualizations of WRM data that can help display patterns hidden at 
larger scales. Generally, WRMs need to be examined at broad spatial 
and temporal scales due to sample size limitations. These analyses 
can miss important patterns occurring at finer scales (Levin, 1992). 
While local hot spot analysis likely has low power to detect changes 
in clustering due to low sample sizes in WRM datasets, it can pro-
vide useful representations of data that may elucidate previously un-
known patterns in WRM datasets. For example, it would have been 
impossible to see that WRMs appeared to be declining around four 
of the wildlife crossings without the visualizations produced by this 
analysis.

While local hot spot analysis provides several benefits, the anal-
ysis requires large sample sizes to detect clusters so it is important 
to balance sample size limitations of the WRM dataset with the min-
imum spatial and temporal resolutions required for the local hot spot 
analysis and Mann–Kendall test (Caldas de Castro & Singer, 2006; 
Grubesic et  al.,  2014). For analysis purposes, medium to large 
mammal WRM rates tend to be fairly low (Ascensão et  al.,  2017). 
Therefore, the power of local hot spot analysis may be too low to de-
tect significant WRM hot spots in medium to large mammals without 
very high WRMs or access to long-term datasets. However, spatial 
indices of WRM rates, such as intensity of clusters, are essential to 
comparing long-term WRM datasets where data collection and re-
searcher experience may change over time. These sources of bias 

are likely to be consistent along an entire survey transect (Collinson 
et  al.,  2014), so they would not affect clustering patterns derived 
from WRM counts.

We assumed that WRM clustering was not affected by survey 
frequency and vehicle speed, but both sources of bias likely affected 
overall detections of WRMs and may have contributed to the re-
duced number of WRMs detected in the after construction period. 
By examining cluster intensity instead of WRM numbers, we fo-
cused on the relative distribution of WRMs through time and having 
fewer WRMs overall is unlikely to have a significant impact on hot 
spot intensity. It is possible that WRMs may be easier to detect along 
some parts of the survey transect when driving slower or that some 
areas may have lower carcass persistence times. Therefore, we be-
lieve that, because the locations of WRMs changed little through 
time (Figure  4), survey frequency and vehicle speed likely did not 
affect detection probability along different sections of the transect 
although more research is needed into how highway properties in-
teract with vehicle speed and survey frequency to influence WRM 
detection probability.

The Mann–Kendall test requires a minimum of 10 time blocks to 
run (Harris et al., 2017; Hipel & Mcleod, 2005). To meet this require-
ment and maintain ecologically relevant time blocks, we divided 
WRMs into 4-month time blocks. This meant that the total num-
ber of WRMs used to identify clustering for each time block (range 
21–44) was likely too low to detect significant changes in clustering 
through time when applying a correction for multiple testing and 
spatial autocorrelation (Caldas de Castro & Singer, 2006; Grubesic 
et al., 2014). Therefore, an assessment of how sample size affects 
the power of local hot spot analysis will be required before this 
method can be applied more broadly.

5  | CONCLUSIONS

We used local hot spot analysis, time series analysis, and general-
ized linear regression to examine how the construction of wildlife 
mitigation structures on SH100 affected the intensity of WRM clus-
ters. While limited by the small sample sizes in each time block, our 
analysis provided a useful snapshot of how WRM spatial patterns 
change through time, so this technique should be limited to WRM 
datasets with long spatial and/or temporal scales. We recommend 
transportation managers conduct long-term WRM surveys, espe-
cially in areas where mitigation structures such as wildlife crossings 
are employed to document whether WRMs are reduced.

By combining the local hot spot analysis, time series analyses, 
and regression, we demonstrated that the construction of exclu-
sionary fencing and wildlife crossings reduced WRMs/survey day 
but did not significantly change spatial patterns of WRMs, possibly 
because fence gaps were located in places where WRM cluster in-
tensity was high before construction. Visual inspection of fine scale 
WRM patterns, available from the local hot spot analyses, revealed 
that WRMs may be decreasing around wildlife crossings on SH100, 
indicating that the wildlife crossings were placed appropriately and 



13316  |     YAMASHITA et al.

animals may be learning that wildlife crossings provide a safer pas-
sageway across roads than the road surface. Additionally, fence gaps 
in forested areas may facilitate increased WRM cluster intensity, so 
reducing the number of gaps and mitigating necessary gaps with 
more effective structures, such as gates, will likely help reduce WRM 
rates. Therefore, local hot spot analysis, coupled with time series and 
regression techniques, can provide useful insights into how changes 
in the roadway impact wildlife use of the road area.
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APPENDIX A

Total number of Wildlife Road Mortalities on State Highway 100 by Species in the Before-, During-, and After Construction Periods

TA B L E  A 1   Scientific names and counts of road mortalities in the before, during, and after construction periods for target species

Group Class Common name Scientific name Before During After Total

Target 
Species

Mammalia Virginia opossum Didelphis virginiana 31 21 29 81

Eastern cottontail Sylvilagus floridanus 11 30 27 68

Northern raccoon Procyon lotor 18 30 12 60

Coyote Canis latrans 3 12 6 21

Unknown skunk various 0 8 9 17

Domestic cat Felis catus 2 7 8 17

Nine-banded armadillo Dasypus novemcinctus 7 4 6 17

Domestic dog Canis familiaris 3 11 2 16

Black-tailed jackrabbit Lepus californicus 4 8 3 15

Unknown rabbit various 0 2 8 10

Unknown canid Canis ssp. 5 0 0 5

Bobcat Lynx rufus 1 2 1 4

Feral pig Sus scrofa 0 2 0 2

Javelina Pecari tajacu 2 0 0 2

White-tailed deer Odocoileus virginianus 0 2 0 2

Nilgai Boselaphus tragocamelus 0 1 1 2

Striped skunk Mephitis mephitis 0 0 2 2

Unknown felid various 1 0 0 1

Nutria Myocastor coypus 1 0 0 1

Mammalia Total 89 140 114 343

Reptilia Texas tortoise Gopherus berlandieri 8 4 5 17

Red-eared slider Trachemys scripta 8 0 6 14

Yellow mud turtle Kinosternon flavescnes 5 0 5 10

Unknown turtle various 6 0 1 7

Texas spiny softshell turtle Apalone spinifera 1 0 0 1

Reptilia Total 28 4 17 49

Target Species Total 117 144 131 392

Note: Target species include most mammals, turtles, and tortoises.
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TA B L E  A 2   Scientific names and counts of mortalities by species in the before, during, and after construction periods for nontarget 
species

Group Class Common name Scientific name Before During After Total

Nontarget 
Species

Aves Unknown bird various 1 22 47 70

Barn owl Tyto alba 0 7 12 19

Black-bellied whistling duck Dednrocygna autumnalis 0 0 11 11

Eastern meadowlark Sturnella magna 0 1 8 9

Northern mockingbird Mimus polyglottos 0 1 5 6

Northern bobwhite Colinus virginianus 1 3 1 5

American coot Fulica americana 0 5 0 5

Unknown duck various 2 0 1 3

Osprey Pandion haliaetus 0 1 1 2

Long-billed thrasher Toxostoma longirostre 0 0 2 2

Greater roadrunner Geococcyx californianus 0 1 1 2

Seagull various 0 2 0 2

Green heron Butorides virescens 1 0 1 2

Western kingbird Tyrannus verticalis 0 1 1 2

Yellow-billed cuckoo Coccyzus americanus 0 1 1 2

Night hawk Chordeiles ssp. 0 1 1 2

Killdeer Charadrius vociferus 0 1 0 1

Black vulture Coragyps atratus 0 0 1 1

Unknown goose various 0 0 1 1

Common pauraque Nyctidromus albicollis 0 0 1 1

Harris hawk Parabuteo unicinctus 0 1 0 1

Northern cardinal Cardinalis cardinalis 0 0 1 1

Unknown bird- small various 0 0 1 1

Common starling Sturnus vulgaris 0 0 1 1

Mourning dove Zenaida macroura 0 0 1 1

Laughing gull Leucophaeus atricilla 0 0 1 1

Rock dove Columba livia 0 1 0 1

Loggerhead shrike Lanius ludovicianus 0 1 0 1

Aves Total 5 50 101 156

Nontarget 
Species

Mammalia Unknown mammal various 20 7 5 32

Unknown rat various 2 5 13 20

Unknown rodent various 0 0 5 5

Muridae rat various 5 0 0 5

Long-tailed weasel Mustela frenata 4 0 1 5

Cotton rat Sigmodon ssp. 2 0 0 2

Cricetidae rat various 2 0 0 2

Hispid cotton rat Sigmodon hispidus 1 0 0 1

Mexican ground squirrel Spermophilus mexicanus 0 0 1 1

Mammalia Total 36 12 25 73

Reptilia Western diamondback 
rattlesnake

Crotalus atrox 22 12 13 47

Unknown snake various 20 5 15 40

Great plains rat snake Elaphe emoryi 12 0 2 14

(Continues)
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Group Class Common name Scientific name Before During After Total

Western ribbon snake Thamnophis proximus 7 0 3 10

Texas indigo snake Drymarchon melanurus erebennus 1 0 3 4

Western coachwhip Masticophis flagellum testaceus 1 0 2 3

Mexican racer Coluber constrictor oaxaca 2 1 0 3

Rat snake Pantherophis ssp. 0 1 0 1

Unknown reptile various 1 0 0 1

Masticophis ssp. Masticophis ssp. 0 0 1 1

Texas patchnose snake Salvadora grahamiae 1 0 0 1

Reptilia Total 67 19 39 125

Amphibia Amphibia Total 0 0 13 13

Malacostraca Malacostraca Total 0 0 6 6

Unknown Unknown Total 1 0 1 2

Nontarget Species Total 109 81 185 375

Grand Total 226 225 316 767

Note: These primarily included birds, small mammals, and snakes.

TA B L E  A 2   (Continued)


