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Abstract: Background: The endothelium plays an important role in cardiovascular regulation, 
from blood flow to platelet aggregation, immune cell infiltration and demargination. A dysfunc-
tional endothelium leads to the onset and progression of Cardiovascular Disease (CVD). The aging 
endothelium displays significant alterations in function, such as reduced vasomotor functions and 
reduced angiogenic capabilities. This could be partly due to elevated levels of oxidative stress and 
reduced endothelial cell turnover. Circulating angiogenic cells, such as Endothelial Progenitor Cells 
(EPCs) play a significant role in maintaining endothelial health and function, by supporting endo-
thelial cell proliferation, or via incorporation into the vasculature and differentiation into mature 
endothelial cells. However, these cells are reduced in number and function with age, which may 
contribute to the elevated CVD risk in this population. However, lifestyle factors, such as exercise, 
physical activity obesity, and dietary intake of omega-3 polyunsaturated fatty acids, nitrates, and 
antioxidants, significantly affect the number and function of these circulating angiogenic cells. 

Conclusion: This review will discuss the effects of advancing age on endothelial health and vascu-
lar regenerative capacity, as well as the influence of diet, exercise, and obesity on these cells, the 
mechanistic links and the subsequent impact on cardiovascular health. 
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1. INTRODUCTION: THE AGING ENDOTHELIUM 

 The inner lining of all blood vessels consists of a single 
monolayer of endothelial cells. These cells play a key role in 
diffusion and transport of nutrients, gases from the blood to 
surrounding tissues, as well as being central to the control of 
blood flow via the endothelium’s ability to secrete vasoac-
tive substances, such as Nitric Oxide (NO) and prostacyclin 
(PGI2). The endothelium also plays a role in our immune 
system, whereby it controls the adhesion, rolling and trans-
endothelial migration of leukocytes to sites of tissue damage 
and/or infection. The maintenance of the endothelium is key 
for optimal health, and specifically cardiovascular health, as 
endothelial dysfunction often precedes Cardiovascular Dis-
ease (CVD). 
 Advancing age is associated with endothelial dysfunction 
[1-4], which is highly predictive of cardiovascular event risk 
and mortality [5, 6]. Aging is also associated with increased 
endothelial susceptibility to apoptosis [7]. These aging ef-
fects are potentially due to elevated levels of vascular tissue 
oxidative stress [8] which may contribute to uncoupling of 
endothelial NO Synthase (eNOS) [9], key for NO bioavail-
ability via the conversion of L-arginine to NO. Elevated  
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levels of pro-oxidant free radicals, such as superoxide, have 
been found in vascular tissue from aged compared to 
younger rats [8]. This elevated production of superoxide 
leads to the formation of peroxynitrite [10], which has been 
observed to stimulate the uncoupling of eNOS [9].  
 A recent meta-analysis also demonstrated that peripheral 
vascular resistance is also elevated in aging populations, 
with negative alterations in smooth muscle function in older 
compared with younger men and women [11]. Upon specific 
dilator administration, such as nitroglycerine or sodium ni-
troprusside, older adults display reduced dilator capacity, 
indicative of reduced smooth muscle function. This has been 
attributed to decreased expression of soluble guanylyl cy-
clase in smooth muscle cells [12], attenuating the cell’s abil-
ity to relax, subsequently leading to impaired vasodilation 
and peripheral blood flow. It is clear that the deleterious im-
pact of aging on vascular resistance is due to, in part, altera-
tions in endothelial NO release, as well as smooth muscle 
function, but there are also data to suggest that changes in 
vascular resistance due to age may be related to abnormal 
responses to the metaboreflex [13]. 
 In addition, angiogenic capabilities are reduced with 
advancing age in both mice [14-17] and human studies 
[18], which may contribute to the increased CVD risk 
amongst the elderly [19, 20] due to insufficient repair  
or replacement of damaged endothelial cells. This is  
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highlighted in animal models, with the ability to re-
vascularisation in response to vascular trauma or occlusion 
is reduced with age [21, 22], suggestive of an impaired en-
dothelial regenerative capacity. 

2. ENDOTHELIAL REGENERATION AND ADVANC-
ING AGE 

 It was previously thought that endothelial cell turnover 
was wholly maintained by the proliferation of vascular resi-
dent endothelial cells. However, in 1997, researchers 
discovered a circulating cell subset which had the ability to 
differentiate into mature endothelial cells in vitro [23], and 
these researchers termed these cells ‘endothelial progenitor 
cells’ (EPCs). These cells were human CD34+ cells, and 
after a period of 7 days in culture expressed mature endo-
thelial cell markers (VEGFR2, CD31, E-selectin, eNOS). 
These cells could also form tubes on fibronectin-coated 
plates in vitro [23, 24]. A number of studies have shown 
that such EPCs have the ability to stimulate neovasculariza-
tion in rodent [25, 26] and human models [21, 27]. How-
ever, the origin of these cells has been widely debated. 
Some studies show that these CD34+ vasculogenic progeni-
tors are derived from the bone marrow using tracking mod-
els [25, 26], however, there is some evidence to suggest 
that progenitor cells within tumour vasculature did not de-
rive from bone marrow [28].  
 These cells may maintain endothelial integrity and health 
via differentiating into mature endothelial cells, therefore 
replacing damaged or apoptotic endothelial cells, or via 
paracrine means by secreting vasculogenic growth factors 
such as VEGF and IL-8 [29]. However, via cellular tracking, 
EPCs from humans transplanted into a mouse hindlimb 
ischemic model were found to stimulate neovascularisation 
and were later found incorporated in the injured vasculature 
[21], suggesting that the integrity of the endothelium may be 
partly dependent upon the reparative capacity of such EPCs 
[30]. It is now generally accepted that circulating EPCs that 
act in a paracrine manner, or as genuine endothelial precur-
sors, are phenotypically distinct, with the former expressing 
CD34, CD133, being CD45bright as well as expressing an en-
dothelial cell surface antigen, such as VEGFR2 or CD31 [29, 
31]. Circulating CD34+ progenitors that have been shown to 
have potential to differentiate into mature endothelial cells 
express CD34, dimly express CD45 (CD45dim), lack CD133 
expression whilst also expressing endothelial cell surface 
antigens [29, 31]. These two distinct phenotypes of EPCs 
have been termed ‘early’ and ‘late’ outgrowth endothelial 
cells because of the time of their appearance in culture. 
Early-outgrowth endothelial cells (EOC) appear early in cul-
ture, and function primarily via paracrine means, whereas 
late outgrowth endothelial cells (LOC) appear late in culture 
and have the ability to differentiate into endothelial cells in 
vitro [29]. Together, both EOC and LOC can be considered 
as contributing to the maintenance of endothelial cell integ-
rity, just via differing means. For this review, EOC and LOC 
will be grouped together as ‘EPCs’. For a more in-depth re-
view on EPC subsets and physiological functions, see review 
by Medina et al. [32]. 
 Circulating EPCs are rare in peripheral blood, often 
making up to 0.05% of all mononuclear cells in humans 

[33], however, despite their small number, they remain, 
independent predictors of endothelial function [34, 35], and 
mortality in patient populations [36, 37], with lower 
numbers, often reflecting endothelial dysfunction and 
heightened cardiovascular mortality risk. Many studies 
have demonstrated lower circulating number and function 
of EPCs in vascular-related disease states (such as stroke, 
cerebrovascular disease, atherosclerosis) compared to age-
matched healthy controls [30, 34, 35, 38-47]. The reduction 
in these cells in the circulation may be due to an exhaustion 
of the bone marrow progenitor cell pool due to an increased 
need for vascular repair [46], and increased apoptosis of 
these cells [43, 48].  
 Older adults display reduced number and function of 
circulating EPCs [21, 27, 49-54] which may play a role in 
the increased CV risk with advancing age [20]. Advanc-
ing age is linked with reduced vascular repair mecha-
nisms, as observed by Torella et al. [22] who found that 
endothelial repair after balloon injury in a rat model was 
significantly reduced in older vs. younger rats. Our labo-
ratory has shown that older adults display significantly 
reduced circulating angiogenic cells compared to younger 
counterparts, independent of several cardiometabolic risk 
factors (e.g. fasting glucose, triglycerides, LDL, HDL) 
[54]. Thijssen et al. [49] also observed reduced circulat-
ing CD34+VEGFR2+ EPCs in old (67-76 years) vs. 
younger men (19-28 years), but the reasons for these dif-
ferences remain unclear.  
 EPC function appears to be affected also by advancing 
age. EPC migration, proliferation and tube forming capacity 
is reduced in older individuals [21, 27, 50-53, 55-57]. In an 
elegant study, Xia, Yang [21] took human EPCs from young 
and older adults, and investigated their re-endothelialization 
ability in a hindlimb ischemia model in mice, and found that 
transplanted EPCs from older adults did not stimulate endo-
thelialization or recovery of perfusion to the same extent as 
transplanted EPCs from younger individuals. The underlying 
mechanisms explaining the age-related reduction in both 
EPC number and function are still unclear. It is highly likely 
that a combination of age-related increases in oxidative 
stress [58], bone marrow niche alterations [59], telomere 
shortening [56] and other circulating factors [60] may ex-
plain these observations.  
 Together, this data strongly suggests a deleterious effect 
of aging on EPC number and function (Table 1 and Fig. (1) 
for a summary of the effect of age on EPC number and func-
tion), and studies have investigated the effect of pharmacol-
ogical interventions to improve EPC number and function in 
at-risk individuals [61-64]. However, as a preventative 
measure, lifestyle modifications may hold significant prom-
ise as these cells are significantly affected by lifestyle factors 
such as smoking [65, 66], physical activity/inactivity, and 
exercise [67-69]. 
 In this review we will cover the influence of various die-
tary factors on EPC number and function, and the potential 
negative impact obesity has on EPCs, finally reviewing the 
literature on dietary strategies to induce weight loss, and the 
subsequent impact this may have on circulating EPCs to 
promote cardiovascular health in an at-risk, aging popula-
tion. 
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Table 1. Influence of age on circulating endothelial progenitor cell number and function. 

References Subjects EPC Assay Findings 

Xia et al., 2012a 
[21] 

10 young, 10 older males.  Flow cytometry 

CD34+VEGFR2+ 

EPC migration and adhesion 

Human EPC re-endothelialization in mice 

Lower CD34+VEGFR2+ cells in elderly. 

Reduced migration, adhesion and re-
endothelialization capacity in elderly vs. 

young males. 

Xia et al., 2012b 
[27] 

25 young, 22 elderly males. 
Resting  

Flow cytometry 

CD34+VEGFR2+/CD133+VEGFR2+ 

EPC migration and adhesion 

Human EPC re-endothelialization in mice 

Lower CD34+VEGFR2+/ CD133+VEGFR2+ 

cells in elderly. 

Reduced migration, adhesion and re-
endothelialization capacity in elderly vs. 

young males. 

Thijssen et al., 
2006 [49] 

8 young, 8 older sedentary 
males. 

Flow cytometry 

CD34+VEGFR2+ 

Lower CD34+VEGFR2+ EPCs in older vs. 
younger males 

Thum et al., 
2007 [50] 

10 young, 16 middle-aged, 12 
older males.  

Flow cytometry 

CD133+VEGFR2+ 

EPC migration and eNOS gene expression. 

Lower EPC number and migration in older 
vs. middle-aged and younger males. 

Lower EPC eNOS gene expression in older 
vs. younger adults.  

Heiss et al., 2005 
[51] 

20 young and 20 older male 
and female subjects.  

Flow cytometry 

CD34+VEGFR2+/CD133+VEGFR2+ 

EPC survival, migration and proliferation assays. 

No difference in EPC number between young 
and older subjects. 

Lower survival, migration and proliferation 
of EPCs in older subjects. 

 

Hoetzer et al., 
2007 [52] 

10 young, 15 middle-aged, 21 
older men.  

EPC EC-CFU assay. 

EPC migration 

Lower EC-CFU in older and middle-aged 
adults compared to young subjects. 

Lower migration of EPCs from older subjects 
vs. middle-aged and younger adults. 

Williamson et al. 
2013 [53] 

EPCs from 5 young, and 4 
older subjects. 

EPC apoptosis, migration, and tube formation 
assays 

No difference in proliferation, apoptosis and 
tube formation of EPCs from young and older 

subjects. 

EPC migration lower in older subjects vs. 
younger subjects. 

Ross et al., 2018 
[54] 

107 males, aged 18-75yrs. 

 

Flow cytometry 

CD34+CD45dimVEGFR2+ 

Cell surface expression of CXCR4 

Age inversely associated with EPC number 
and cell surface CXCR4 expression. 

Yang et al., 2013 
[55] 

10 young, 10 older male sub-
jects. 

Flow cytometry: CD34+VEGFR2+ 

EPC migration and proliferative assays. 

Lower EPC number, migration and prolifera-
tion in older vs. younger subjects. 

Kushner et al., 
2009 [56] 

12 young, 12 middle-aged, 
and 16 older sedentary males. 

EPC telomere length Lower EPC telomere length in older vs. mid-
dle-aged and younger males. 

Kushner et al., 
2010 [57] 

17 young and 20 older males. Stimulated release of EPC-derived pro-angiogenic 
cytokines and growth factors 

 

Lower release of G-CSF from EPCs from 
older vs. younger subjects. 

EPC- Endothelial Progenitor Cells, eNOS- endothelial nitric oxide synthase, EC-CFU- Endothelial Cell Colony-Forming Units. CXCR4- C-X-C Chemokine Receptor 4. 
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Fig. (1). Effect of aging on circulating endothelial progenitor cell number and vasculogenic function. 
 
3. NITRIC OXIDE-MEDIATED MOBILIZATION OF 
EPCS: POTENTIAL FOR DIETARY NITRATE 

 Recently, the therapeutic role of dietary nitrate (in the 
form of beetroot [as a root vegetable or in concentrated 
form], watercress, and spinach) in vascular health has been 
explored due to the potential to modulate NO bioavailability. 
Acute and chronic supplementation of inorganic dietary ni-
trate has been shown to improve arterial vasomotor function 
[70-72], reduce blood pressure in healthy young [73] and 
older subjects [72] and reduce arterial stiffness as measured 
via pulse wave velocity [72]. The potential mechanisms by 
which dietary nitrate may improve these vascular health 
markers include an increase in NO bioavailability. Once in-
gested, nitrate is reduced to nitrite in the mouth and gut [74], 
where it can be absorbed into the circulation. Elevations of 
plasma nitrate and nitrite are observed as quickly as within 2 
hours of ingestion of a high concentrated nitrate dose (in the 
form of beetroot juice) which subsequently results in signifi-
cant alterations in both systolic and diastolic blood pressure 
within this timeframe [75, 76].  
 Recent epidemiological evidence suggests that nitrate has 
a strong positive effect on human health. In 2017, research-
ers found that plasma nitrate was inversely associated with 
all-cause mortality in the Offspring cohort of the 
Framingham Heart Study [77]. Interestingly, there was no 
such association with incidence CVD mortality, with their 
data also suggesting that the effect of plasma nitrate on mor-
tality was attenuated after controlling for glomerular filtra-
tion rate, suggestive of a protective effect on renal function. 
In mice, 3 months of nitrate deficient diet resulted in greater 
visceral adiposity, reduced glycaemic control and vascular 
function [78]. Levels of eNOS were downregulated in the 
mice fed with the nitrate-depleted diet which may contribute 
to the reduced vascular function in these mice.  
 In addition to having an impact on endothelial function 
via modulating NO bioavailability, dietary nitrate may also 
impact on circulating angiogenic cells. The mobilization of 
EPCs has been shown to be eNOS dependent [79], and 

additionally, NO itself can mobilise these cells via activation 
of bone marrow matrix metalloproteinase-9 [80] which itself 
cleaves membrane-bound Kit ligand from bone marrow 
stromal cells, leading to the extravasation of progenitor cells 
into the circulation [81]. This led researchers to investigate if 
dietary nitrate can influence progenitor cell number and 
function. Indeed, the ingestion of a single dose of nitrate-rich 
solution led to the mobilisation of CD34+VEGFR2+ and 
CD133+VEGFR2+ cells into the circulation within 1 hour in 
healthy humans, which was accompanied by increases in 
Stem Cell Factor (SCF) and stromal-derived factor-1α (SDF-
1α) [82]. Within the same study, this effect was abolished 
with the co-infusion of a NO scavenger (cPTIO) in a mouse 
model. A chronic supplementation study in hypercholes-
terolemic rabbits found that supplementing with L-arginine, 
the precursor to NO synthesis led to a significantly greater 
number of circulating CD34+VEGFR2+ EPCs than control 
hypercholesterolemic rabbits [83]. This data has been sup-
ported elsewhere, with a diet supplemented with L-arginine, 
in combination with exercise training, resulted in elevations 
in EPCs in mice, compared to exercise alone which also re-
sulted in increases in circulating EPCs [84]. 
 Together, these data suggest a potential role for nitrate 
diets to potentially mobilize EPCs from the bone marrow to 
maintain or improve vascular health. However, there is a 
paucity of data in humans, and in clinical conditions 
whereby such an intervention may have greater health impli-
cations. Future research must also include data on the 
functionality of such EPC populations to determine potential 
cellular effects outside of the bone marrow mobilisation it-
self. 

4. OMEGA-3 

 Omega-3 polyunsaturated fatty acids (PUFA) have re-
cently emerged as potential vascular protective foods. 
Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) 
and docosahexaenoic acid (DHA), are primarily found in 
oily fish, but also found in plant sources, such as nuts and 
seeds. Epidemiological data suggested that the ingestion of 
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omega-3 fatty acids may reduce CVD rates [85]. This study 
observed a 10x reduced risk of myocardial infarction 
amongst Greenland Inuits compared to a Danish population, 
which may be due to their vastly different intake of omega-3 
fatty acids per day (14g vs. 3g) [86]. However, clinical trial 
data of the impact of omega-3 fatty acids on cardiovascular 
and all-cause mortality are mixed with regards to the efficacy 
of these fatty acids on health [87-90]. 
 Omega-3 fatty acids may influence health through affect-
ing plasma membrane phospholipid composition, which may 
impact cell signalling via altering membrane fluidity, lipid 
raft structure and substrate availability [91, 92]. DHA 
upregulates eNOS phosphorylation in human endothelial 
cells in vitro [93] and suppresses cytokine-induced endothe-
lial adhesion molecule expression [94], suggestive of a po-
tent vascular benefit. There is also evidence that both EPA 
and DHA can attenuate H2O2- induced DNA damage in hu-
man aortic endothelial cells via reductions in intracellular 
oxidative stress as a result of upregulated levels of heme 
oxygenase-1, thioredoxin reductase 1, and manganese super-
oxide dismutase [95]. However, the evidence for a strong 
effect on vascular endothelial function is absent in human 
studies [96].  
 Interestingly, omega-3 fatty acids may play a role in an-
giogenesis. Recent studies showed that in aged mice, a diet 
rich in omega-3 PUFA was associated with improved post-
ischemic stroke angiogenesis and neurogenesis [97], and 
transgenic mice that overproduce n-3 PUFAs were protected 
against ischemic stroke, displayed enhanced post-ischemic 
angiogenesis and greater survival than control mice [98]. 
Potential contributions to the augmented revascularization 
may be due to enhanced VEGF signalling in resident endo-
thelial cells [98] or via mobilization of angiogenic cells to 
the infarct zone and manipulation of their angiogenic func-
tions. In an in vitro study, incubation with EPA or DHA sig-
nificantly improved EPC colony forming units and tube for-
mation of these regenerative cells in vitro [99]. However, 
migratory capacity of these cells, reflective if the ability to 
migrate to ischemic tissue in vivo, only improved upon co-
incubation with both EPA+DHA [99]. These results were 
somewhat supported by Tikhonenko et al.  [100] who found 
that supplementing with DHA in a type 2 diabetes mouse 
model rescues EPCs in blood and bone marrow, as well as 
displaying protective effect of DHA on EPC migration in 
vitro further suggestive of protective effect of omega-3 fatty 
acids on EPC number and angiogenic function [100, 101]. In 
only two human supplementation studies, an eight- and six- 
week fish oil supplementation period significantly increased 
the number of circulating CD34+VEGFR2+ cells [102, 103], 
and also significantly reduced markers of vascular damage 
and platelet aggregation [103]. These changes in EPCs were 
not accompanied by changes in circulating biochemical 
markers of vascular health, such as total cholesterol, LDL, 
HDL, triglycerides or fasting glucose [103], suggestive of a 
direct effect on cellular survival [104] and/or mobilization. 
These effects of omega-3 fatty acids on EPCs are not long-
lasting, as six weeks after cessation of the omega-3 fatty 
acid-rich diet, circulating EPCs returned to pre-diet levels 
[102]. 

 These data strongly suggest despite not having clear 
benefits on vascular function in humans, omega-3-rich diets 
may augment the number and function of circulating EPCs 
which may have clinical significance for endothelial repair 
and may be of interest to older adults who display such EPC 
dysfunction. 

5. MEDITERRANEAN DIETS 

 Mediterranean diets typically contain high levels of olive 
oil, fruits, nuts, vegetables and cereals, and often include 
moderate intake of fish and poultry, with low intake of red 
and processed meats. There is strong evidence that supports 
the use of a diet rich in olive oil, fruit, nuts, vegetables and 
low in red meats for the prevention of CV events and CVD 
[105, 106], with a meta-analysis indicating a reduced risk 
ratio for CV incidence or mortality, cancer incidence or mor-
tality, and neurodegenerative disease incidence with for 
those adhering to such a diet [106]. The proposed mecha-
nism for such effect on cardiovascular health may be due to 
specific effects on reducing atherosclerosis-associated in-
flammation [107], such as circulating high sensitivity C-
reactive protein (CRP) and interleukin-6 (IL-6) [107, 108]. 
After 2 years of a Mediterranean diet, an improvement in 
endothelial function was observed, as well as a reduction in 
carotid intima-media thickness (cIMT) [107] and insulin 
sensitivity also improved significantly [107, 108]. 
 One year of a ‘Mediterranean’ diet, rich in olive oil, fruit, 
vegetables, fish, legumes, and wholegrain foods  improved 
vascular conductance in a group of older adults (mean age: 
56 years) more so than a year-long exercise training inter-
vention [109], indicating that the diet could be a beneficial 
strategy for preventing CV issues with aging, once again, 
potentially due to reductions in inflammatory biomarkers or 
improvement in antioxidant status [110, 111]. Considering 
also, the high omega-3 content of such a diet, potential vas-
cular health benefits of a Mediterranean diet may be also due 
to the reductions in oxidative stress via the biological effects 
of EPA and DHA. 
 Several studies have investigated the impact of these 
types of diet on circulating EPCs in a variety of human 
populations (metabolic syndrome, type 2 diabetics, and the 
elderly), showing significant promise in modulating endothe-
lial repair capacity. In those with type 2 diabetes mellitus, 4 
years of the diet resulted in a significant increase in 
CD34+VEGFR2+ and CD34+CD133+VEGFR2+ EPCs at both 
year 2 and year 4 time-points [108]. There was an absence of 
any change in these markers of endothelial repair capacity in 
a parallel low-fat diet. The elevations in EPCs were con-
comitantly observed alongside reductions in inflammatory 
biomarkers CRP, and reductions in cIMT. Interestingly, the 
increases in EPCs were inversely associated with cIMT in 
the Mediterranean diet group [108]. After only 8 weeks, such 
a diet resulted in significant increases in CD34+VEGFR2+ 
EPCs in individuals with the metabolic syndrome, however, 
this increase was superseded by a combination of diet plus 
exercise intervention over the same duration [112]. 
 In an aging population of both men and women (>65yrs), 
a 4 week dietary intervention resulted in >100% increases in 
circulating CD34+CD133+VEGFR2+ EPCs in participants 
undertaking a diet rich in olive oil, vegetables, and fish, as 
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opposed to a low carbohydrate diet enriched with PUFA, and 
a significant reduction in endothelial microvesicles (indica-
tive of endothelial damage and/or activation) [113]. Once 
again, these changes were irrespective of cardiometabolic 
risk factor changes. Cesari et al. [114] found that circulating 
number of EPCs (CD34+VEGFR2+/CD34+CD133+ 

VEGFR2+) were related to olive oil consumption, dietary 
vegetable servings and ‘Mediterranean diet score’ (a score of 
adherence to a Mediterranean diet devised by Panagiotakos 
et al. [115]) in a large population of nonagenarians. How-
ever, longer duration interventions in this aging population, 
as well as a functional assessment of endothelialization are 
lacking and thus are required to fully elucidate the impact of 
such diet on endothelial regeneration and repair. It must also 
be acknowledged that it is difficult to attribute the improve-
ments in these vascular reparative cells to a certain aspect of 
the diet due to the wide variety of components of the diet. 

6. PHYSICAL ACTIVITY AND EXERCISE EFFECTS 
ON ENDOTHELIAL PROGENITOR CELLS 

 Exercise and physical activity have potent cardiovascular 
effects. These include the prevention or reversal of plaque 
formation in the vasculature [116, 117], improved endothe-
lial function [118-121], and angiogenesis [122-124] in a va-
riety of human populations. Single bouts of exercise have the 
remarkable ability to stimulate the mobilization of EPCs 
from peripheral tissues such as the bone marrow, into the 
circulation for up to 72 hours post-exercise [54, 68, 125-
129]. However, some studies have failed to show any 
changes in circulating EPCs in the post-exercise recovery 
period [49, 130]. The response to exercise is not only 
duration and intensity-dependent [127], but also dependent 
on human population investigated, with the evidence show-
ing those with CVD [131-133], and older adults [54] display 
an attenuated response. EPC mobilization in response to ex-
ercise is said to be due to changes in circulating chemoattrac-
tants, such as VEGF, G-CSF and SDF-1α [68, 129, 134], 
however, mechanistic studies in exercise and EPC mobiliza-
tion are lacking. 
 It is not just single bouts of exercise which may have this 
profound effect on EPCs, but studies investigating the effect 
of regular exercise and physical activity on these cells gener-
ally report increase in EPC number and/or function [27, 52, 
69, 122, 135-139], even in older adults [27, 52]. After a 3-
month home-based aerobic exercise intervention, older men, 
who had displayed significantly reduced basal EPC number 
and migratory function, improved their EPC number and 
function nearly 2-fold [52]. Xia et al. [27] reported im-
provements in both in vitro and in vivo function of EPCs 
from older adults who had undergone a 12-week aerobic 
exercise program using a carotid artery injury mouse model. 
The researchers took EPCs from older adults before and after 
the exercise program and injected these into the left carotid 
of athymic nude mice after inducing carotid injury. Endothe-
lial regeneration was evaluated by measuring the area of re-
endothelialization in the denuded artery 3 days post-
injection. The improvement observed in re-endothelialization 
due to EPCs from older individuals post-training was ac-
companied by improvements in intracellular CXCR4 
signalling, which is key for EPC homing to sites of injury 
[41].   

 It is clear that single bouts and regular prolonged exercise 
can improve circulating number and function of these vascu-
logenic cells in humans. This improvement has been aligned 
with improvements in vascular function, and reduced arterial 
stiffness, offering a key mechanism by which exercise may 
benefit cardiovascular health in older populations. The poten-
tial effects of exercise and physical activity on EPCs in aging 
have been reviewed in depth elsewhere [67]. 

7. OBESITY 

 Obesity is heavily linked with the development of key 
variables of the metabolic syndrome and type 2 diabetes 
mellitus (T2DM). The worldwide incidence of CVD and 
metabolic abnormalities, such as T2DM is increasing, and 
obesity is a significant risk factor. Data suggests that those 
who are overweight or obese are 50-75% more likely to de-
velop CVD than those who are ‘normal weight’ [140]. This 
is likely to be driven by inflammatory pathways, including 
adipose tissue-derived tumour necrosis factor-α (TNF-α) 
[141], which may affect endothelial function specifically via 
activation of NADPH oxidase and subsequent production of 
superoxide [142]. Endothelial dysfunction with obesity pre-
cedes the development of atherosclerosis, with impaired 
vasodilator functions apparent [143], potentially as a direct 
result of impairments in the L-arginine-NO pathway. There-
fore, obesity-induced endothelial dysfunction may be a pri-
mary cause of the increased CVD risk in this population. 
 Obesity may promote endothelial dysfunction via effects 
on endothelial regeneration and repair mechanisms, such as 
bone marrow-derived EPCs. Fadini et al. [144] observed a 
negative association between components of the metabolic 
syndrome, and CD34+ progenitor cell count, with accumula-
tive scores of the metabolic syndrome strengthening this 
inverse relationship. Several studies report an inverse rela-
tionship between BMI and circulating total progenitor cells 
and EPC count [144, 145]. Furthermore, other studies have 
reported that obese men with metabolic syndrome had 40% 
fewer circulating EPCs than healthy age-matched controls 
[146]. Interestingly, EPC proliferative capacity reflected 
reductions in circulating EPCs in obese compared to lean 
individuals [147]. The same group showed that the in vitro 
pro-angiogenic function of EPCs was also impaired with 
obesity in 50+year-old individuals, with impaired stimulated 
the release of both VEGF and G-CSF, which may be linked 
to the finding that these EPCs displayed higher expression of 
caspase-3, a pro-apoptotic intracellular signal [148]. In a 
murine model of obesity, obese animals displayed impaired 
in vitro angiogenesis, suppressed EPC mobilization in re-
sponse to limb ischemia, and reduced incorporation into aor-
tic vessels after LPS-induced vascular damage [149], con-
firmed by other animal models also showing impaired recov-
ery of blood flow after limb ischemia accompanying the re-
ductions in ischemia-induced PC mobilization [150]. In hu-
mans, EPC adhesion, migration and angiogenesis in vitro 
were significantly lower than in lean individuals [151]. The 
ability of EPCs to home to sites of ischemia, adhere and mi-
grate are key roles of EPCs in order for these cells to exert 
their vasculogenic function. These findings suggest that obe-
sity suppresses the angiogenic potential of human EPCs to 
home to sites of vascular damage or tissue ischemia, and to 
promote blood vessel growth and repair. 
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 There is clear evidence for obesity-mediated EPC dys-
function, which may be as a result of associated inflamma-
tion, impaired glucose tolerance and elevated oxidative 
stress. The resultant endothelial dysfunction and suppressed 
endothelial repair capacity increase the risk of atherosclero-
sis in this population. Interventions designed to stimulate 
weight loss may have significant health benefits by improv-
ing vascular endothelial health via modulating EPC number 
and functional capacity. 

8. CALORIE RESTRICTION/WEIGHT LOSS DIE-
TARY INTERVENTIONS TO COMBAT OBESITY-
MEDIATED EPC DYSFUNCTION 

 Recently, calorie restriction diets have been touted as a 
potential intervention to improve health and enhance longev-
ity [152]. Recent reports suggest that calorie restriction may 
reduce CVD risk by modulating oxidative stress levels [153], 
and DNA damage [154]. Such diets have been proven to be 
beneficial for weight loss in overweight and obese individu-
als [155, 156] due to the stark effects on reducing oxidative 
stress [157] and improving the metabolic profile of obese 
and older humans [156, 158-160].  
 A 24-week low carbohydrate diet resulted in significant 
reductions in endothelial damage biomarkers in overweight 
post-menopausal women despite no changes in metabolic 
profiles [161], suggesting vascular benefit effect of such a 
diet is independent of metabolic changes. Added to this, 
there is a wealth of evidence showing vascular function 
benefits of calorie restriction/weight loss diets in obese and 
older individuals [162-168]. Mechanisms include reductions 
in NADPH oxidase activity, increased activation of sirtuin-1, 
a powerful intracellular antioxidant complex [169], increased 
antioxidant capacity (increased levels of manganese superox-
ide dismutase) and increasing tissue eNOS content and NO 
bioavailability [170]. Furthermore, improvements in vascular 
function with weight loss strategies may be preceded by im-
provements in endothelial regenerative capacity. 
 Indeed, preliminary data showed that weight loss strate-
gies may be beneficial for improving EPC number [171]. 
The extent of reductions in body fat composition in response 
to a weight loss diet relates to the extent of EPC improve-
ment in humans [172]. Xin et al. [173] exposed mice to pro-
longed fasting after cerebral ischemia. They observed sig-
nificant upregulation of the antioxidant enzyme MnSOD,  as 
well as eNOS in bone marrow-derived EPCs, increased 
capillary number in the infarct zone, and improved EPC mi-
gratory and tube formation capacity in the fasted mice com-
pared to control mice. These observations were accompanied 
by reductions in the volume of infarct zone, which was also 
further improved by intravenous administration of EPCs 
from fasted mice compared to control mice [173], strongly 
suggesting a protective role of periodic fasting to improve 
EPC vascular regenerative capacity. Interestingly, exercise 
and diet may act synergistically to promote EPC number and 
function in obese populations [174]. An 8-week combined 
exercise and calorie restricted diet resulted in significant 
improvements in circulating EPCs, and EPC migratory ca-
pacity in obese populations [174]. However, the effect of 
combined strategies in older adults is yet to be investigated 

but may hold promise due to the already significant impact 
of exercise on EPC number and function [49, 54, 128]. 

9. FUTURE DIRECTIONS 

 Currently, large-scale cohort interventional studies in 
dietary influence on vascular regenerative capacity are lack-
ing, especially in aging adults with or without CVD, and are 
thus warranted. In addition, other angiogenic cell popula-
tions, such as angiogenic T-cells [175, 176] and mesenchy-
mal stem/progenitor cells [177] are being investigated for 
their influence on endothelial function and repair through 
their potent pro-angiogenic capacity and may be targeted for 
such therapeutic interventions, such as diet and/or exercise.  
 Additionally, the role of physical activity and exercise for 
cardiovascular benefit is clear, however, more studies are 
required to elucidate the benefit for older, and frail popula-
tions who are specifically at-risk of CVD and vascular-
related disorders. 

SUMMARY & CONCLUSION 

 Age-related increased CVD risk is due to a plethora of 
factors. Reductions in endothelial repair capacity via altera-
tions in both EPC number and functions may explain the 
aging impairments in endothelial function, thus promoting 
atherosclerotic disease risk. However, lifestyle factors such 
as diet, exercise and obesity (Fig. 2) can have a significant 
impact on these vascular regenerative cells, and thus older 
populations may be able to attenuate CVD risk through life-
style modifications.  

 

 
Fig. (2). Possible effects of lifestyle factors on aging circu-
lating endothelial progenitors and cardiovascular risk. 
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