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Abstract
Background: In many research areas it is necessary to find differences between treatment groups
with several variables. For example, studies of microarray data seek to find a significant difference
in location parameters from zero or one for ratios thereof for each variable. However, in some
studies a significant deviation of the difference in locations from zero (or 1 in terms of the ratio) is
biologically meaningless. A relevant difference or ratio is sought in such cases.

Results: This article addresses the use of relevance-shifted tests on ratios for a multivariate parallel
two-sample group design. Two empirical procedures are proposed which embed the relevance-
shifted test on ratios. As both procedures test a hypothesis for each variable, the resulting multiple
testing problem has to be considered. Hence, the procedures include a multiplicity correction.
Both procedures are extensions of available procedures for point null hypotheses achieving exact
control of the familywise error rate. Whereas the shift of the null hypothesis alone would give
straight-forward solutions, the problems that are the reason for the empirical considerations
discussed here arise by the fact that the shift is considered in both directions and the whole
parameter space in between these two limits has to be accepted as null hypothesis.

Conclusion: The first algorithm to be discussed uses a permutation algorithm, and is appropriate
for designs with a moderately large number of observations. However, many experiments have
limited sample sizes. Then the second procedure might be more appropriate, where multiplicity is
corrected according to a concept of data-driven order of hypotheses.

Background
Nowadays, high-dimensional multivariate data are used
in agriculture, biology and medicine. A recent example are
microarray data, where two groups, for example normal
and diseased tissue, are compared using tens of thousands
of genes. The aim is to identify those genes with relevant

over- or under-expression. Therefore, only two-sided tests
are considered here. Nevertheless, directional one-sided
relevance-shifted versions are also available [1]. Distin-
guishing between formal statistical significance and bio-
logical relevance is a frequently discussed issue [2]. One
reason is that the commonly used point-zero null-hypoth-
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esis H0 : µ2 - µ1 = 0 is often biologically inappropriate,
because depending on sample size and variance, biologi-
cally irrelevant small differences can be marked as statisti-
cally different. Therefore, the relevance-shifted null-
hypothesis H0 : µ2 - µ1 - δ = 0 should be used. Hereby, the
problem of the choice of δ appears [3]. Instead of absolute
relevance margins, the use of relative margins may be
more appropriate in some applications. For example, a
compound will be declared potentially mutagenic in the
Ames mutagenicity assay if the number of revertants is at
least double of those in the control; this is the so-called
two-fold rule [4]. Another example is the characterization
of the anti-neoplastic activity of a new compound by its
ratio of the mean tumor volume under treatment to that
of the control [5]. For microarray experiments, a specific
fold-change may be of interest as well. For example, Guo
et al. [6] searched genes which were significant to the
unadjusted α of 5% and have a fold change greater than
1.5. To analyze the relevance-shifted hypothesis in gene
expression data, Li and Wong [7] propose using a confi-
dence interval to estimate the fold change. However, this
confidence interval requires the normality assumption
and does not account for multiplicity. Both problems will
be addressed in the subsequent proposals.

The problem occurs with the validation of normal
assumptions for high dimensional data with small sample
sizes. It seems to be hopeless to empirically characterize
the distribution as multivariate normal. Hence nonpara-
metric methods may be advantageous. In the current liter-
ature, examples for the analysis of multivariate studies
using nonparametric methods can be found [8,9]. The
present article focusses on nonparametric approaches as
well. Relevance-shifted Wilcoxon rank statistics are used
as basic test statistics in both approaches considered in
this paper. Parametric test procedures for relevance-
shifted hypotheses can be found in Frömke [1].

Since a local decision is provided for each of the thou-
sands of genes, the resulting multiplicity problem has to
be considered, too. Otherwise, the probability to falsely
reject a null hypothesis increases dramatically. To over-
come the problem of multiplicity, several approaches are
discussed in the literature. Aside from the classical family-
wise error rate (FWER) – the probability to reject at least
one true null hypothesis – the false discovery rate (FDR)
introduced by Benjamini and Hochberg [10] is often used
[11], giving the expected proportion of falsely rejected
hypotheses among the set of all rejected hypotheses.
According to the definitions, the FDR criterion usually
delivers more 'significant' genes because – in contrast to
the FWER – a small rate of falsely positive results is toler-
ated. Therefore, the main arguments in favour of the FDR
(or against the FWER) are the low detection rate of the
FWER procedures for high-dimensional data combined

with a still sufficient type I error control for screening pur-
poses. Nevertheless, many authors emphasize that the
FWER criterion is necessary for confirmatory purposes
[12-16]. Also the argument of the larger power of FDR
procedures has to be qualified. As pointed out by Dudoit
et al. [15] and Speed [16], the present FDR controlling
procedures are usually based on independence assump-
tions between the single test statistics which are not
acceptable in gene expression data (particularly, the Ben-
jamini-Hochberg procedure) or they are corrected for that
problem and are then computer intensive and/or so much
reduced in their power that the advantage with respect to
the FWER procedures is more or less lost. Here, we focus
on two FWER controlling procedures (in the strong sense,
i.e., keeping the FWER under any constellation of true and
false local hypotheses) and we will demonstrate that they
may be well applied also in high-dimensional data.

The simplest method to correct for multiplicity in both
parametric and nonparametric settings is the α-adjust-
ment of Bonferroni. Here the unadjusted p-values of the
individual tests are compared with α/m, where m denotes
the dimensionality of the data, that is, the number of
observed variables. The modification by Holm [17] uses
the threshold α/m only for the comparison with the small-
est of the m individual p-values. The next smallest are
compared to α/(m - 1), α/(m - 2), ..., α/1. If one of the p-
values does not fall below the corresponding threshold,
then the statistical procedure will stop and this null
hypothesis as well as all succeeding ones will be accepted.
However, even for low-dimensional data, the Bonferroni-
type methods are known to be conservative. Furthermore,
the potential improvement using the Holm method is
minimal in high-dimensional data with only a small por-
tion of variables with effects. One reason for the conserv-
ativeness is that the Bonferroni correction does not utilize
the correlation structure of the variables. In rank tests with
their discrete distributions, we have the additional prob-
lem that the procedures usually cannot fully exploit the
prespecified error level but have to switch to the next pos-
sible p-value less than or equal to the given threshold. Par-
ticularly for very small sample sizes and a high dimension
m, it might thus even be impossible to reject the null
hypothesis using Bonferroni type methods. Both proce-
dures extended in this paper utilize the covariance struc-
ture as they are based on permutations of the whole
multivariate observation vectors although the technical
procedure does not show that explicitly.

In the following text the two original procedures, which
will be extended in this article, are briefly presented. The
first procedure is the well-known permutation algorithm
of Westfall and Young [18], as proposed by Dudoit et al.
[19] for the analysis of microarray data. Just as the Bonfer-
roni-Holm correction, this method is a step-down proce-
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dure. However, it consists of a permutation algorithm to
compute the null distribution of the p-values. By permut-
ing the variables, the algorithm takes their dependence
structure into account. Given certain data conditions,
above all not too small samples, this algorithm is proba-
bly the most powerful testing procedure for high-dimen-
sional data in the current literature.

The second procedure is discussed in Kropf et al. [20]. This
procedure belongs to the class of procedures with a data-
driven order of hypotheses. These procedures consist of
sequential testing of the variables at the unadjusted error
level until the first nonsignificant result occurs. The order
of testing is derived from the data themselves by means of
selector statistics calculated for each variable (variables
sorted for decreasing values of the selector statistics). The
original procedure, which will be extended in this paper,
is as follows:

1. For each of the m variables separately, compute the
interquartile range using the combined data of the two
samples. Order the m variables for decreasing values of
their empirical interquartile ranges. The interquartile
ranges serve as selector statistics.

2. Calculate the two-sample Wilcoxon test at the unad-
justed level α in this order as long as significance is
attained. Stop at the first nonsignificant result.

Assuming that all variables are measured on an equal scale
and have similar variability within group, a large variabil-
ity over the pooled samples for some of the variables
could be a hint for large group differences. Therefore, the
interquartile ranges of the pooled samples for each varia-
ble are used as selector statistics. The proof for the exact
control of the familywise error rate utilizes, roughly speak-
ing, the independence of rank and order statistics. If –
contrary to the assumption – the variables have heteroge-
neous variability, then the procedure looses power. For
example, Frömke [1] presents simulation studies, where
the standard deviations vary by factor of 1.5 and the pro-
cedure looses approximately 10% power. The loss in
power increases with increasing variability of standard
deviations. However, the procedure controls the type I
error in any case. A parametric counterpart of this proce-
dure based on the theory of spherical distributions can be
found in Kropf and Läuter [21].

Both of these nonparametric procedures have been shown
to achieve the exact control of the familywise error rate
under a point null hypothesis in the strong sense, where
the observation vectors

belong to identical multivariate continuous distributions

In this paper, we are interested in a slightly different situ-
ation. The model (1) is additionally restricted by the
assumption that the independent and continuous vectors
x1k and x2k only have positive components and that their
distribution functions are equal except for a different scal-
ing characterized by a vector θ = (θ1, ..., θm)', that is

where the operator '/' indicates a componentwise division
of vectors. Thus, θj denotes the true ratio of the treatment
medians of variable j.

For each of the m variables, it shall be tested, whether the
two-sided null hypothesis

H0,j : θlower ≤ θj ≤ θupper

can be rejected in favor of the alternative

H1,j : θj <θlower or θj > θupper,

where θlower ≤ 1 and θupper ≥ 1 denote the lower and the
upper relevance threshold.

In both procedures considered here, this multiplicative
model (3) is traced back to an additive one by a variable-
wise logarithmic transformation y = ln(x). So it changes to

with

δ = (δ1, ..., δm)' and δj = ln(θj) (j = 1, ..., m)

and the null hypotheses are correspondingly transformed
into

and the alternative hypotheses are given as

where δlower = ln(θlower) ≤ 0 and δupper = ln(θupper) ≥ 0 denote
the lower and the upper relevance threshold. In practice,
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the choice of δlower and δupper is dependent on the experi-
mental question. For example, in microarray experiments
the thresholds can be set to -δlower = δupper = 0.4055, 0.6931
or 0.7885. This is equivalent to testing for a fold-change in
gene expression of 1.5, 2 or 2.2 [6,22,23]. So an obvious
approach would be to use the above mentioned two pro-
cedures after the logarithmic transformation and an addi-
tional shift by the relevance thresholds. However, this is
associated with some problems. The shifted one-sided
tests control the familywise error rate on the threshold
which was used for shifting. But here we have two one-
sided tests and two relevance thresholds, the lower and
the upper one, and it is necessary to find some combina-
tion rule. It is likely that the second threshold (which is
not used for the shift at that moment) is far enough from
the first one so that a type I error caused by the one-sided
test at the opposite border of the null space is unlikely. But
the whole parameter space between both thresholds
belongs to the null hypothesis as well and there is no
proof that the two basic procedures control the type I error
or are conservative under these conditions though one
would expect a monotone behaviour of the rejection
probability for increasing deviations from the exact null
point. Finally, a correction is necessary for the selector sta-
tistic in the second procedure with data dependent
sequential testing. Otherwise, variables with no shift or a
only small one (but within the tolerance region) could
have larger expected values for the selector than variables
under the alternative hypothesis. The procedure would
then loose its power by stopping prematurely.

The modifications of the exact procedures for point null
hypotheses described in the following section have been
adapted to these problems in an empirical manner. No
exact proof exists for the control of the familywise error
rate. Therefore, results of simulation experiments are pre-
sented after the detailed description of the modified pro-
cedures and their demonstration in examples. An R
package for the methods is available [24].

Results and Discussion
Algorithm
Relevance-shifted permutation algorithm
We will first introduce a relevance-shifted modification of
the permutation algorithm for step-down minP adjusted
p-values of Westfall and Young [18] for point null hypoth-
eses. More strictly speaking, we are starting from a pro-
posal from Ge et al. [25] which delivers the same results
as that of Westfall and Young but is less time consuming.
Whereas the original algorithm requires two permutation
runs, one for the calculation of raw p-values and a second
one for multiplicity adjusting, Ge et al. [25] share the per-
mutations of both runs.

In order to detect the deviation from the null hypothesis
at both relevance thresholds, two passes are needed for
each variable, one for relevant decrease and another one
for relevant increase. Finally, out of the two one-sided p-
values, a two-sided one is computed for each variable. The
passes themselves consist of two parts. The relevance-
shifted permuted unadjusted p-values from Wilcoxon's
rank sum test are computed first. Then the unadjusted p-
values are corrected for multiplicity. As mentioned above,
we will use the log transformed observations and rele-
vance thresholds.

The proposed algorithm is given here in detail for the test
on decrease:

Part 1: Permutation algorithm for raw p-values

• Fix the thresholds δlower = ln(θlower) and δupper = ln(θupper).

• Create the pseudosample vectors '

with  = y1kj + δlower and  = y2kj (i = 1, 2; k = 1, ..., ni;

j = 1, ..., m).

• In the bth permutation step, b = 0, ..., B (b = 0 corresponds
to unpermuted data) do:

- For each variable, compute the one-sided Wilcoxon rank
sum statistic W1b, ..., Wmb for the pseudosamples:

where ranks are computed over both groups and r2jkb
denotes the kth ranked observation of the second group
and the jth variable with the pseudosamples to test for
decreases.

- Permute the n1 + n2 = N pseudosample vectors  (i = 1,

2; k = 1, ..., ni).

• Calculate the one-sided raw p-values for hypothesis H0,j
: δj ≥ δlower as

Part 2: Permutation algorithm for step-down minP
adjusted p-values
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• Re-number the m variables such that

• Prepare three matrices for further computation:

The matrix W of size m × B includes the test statistics from
the B permutation steps from Part 1 (renumbered and
without the values for b = 0)

Two empty matrices P = (pjb) of size m × B and Q = (qjb) of
size (m + 1) × B are filled successively from the bottom to
the top in the course of the following algorithm.

• Set qm+1,b = 1 for b = 1, ..., B.

• For j = m, m - 1, ..., 1 do:

Compute the B one-sided raw p-values pj1, ..., pjB for
hypothesis H0,j (row j in matrix P) as

which is in row j of matrix W for each Wjb the proportion
of test statistics Wjb' equal to or smaller than Wjb.

• Determine the jth row of matrix Q as the successive
minima

qjb = min(qj+1,b, pjb), b = 1, ..., B.

Compute the adjusted p-value for hypothesis H0,j : θj ≥
θlower:

• Enforce monotonicity of :

• Revoke the renumbering of the variables in the begin-
ning of Part 2.

For the test on increase, repeat the entire procedure with the

pseudosample vectors ', where  =

y1kj + δupper and  = y2kj (j = 1, ..., m) and the rank sum

test on increase to achieve the one-sided multiplicity

adjusted p-values on increase . Finally, the two-

sided adjusted p-values are given by

.

Procedure with a data-driven order of relevance-shifted hypotheses
An empirical extension for the nonparametric procedure
of Kropf et al. [20] for relevance-shifted hypotheses will
now be proposed:

• Select the two relevance thresholds δlower = ln(θlower) and
δupper = ln(θupper).

• Determine the pseudosample vectors

 with  = y1kj + δlower and  = y2kj

(i = 1, 2; k = 1, ..., ni; j = 1, ..., m) and calculate for each

variable the one-sided Wilcoxon rank sum statistic Wj,lower

=  (j = 1, ..., m), again using the ranks deter-

mined over the two combined pseudosamples,

• Replace δlower by δupper and repeat exactly the former step
to compute Wj,upper (j = 1, ..., m).

• Use the permutation algorithm described in the previ-
ous procedure or suitable tables to derive the correspond-
ing unadjusted one-sided p-values pj,lower and pj,upper,
respectively, for the variablewise Wilcoxon statistics.

• Compute the unadjusted two-sided p-values pj as pj =
min(2·pj,lower, 2·pj,upper) (j = 1, ..., m) for each variable.

• In order to prepare the determination of selector statis-
tics, calculate the sample medians for the jth (logarithmic

but not shifted) variable in sample 1 and 2,  and ,

respectively, and, once again, derive pseudosample values
by

(k = 1, ..., n1 or k = 1, ..., n2, respectively; j = 1, ..., m).
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• Compute a selector statistic for each variable as the inter-
quartile range IRQj (difference of percentiles 75 and 25)

from the combined sample values , (i = 1, 2; k = 1, ...,

m).

• Sort the m p-values pj for decreasing values of the corre-
sponding selector statistics IQRj.

• In this order, compare the corresponding p-value with
the unadjusted α for each variable j. The original variable
has a significantly relevant ratio of medians if pj <α and all
previously tested null hypotheses have been rejected, too.

• Stop at the first non-significance and accept the null
hypothesis for all further variables.

The different formulae for the selector statistic depending
on the difference of the two group medians (positive or
negative, within or without the tolerance region) ensure
an appropriate sorting of the variables giving the proce-
dure a high power.

In the following sections, the Bonferroni-Holm procedure
will be used for comparison. The unadjusted p-values will
also be taken from two-sample Wilcoxon tests with the
pseudosample values as in the above two methods. The
one-sided p-values pj,lower and pj,upper will be determined
separately for each of the m variables, each with the corre-
sponding shift in the pseudosamples. These unadjusted p-
values can be either taken from the first pass of the minP
algorithm or from the second procedure. Then – as above
– two-sided p-values will be calculated using pj =
min(2·pj,lower, 2·pj,upper) (j = 1, ..., m) and will be used as
the basis for the Bonferroni-Holm adjustment.

Testing
Performance on simulated data

To confirm the control of the FWER, extended simulation
studies were applied to the new procedures. A small part
of the results for two-sided testing is shown in the follow-
ing two tables. All scenarios were tested with three levels
of relevance thresholds. For comparison with Kropf et al.

[20], in one type of setting the thresholds were set to θlower

= θupper = 1 (δlower = δupper = 0). In this case, the procedure

with a data-driven order of relevance-shifted hypotheses
reduces to the exact nonparametric procedure with a data-
driven order of point-zero hypotheses for two unpaired
samples applied to the logarithmized data. In the remain-

ing two types of settings, the thresholds were set to 

= θupper = 1.5

(δlower = δupper = 0.4055) or to the extreme case of  =

θupper = 5 (δlower = δupper = 1.6094). Fifty observed variables

were tested in all simulated situations.

To test if the procedures control the FWER in the weak
sense, which is in the special case where all null hypothe-
ses are true and the simulated FWER is less or equal to the
selected α, 25 variables were generated with expected val-
ues of µ1j = µ2j/θupper = 100 and true standard deviations of
σ1j = σ2j/θupper. The remaining 25 had µ1j/θupper = µ2j = 100
and σ1j/θupper = σ2j.

Furthermore, the control in the strong sense is important.
In this case, the FWER is protected if some null hypotheses
may be true and others false but the probability to reject
any true null hypothesis is less or equal to α. For the
assessment of the control, 45 variables were simulated
under the null hypothesis and had the same true mean
values as for the weak control; 22 were set to a non-rele-
vant decrease and 23 to an increase. From the remaining
five variables, two had a relevant ratio of treatment means
with µ1j = 100·θupper + 50 and µ2j = 100 with σ1j = 10·θupper
+ 5, σ2j = 10 and the other three had µ1j = 100 and µ2j =
100·θupper + 50 with σ1j = 10, σ2j = 10·θupper + 5.

All variables had equal pairwise correlations ρ and equal
variances 'on a logarithmic scale'. Together with the sam-
ple size per group, these parameters differed between the
individual simulation settings and are noted in the table.
If not stated otherwise, the random numbers were gener-
ated from a normal distribution, the nominal FWER was
set α = 5% and the empirical FWER was computed with
10,000 simulation runs each. The modified Westfall-
Young permutation algorithm is shown as 'permutation'
in the following tables and figures and the procedure with
a data-driven order of hypotheses is shown as 'selector'.

Table 1 presents the results of several simulation series for
balanced multivariate normal samples at a nominal α
level of 5% with varying relevance thresholds, sample
sizes, variances, and pairwise correlation coefficients.

In Table 2, similar settings to the above were simulated.
However, the random numbers were generated from a
multivariate skewed distribution. For the generation of
the random numbers, first univariate non-normal distrib-
uted samples with a priori selected expected value, stand-
ard deviation, skewness and kurtosis were created by
application of a polynomial data transformation pro-
posed by Fleishman [26]: A random variate X ~ N(0, 1) is
transformed into the polynomial Y = a + bX + cX2 + dX3.

yikj
∗∗

qlower
−1

qlower
−1
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The dependence of the skewness  and the

kurtosis  on the constants a, b, c and d is

described in Fleishman's paper. An underlaying covari-
ance matrix for the simulated vectors is created as follows:
Let x denote an m-dimensional vector, where all compo-

nents are iid with skewness γ1 and kurtosis γ2. Now deter-

mine a transformation matrix R of size m × m, such that Σ
= R'R (for example with Cholesky decomposition). Then
the transformed vector y = R'x has the variance-covariance

matrix Σ. Using this method, sample vectors with γ1 = 2

and γ2 = 7 were produced for the simulation series in Table

2.

The results in the tables show that the new procedures
control the FWER empirically. Likewise, the FWER is pro-
tected for two-sided testing in further simulated situa-
tions, including other settings of the true mean values,
skewed data, variances and correlations among the varia-
bles.

Extended results for one-sided testing using the procedure
with a data-driven order of relevance-shifted hypotheses
are also given [1]. Small increases of the FWER occurred in
that case. The largest increase for the nominal α level of
5% was 6.3%. Error rates for the permutation algorithm
corresponding to the one-sided case have not yet been
been analyzed.

The control of the FWER is a premise of a statistical test.
However, the aim of the experiments discussed here is to
find variables which discriminate two kinds of treatments
with a high probability. Hence, graphical representations
of the simulation results in terms of the power of the new
procedures compared to a standard technique will now be
shown.

The simulation setting is nearly the same as for the control
of the FWER in the strong sense. However, the setting of
the expected values of variables under H0 was changed.

For the control of the FWER, these variables had a ratio of
means set to one of the margins of the null hypothesis
because this choice resulted in the largest empirical FWER
compared to variables with ratios closer to 1. A more real-
istic setting was selected for the simulation of the power,
where a variable under H0 received a random ratio of

means. This random value was a number θlower ≤ τ ≤ θupper.
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Table 2: Simulation results of the FWER for non-normal 
distributed data. This table shows the results for similar settings 
as in Table 2. Again, different levels of sample sizes, variances 
and correlation coefficients were tested, however non-normal 
distributed data was generated.

selector permutation

 = θupper

ni σ ρ weak strong weak strong

1 5 10 0.1 3.31 2.87 0 0
1.5 5 10 0.1 2.40 1.57 0 0
5 5 10 0.1 2.40 1.78 0 0
1 10 10 0.1 4.15 4.32 4.88 4.18

1.5 10 10 0.1 2.48 2.64 3.46 3.42
5 10 10 0.1 2.48 2.37 3.46 3.15
1 5 10 0.9 3.19 2.96 0.80 0.39

1.5 5 10 0.9 2.78 2.45 0.83 1.12
5 5 10 0.9 2.78 2.64 0.84 1.07
1 10 10 0.9 4.33 4.48 4.65 4.25

1.5 10 10 0.9 3.51 3.59 3.26 0.33
5 10 10 0.9 3.51 3.49 3.26 0.33
1 5 5 0.9 3.16 3.13 0.80 0.46

1.5 5 5 0.9 2.77 2.8 0.84 1.12
5 5 5 0.9 2.77 2.44 0.84 1.12
1 5 15 0.9 3.17 2.73 0.80 0.31

1.5 5 15 0.9 2.76 2.44 0.80 1.09
5 5 15 0.9 2.76 2.56 0.84 1.03

qlower
−1

Table 1: Simulation results of the FWER for normal distributed 
data. This table shows simulation results of the relevance-shifted 
Westfall-Young permutation algorithm using 500,000 
permutation runs ('permutation') and the procedure with a 
data-driven order of relevance-shifted hypotheses ('selector') for 
different levels of sample sizes, variances and correlation 
coefficients using normal distributed data.

selector permutation

 = θupper

ni σij ρ weak strong weak strong

1 5 10 0.1 3.42 3.05 0 0
1.5 5 10 0.1 2.53 1.98 0 0
5 5 10 0.1 2.53 1.87 0 0
1 10 10 0.1 4.39 4.22 4.65 4.12

1.5 10 10 0.1 2.70 2.81 3.30 3.14
5 10 10 0.1 2.70 2.48 3.30 3.01
1 10 10 0.5 4.26 4.22 4.74 4.61

1.5 10 10 0.5 3.08 3.07 3.36 3.71
5 10 10 0.5 3.08 2.89 3.36 3.59
1 5 10 0.9 3.12 3.13 1.42 0.91

1.5 5 10 0.9 2.83 2.61 1.37 1.45
5 5 10 0.9 2.83 2.80 1.37 1.44
1 5 15 0.1 3.40 2.52 0 0

1.5 5 15 0.1 2.48 1.73 0 0
5 5 15 0.1 2.48 1.98 0 0
1 10 15 0.1 4.27 4.21 4.65 4.10

1.5 10 15 0.1 2.67 2.78 3.30 3.11
5 10 15 0.1 2.67 2.51 3.30 2.97
1 20 10 0.9 5.01 4.96 4.90 4.58

1.5 20 10 0.9 4.04 3.97 3.29 3.64
5 20 10 0.9 3.90 3.97 3.29 3.64

qlower
−1
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Two sets of values were created to generate τ. One set

included all values between 1 and θupper in steps of 0.05. To

receive an equal amount of ratios in the second set, all val-

ues between 1 and  in steps of 0.05 were computed

and the second set took the inverse of these values. The

sets were combined and τ was chosen separately for each

variable. If τ < 1 then expectation values were set to µ1j =

100/τ and µ2j = 100 and the standard deviations were set

to σ1j = σ2j/τ. Otherwise the true mean values were µ1j =

100 and µ2j = τ·100 with σ1j = σ2j/τ.

As for the simulations of the FWER, α = 5% and each
result consisted of 10,000 simulation runs. In the tested

scenarios, the thresholds were set to  = θupper = 2 (-

δlower = δupper = 0.6931) and σij = 10.

All further settings of the parameters are given in the cap-
tions of the figures. The figures show the ratio of detected
false null hypotheses as an estimation of the proportional
power, which is defined as the average probability of
rejecting the false null hypotheses [19]. The power of the

exact relevance-shifted Wilcoxon rank sum test on ratio
with the multiplicity correction of Bonferroni-Holm
('Bonferroni-Holm') is plotted together with simulation
results of the two new procedures.

It can be seen from Figure 1 that both new procedures
achieve a higher power than the Bonferroni-Holm correc-
tion, irrespective of the correlation among the variables.
While the power of the Bonferroni-Holm correction is
constant for increasing correlation coefficients, the power
of the new procedures increases. In Figure 2, the depend-
ency of the three procedures on the relevance thresholds
is shown. It can be clearly seen that the ratio of expected
values has to be increased for all procedures in order to
acquire a comparable power with increasing distance of
the thresholds from the neutral value 1. In this and further
simulation studies (results not shown here), the required
ratio of expected values is approximately a multiple of the
upper relevance threshold. The power is only smaller in

the special case of  = θupper = 1, as here all ratios of

variables under H0 are set to the margins of the thresholds.

To achieve a power of around 50%, for example the pro-
cedure with a data-driven order of relevance-shifted

qlower
−1

qlower
−1

qlower
−1

Power for varying correlation structure among variablesFigure 1
Power for varying correlation structure among variables. The three plots show the proportional power of the three 
procedures using a varying correlation structure among the variables. In each setting a sample size of ni = 7 was used.
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hypotheses requires a ratio of expected values of 1.25 for

 = θupper = 1. By multiplying this ratio of expected val-

ues with the upper relevance thresholds 2 or 5 (giving the
ratios 2.5 and 6.25, respectively), the power is around
55% in both cases.

In Figure 3 the dependency of the three procedures on the
sample sizes is shown. For small sample sizes, say 4 to 6,
the procedure with a data-driven order of hypotheses is
better than the permutation algorithm and the Bonfer-
roni-Holm correction. With a sample size of 7 or more,
the permutation algorithm achieves a higher proportional
power. The Bonferroni-Holm correction can only be
applied in this simulation setting if the sample size is at
least 7. If the sample sizes are reduced to 6 per group, the
smallest possible two-sided Bonferroni-Holm adjusted p-
value is 0.108, and thus no significant variables can be
achieved with α = 5%. The power of the Bonferroni-Holm
correction also increases with increasing sample sizes. In
the observed simulation setting a sample size of 10 is
required to be better than the procedure with a data-
driven order of hypotheses.

In most microarray experiments several thousand varia-
bles are tested. Hence, simulations presented in Figure 4
were carried out including 5,000 variables as well. Basi-
cally, the simulation setting was the same as the setting

presented in Figure 3. However, the number of variables
was set to 5,000, where 50 variables were tested under H1.
And as the power decreases with an increasing number of
variables, the expected values were set to 1/2.5 and 2.5 for
25 variables under H1 each. The simulations of the permu-
tation algorithm including 5,000 variables were time con-
suming. Therefore, simulations were carried out up to a
sample size of 10 per group.

As in Figure 3, the procedure with a data-driven order of
hypotheses is more powerful than the permutation algo-
rithm if the sample sizes are small. However, using a larger
sample size the permutation algorithm is preferable. The
Bonferroni-Holm correction achieves no power, because
the procedure is too discrete. If an experiment consists of
5,000 variables, a sample size of 12 per group is required
to achieve a two-sided p-value of 3.7%. For example, using
a sample size of 11 per group, the smallest achievable two-
sided p-value is 14.2%. Irrespective of the effect size, this
p-value cannot be less than α = 5%.

The choice of the procedure with the best power does not
only depend on the sample size. In particular with an
increasing α, the permutation algorithm and the Bonfer-
roni-Holm correction are more powerful than the proce-
dure with a data-driven order of hypotheses with sample
sizes as low as 7 or 10. The choice is also dependent on the

qlower
−1

Power for varying levels of sample sizes per group using 50 variablesFigure 3
Power for varying levels of sample sizes per group 
using 50 variables. The figure shows the power for varying 
levels of samples sizes per group. All settings were simulated 
using a ratio of expected values for variables under H1 of 2.35 
and a correlation among the variables of ρ = 0.3.
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Power for varying levels of relevance thresholdsFigure 2
Power for varying levels of relevance thresholds. The 
figure shows the proportional power for varying levels of rel-
evance thresholds. The power was computed using a sample 
size of ni = 7 and a correlation among the variables of ρ = 0.3. 
To simulate the power for the left curves the thresholds 
were set to θlower = θupper = 1, for the curves in the middle 

 = θupper = 2 were chosen and the power curves on the 

right were computed using  = θupper = 5.
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correlation among the variables as shown in Figure 1. Fur-
thermore, the power of the procedure with a data-driven
order of hypotheses reduces drastically in the case of vari-
ance heterogeneity among the variables. To be powerful,
the procedure requires approximately homogeneous vari-
ances after the logarithmic transformation. Correspond-
ing simulation results to these influences are given in
Frömke [1]. Although the impact of a varying number of
variables was not examined, it can be assumed to have sig-
nificant effects as well.

Implementation
Method comparison using a publicly available dataset

This section illustrates the application of the two proce-
dures using a subset of the microarray study published by
Khan et al. [27]. The entire data set consists of four sub-
groups of small, round blue cell tumors (SRBCTs) of
childhood. Cell lines are available for all four subgroups,
and biopsy material is available for two subgroups. The
subset of the original study used here incorporates the

biopsy material, which consists of 13 samples of the
Ewing family of tumors (EWS) and 10 samples of the
rhabdomyosarcoma (RMS). Furthermore, all 2,308 genes
of the original data set will be analyzed. For the following
analysis, significant two-fold under- or over expressions to

an α = 5% are sought. Hence, the thresholds are set to

 = θupper = 2 corresponding to -δlower = δupper = 0.6931.

The results of the relevance-shifted Westfall-Young per-
mutation algorithm, the procedure with a data-driven
order of relevance-shifted hypotheses and the Bonferroni-
Holm correction are listed in Table 3. The last column
provides a ranking number. These ranks are taken from
the analysis methods supplement [27], where the top 96
genes were ranked according to importance using artificial
neural network techniques.

On top the table shows the results for the five significant
genes found by the relevance-shifted Westfall-Young per-
mutation algorithm after 500,000 permutation runs. In
contrast, the procedure with a data-driven order of rele-
vance-shifted hypotheses detects three significant genes,
where one of them was also found using the above
method. Three genes are also found with the Bonferroni-
Holm adjustment. They are completely different genes
compared to the former procedure, but they were also
found using the modified Westfall-Young method.

In this analysis, the permutation algorithm detects more
significant variables than both the procedure with a data-
driven order of relevance-shifted hypotheses and the α-
adjustment of Bonferroni-Holm. As shown in the former
section, this can be explained with the general perform-
ance of these three methods for the present case of mod-
erately large sample sizes in both groups. However, the
procedure with a data-driven order of sequential testing is
the only one that found the gene 296448, which accord-
ing to Khan et al. [27] is the most important one.

Conclusion
The comparison of two groups of individuals with many
variables is a common problem in biological studies. In
the current literature, procedures are proposed which per-
form local tests for each variable and correct for multiplic-
ity. Most of these procedures test the point-zero or point-
one null hypotheses of a difference or ratio in treatment
effects of 0 or 1, respectively. A parametric procedure is
available for relevance-shifted hypotheses [7]. In this arti-
cle, two nonparametric procedures are proposed which
perform a local relevance-shifted test on ratio on the two
samples for each variable and include a multiplicity cor-
rection as well. They are extensions of the Westfall-Young
permutation algorithm [18] and of a sequential procedure

qlower
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Power for varying levels of sample sizes per group using 5,000 variablesFigure 4
Power for varying levels of sample sizes per group 
using 5,000 variables. As in Figure 3 the power for varying 
levels of samples sizes per group are presented. The simula-
tion settings were the same using in Figure 3. Only the 
expected values of the 50 variables under H1 were set to 2.5 
and 1/2.5 and results consisted of 1,000 simulation runs. The 
simulations carried out for the permutation algorithm were 
time consuming. Therefore, the power computed for sample 
size 10 per group was simulated using 100 runs and the 
number of permutations in each run was restricted to 
100,000.
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with data-driven order of hypotheses [20], which consider
point-null hypotheses in their original form.

Both new procedures utilize the correlation structure. In
the proofs of the original versions, this can be seen in the
fact that they consider permutations of the whole observa-
tion vectors and not separate permutations for single var-
iables. In the technical procedures, the influence of the
correlation among the variables is not seen explicitly
because univariate test statistics and selector functions are
calculated. But it is present in the ordering of variables,
which is part of both procedures in some way. When the
variables are highly correlated, then the relation of their
Wilcoxon test statistics or interquartile ranges effectively
reflects the relation in the degree of violation of the corre-
sponding null hypothesis. The less these correlations are,
the more this relation is overlaid with random influences.

As not all modifications, applied to the point-null ver-
sions, could be covered by the theoretical considerations,
simulation experiments were carried out for the control of
the FWER and for the assessment of the power. In these
experiments, the FWER was always controlled for the two-
sided test versions discussed in this paper.

The power of the two new proposals and of the Bonfer-
roni-Holm method was similar to the original procedures
for point-null hypotheses (cf. Kropf et al. [20]). The pro-
cedure with data-driven sequential hypothesis testing uses
a nonparametric measure of variability in the pooled sam-
ples as an additional source of information. This provides
an advantage in small samples if the variances of the dif-
ferent variables are more or less homogeneous in the data.
This advantage is lost and even reversed with increasing
sample sizes. As discussed in Kropf et al. [20], this is due
to the fact, that the probability to detect a difference in the
unadjusted tests (which is the major input in the other test

procedures) increases faster than the probability of the
correct ordering of variables with and without deviations
from the null hypothesis. Therefore, this ordering
becomes the critical part in the sequential procedure for at
least moderately large samples. However, data from
microarray and proteomics experiments are commonly
characterized by a very large number of variables and
small sample sizes. The analysis of such experiments using
standard multivariate approaches is inappropriate. The
proposed procedures can be used instead, particularly if
relevance shifted hypotheses are of interest.
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