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The Golgi apparatus is a central intracellular membrane organelle for trafficking and

modification of proteins and lipids. Its basic structure is a stack of tightly aligned flat

cisternae. In mammalian cells, dozens of stacks are concentrated in the pericentriolar

region and laterally connected to form a ribbon. Despite extensive research in the

last decades, how this unique structure is formed and why its formation is important

for proper Golgi functioning remain largely unknown. The Golgi ReAssembly Stacking

Proteins, GRASP65, and GRASP55, are so far the only proteins shown to function in

Golgi stacking. They are peripheral membrane proteins on the cytoplasmic face of the

Golgi cisternae that form trans-oligomers through their N-terminal GRASP domain, and

thereby function as the “glue” to stick adjacent cisternae together into a stack and to link

Golgi stacks into a ribbon. Depletion of GRASPs in cells disrupts the Golgi structure and

results in accelerated protein trafficking and defective glycosylation. In this minireview we

summarize our current knowledge on how GRASPs function in Golgi structure formation

and discuss why Golgi structure formation is important for its function.
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INTRODUCTION

The Golgi apparatus is a membrane-bound organelle found in all eukaryotic cells, including those
of animals, plants, and fungi, and functions as a central hub in the exocytic secretory pathway
(Klute et al., 2011). The Golgi is the receiver of the entire output of the endoplasmic reticulum (ER),
where proteins and lipids are processed, sorted, and packaged into vesicles and transport carriers for
delivery to their final destinations inside or outside of the cell. Under electron microscope (EM),
the Golgi displays as stacks of flattened cisternae, which are often laterally linked into a ribbon-
like structure in mammalian cells. By light microscopy, the Golgi is characterized by a compact
reticular appearance located adjacent to the nucleus. Despite the complexity, the Golgi structure
is highly dynamic, and undergoes rapidly disassembly and reassembly during mitosis and under
stress and physiological conditions (Wang and Seemann, 2011). At the onset of mitosis, the Golgi
disassembles into vesicles and tubular structures that are partitioned into the daughter cells, where
they are reassembled into a new Golgi at the end of mitosis (Shorter and Warren, 2002).

The unique stacked morphology and dynamics of the Golgi have prompted numerous
studies targeting the mechanisms of Golgi structure formation and function. Morphological and
biochemical research observed inter-cisternal proteinaceous connections that cross-link adjacent
cisternae (Figure 1A) (Turner and Whaley, 1965; Franke et al., 1972; Heuser, 2011). Mild
proteolysis removing these connections resulted in unstacking (Cluett and Brown, 1992). Later on,
a detergent-insoluble protein complex was isolated, suggesting the presence of a “Golgi matrix” to
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FIGURE 1 | Golgi structure and the role of GRASP65 in Golgi stack formation. (A) Electron micrograph of a Golgi apparatus from the green alga

Chlamydomonas reinhardtii. Cells were snap-frozen without chemical fixation, fractured and deep-etched (Heuser, 2011). Arrows point to bridges between the

cisternae. Scale bar, 100 nm. (B) GRASP65 schematic domain structure. Indicated are the myristic acid (myr) for membrane association, the GRASP domain (with two

PDZ domains underlined) for dimerization and oligomerization, and the Serine/Proline-Rich (SPR) domain with phosphorylation sites (*). GRASP55 has a similar

domain structure. (C) GRASP65 oligomerization and Golgi stack formation. During interphase, GRASP65 dimers from adjacent cisternae oligomerize to form a “glue”

to hold the membranes into a stack. In mitosis, phosphorylation of GRASP65 by Cdk1 and Plk1 disassembles the oligomers and unstacks the cisternae. Post-mitotic

dephosphorylation of GRASP65 by PP2A leads to re-oligomerization.

which Golgi enzymes could attach (Slusarewicz et al., 1994).
Numerous Golgi matrix proteins have been identified and
characterized since then, including GRASPs (GRASP55 and
GRASP65) and golgins, which work together to maintain Golgi
structure and function (Xiang and Wang, 2011).

GRASP65 was first discovered as a Golgi stacking protein
that is accessible to the alkylating reagent N-ethylmaleimide
(NEM) only when the Golgi stack is disassembled (Barr et al.,
1997). It is a peripheral protein on the cytoplasmic surface of
the Golgi, directly targeted to the Golgi after synthesis in the
cytosol (Yoshimura et al., 2001) via a myristic acid attached
to the N-terminal glycine residue. In a cell-free system that
mimics Golgi disassembly and reassembly during the cell cycle,

inhibition of GRASP65 using recombinant proteins or antibodies
blocked the formation of Golgi stacks but not the generation
of single cisternae (Barr et al., 1997). When cells were treated
with Brefeldin A (BFA), a fungal metabolite that redistributes
Golgi enzymes into the ER (Orci et al., 1991; Klausner et al.,
1992), GRASP65 and GM130 remain in small tubulovesicular
remnants distinct from the ER, which function as the receiver
of Golgi membranes upon BFA washout (Seemann et al., 2000).
The GRASP65-GM130 complex also functions as a Rab1 effector
to define the cis-Golgi compartment that receives COPII vesicles
from the ER (Moyer et al., 2001).

GRASP55 was identified as a homolog of GRASP65 by
database searching (Shorter et al., 1999). Similar to GRASP65,
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GRASP55 interacts with Golgin-45 and Rab2, and is essential
for protein transport and Golgi structure formation (Short et al.,
2001; Barr, 2005). The proposed role for both GRASPs in
Golgi stacking was potentiated by their subcellular localization.
Cryo-EM revealed that GRASP65 is present in cis-Golgi, while
GRASP55 is more concentrated in the medial/trans-cisternae
(Shorter et al., 1999). Thus, although GRASP55 and GRASP65
may have some redundancy in their functions, they are both
required for the formation of the polarized stacked structure
(Xiang and Wang, 2010).

GRASPs are evolutionally conserved. Both contain an N-
terminal GRASP domain, which is highly conserved between the
two and between species, and a C-terminal Serine/Proline-Rich
(SPR) domain, which is more divergent (Figure 1B). GRASP
orthologues and homologs have been identified in different
species, including flies (Kondylis et al., 2005), yeast (Behnia
et al., 2007), and parasites (Ho et al., 2006; Struck et al., 2008;
Yelinek et al., 2009), but not in plants (Vinke et al., 2011). These
homologs have a higher sequence homology to mammalian
GRASP55 than GRASP65, suggesting that GRASP55 may be the
common ancestor during evolution. Most of these homologs
are associated with the Golgi; however, some are also detected
on other membranes. For instance, the sole GRASP homolog
in Drosophila melanogaster, dGRASP, localizes to the Golgi and
the transitional ER (tER); depletion of dGRASP in S2 cells by
RNA interference (RNAi) partially affected the Golgi structure
but had no effect on tER organization (Kondylis et al., 2005). In
the budding yeast Saccharomyces cerevisiae, which has most of
the Golgi cisternae as isolated discs, the single GRASP homolog
Grh1 localizes to the tER-Golgi interface but is not required for
tER-Golgi association (Behnia et al., 2007; Levi et al., 2010). Thus,
GRASPs function in Golgi stacking may be a gained function
during evolution.

So far GRASP65 and GRASP55 are the only known proteins
with the properties required for Golgi stacking. A number
of labs have tested these proteins; some support their roles
in Golgi stacking, while others provided alternative functions
including Golgi ribbon linking, transport of specific cargo across
the Golgi stack, unconventional secretion, cell cycle regulation,
apoptosis, and cell migration, which have been summarized
in a number of reviews (Wang, 2008; Ramirez and Lowe,
2009; Wei and Seemann, 2010; Vinke et al., 2011; Wang and
Seemann, 2011; Xiang and Wang, 2011; Ji et al., 2013; Tang and
Wang, 2013). Most recently, new findings have been made on
GRASPs, including available crystal structures, identification of
novel GRASP interacting proteins, and new insights between
Golgi structure formation and function, which have triggered
us to update our understanding of GRASPs in Golgi structure
formation and function. Other functions of GRASPs not related
to the Golgi are not discussed here due to space limitations.

GRASPS AND GOLGI STRUCTURE
FORMATION

GRASPs have the biochemical and biophysical properties to
function as Golgi stacking proteins. First, GRASPs are peripheral

proteins located between the cisternae where stacking occurs
(Shorter et al., 1999). In addition to N-myristoylation, GRASP65,
and GRASP55 also interacts with GM130 (Barr et al., 1998) and
Golgin-45 (Short et al., 2001), respectively. This dual anchoring
of GRASPs onto membrane restricts the orientation of the
protein to favor trans pairing over cis (Bachert and Linstedt,
2010), thus ensuring membrane tethering by forming trans-
oligomers (Wang et al., 2003).

Second, GRASPs oligomerization is regulated by
phosphorylation, which provides an explanation for Golgi
disassembly and reassembly during cell division (Tang and
Wang, 2013). In cells, inhibition of mitotic kinases blocked
mitotic Golgi fragmentation (Misteli and Warren, 1995); while
microinjection of mitotic kinases such as Cdk1 and polo-like
kinase (Plk) led to Golgi disassembly (Wang et al., 2003). In vitro,
treatment of purified Golgi stacks with mitotic kinases resulted
in cisternal unstacking (Wang et al., 2003; Tang et al., 2008).
These results demonstrate that Golgi structure formation is
regulated by phosphorylation during the cell cycle. GRASP65
is a major target of mitotic kinases on the Golgi (Wang et al.,
2003); the SPR domain contains multiple phosphorylation sites
that are phosphorylated by Cdk1 and Plk in mitosis (Tang et al.,
2012), which inhibits GRASP oligomerization and results in
Golgi disassembly (Wang et al., 2005). At the end of mitosis,
GRASP65 dephosphorylation by PP2A (Tang et al., 2008) allows
the reformation of GRASP trans-oligomers and restacking of
newly formed cisternae (Tang et al., 2010). GRASP55 is regulated
in a similar way (Xiang andWang, 2010), though phosphorylated
by the MAP kinase ERKs instead (Jesch et al., 2001; Feinstein
and Linstedt, 2007; Duran et al., 2008).

Third, the size of GRASP proteins fits the tight gap between
the cisternae. Recently reported crystal structures confirmed that
the GRASP domain is globular, with 6.5 nm in length, and that
this domain forms oligomers (Truschel et al., 2011; Feng et al.,
2013; Hu et al., 2015). There are some differences between these
reports on the arrangements of the GRASP domain, possibly
because of the differences in the protein length used in the
studies and the addition of a GM130 peptide that may cause
conformational change. None of the structural studies were able
to include the SPR domain, and thus the structural basis of
phosphorylation regulation of GRASP oligomerization remains
unknown. Nevertheless, the size of GRASP65 trans-oligomers
fits well with the 11 nm inter-cisternal gap (Cluett and Brown,
1992). These results suggest GRASPs as ideal candidates in Golgi
stacking than the long coiled-coil golgins, which are better known
for membrane tethering (Wong and Munro, 2014).

Since their discoveries, additional evidence has been provided
to support GRASPs as Golgi stacking factors. Biochemical
studies revealed that GRASP65 forms homodimers through the
GRASP domain; dimers from adjacent membranes oligomerize
in trans and trans-oligomers function as a “glue” to hold
the cisternae together into stacks (Figure 1C) (Wang et al.,
2003). When GRASP65 is coated onto the surface of beads,
it causes the beads to aggregate, demonstrating that it can
directly link surfaces together (Wang et al., 2003, 2005). Similarly,
expressing GRASP65 on the outer membrane of mitochondria
led to mitochondria aggregation (Sengupta et al., 2009). In cells,
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microinjection of GRASP65 antibodies inhibited post-mitotic
Golgi reassembly (Wang et al., 2003). Depletion of either GRASP
by RNAi reduced the number of cisternae per stack (Sütterlin
et al., 2005), which was rescued by expressing exogenous GRASP
proteins (Tang et al., 2010). Simultaneous depletion of both
caused complete disassembly of the Golgi stacks (Xiang and
Wang, 2010). Conversely, expression of non-phosphorylatable
GRASP65 mutants enhanced Golgi stacking in interphase and
inhibited Golgi fragmentation in mitosis (Tang et al., 2010).
Similar results were obtained for GRASP55 (Xiang and Wang,
2010).

RNAi-mediated knockdown has been widely used to
investigate the role of GRASPs in Golgi structure formation. A
recent study from the Rothman lab showed that efficient stacking
occurs in the absence of GRASP65/55 when either GM130 or
Golgin-45 was overexpressed, and thus hypothesized that a large
number of proteins, including GRASP55/65, Golgin-45, GM130,
and perhaps additional proteins, contribute to the total amount
of adhesive energy that glues Golgi cisternae into a stack (Lee
et al., 2014). While this hypothesis indicates a high complexity
in Golgi stacking, it helps explain how Golgi stacking occurs in
organisms such as plant in which no GRASP proteins have been
identified. Consistent with this hypothesis, knockdown of both
dGRASP and GM130 in Drosophila S2 cells resulted in more
dramatic Golgi disassembly than depletion of dGRASP alone
(Kondylis et al., 2005). A GRASP65 knockout mouse has recently
been reported, with only limited defects in Golgi structure and
function (Veenendaal et al., 2014). A concern with this mouse is
that a functional fragment of GRASP65 may still be made, and
the knockout effect of GRASP65 may be compensated by the
redundancy of GRASP55. Therefore, a complete knockout of
both GRASPs is needed to further evaluate their functions.

In some other reports, RNAi-mediated depletion of GRASP65
or GRASP55 also resulted in Golgi ribbon unlinking, but the
Golgi stacks were largely intact, suggesting that GRASPs may link
Golgi stacks into a ribbon (Puthenveedu et al., 2006; Feinstein
and Linstedt, 2008). While the different observations may be due
to distinct experimental systems, the knockdown efficiency, and
the approaches used to analyze the effects of GRASP deletion. In
fact, these two observations are not mutually exclusive, and it is
possible that GRASPs function in both Golgi stacking and ribbon
linking by forming trans-oligomers.

Given that the gaps between Golgi stacks are much larger
and more heterogeneous (10s–100s nm) than the distance
between cisternae within each stack (Cluett and Brown, 1992),
it is possible that other bridging proteins may help GRASPs
in ribbon linking, of which golgins are ideal candidates
because of their long coiled-coil domains known in membrane
tethering. Consistent with this idea, inhibition (by RNAi-
mediated depletion or microinjection of antibodies) of GM130
(Puthenveedu et al., 2006), Golgin-84 (Diao et al., 2003), Golgin-
97 (Lu et al., 2004), Golgin-160 (Maag et al., 2005), and p115
(Chiu et al., 2002), all results in fragmentation of the Golgi
ribbon into ministacks (Munro, 2011). An ideal bridge protein
for GRASP65 is GM130 (Barr et al., 1998; Nakamura, 2010);
however, the level and localization of GM130 are not significantly
affected by GRASP65 depletion (Sütterlin et al., 2005; Tang et al.,

2010), indicating a role for GM130 in Golgi integrity independent
of GRASP65.

To explore the possibility that other proteins may help
GRASP65 in ribbon linking, we have employed biochemical
methods and identified the actin elongation factor Mena as a
novel GRASP65 binding protein (Tang et al., 2016). Mena is
recruited onto the Golgi membranes through interaction with
GRASP65 and triggers local actin filament growth. Depletion
of Mena or disrupting actin polymerization resulted in Golgi
fragmentation. In cells, Mena and actin were required for
Golgi ribbon formation after nocodazole washout; in vitro,
Mena, and microfilaments enhanced GRASP65 oligomerization
and Golgi membrane fusion. Thus, Mena interacts with
GRASP65 to promote local actin polymerization and GRASP65
oligomerization, both of which facilitate Golgi ribbon linking.

GRASPS AND GOLGI FUNCTION

To a great extent, organelle function relies on its structure.
However, why Golgi stack formation is important for its function
has been remaining largely as a mystery in the field for
many decades. Golgi cisternae do not normally form stacks
in budding yeast (Saccharomyces cerevisiae), suggesting that
stacking is not absolutely required for cell survival. However,
Golgi stacking is a pronounced feature in all metazoans and
many unicellular eukaryotes, implying that it has important
functional consequences. First, stacking may impact protein
trafficking. The close spatial arrangement of cisternae in stacks
minimizes the distance that molecules must travel; local tethering
proteins facilitate vesicle fusionwith Golgimembranes (Lupashin
and Sztul, 2005), therefore stacking should enhance protein
trafficking. However, stacking restricts the surface for vesicle
budding and fusion to the rims of the cisternae and so it
may retard trafficking. Thus, this relationship is still not well
understood. Second, stacking may be required for accurate
glycosylation. The Golgi harbors various glycosyltransferases
and glycosidases in different sub-compartments. An ordered
structure is likely required to carry out precise, sequential
modifications as cargo proteins pass between cisternae (Kornfeld
and Kornfeld, 1985; Varki, 1998; Roth, 2002). In yeast and
other fungi, N-glycosylation in the Golgi mainly involves the
addition of mannoses (Wildt and Gerngross, 2005). In multi-
cellular organisms, N-glycosylation of membrane and secretory
proteins is more complex and critical. Accurate glycosylation is
essential for their cellular functions, including cell adhesion and
migration, cell-cell communication, and immunity (Ohtsubo and
Marth, 2006). In polarized cells such as neurons and epithelial
cells, N- and O-linked glycosylations serve as apical sorting
signals (Weisz and Rodriguez-Boulan, 2009). This may explain
why stacking is not required in yeast, but is essential for life in
higher order organisms. Third, stacking may ensure that sorting
occurs only when cargo molecules reach the trans-Golgi network
(TGN) but not in earlier sub-compartments.

The best way to answer these questions is to disrupt
the Golgi stacks and assess the subsequent effects. One
surprising observation is that Golgi destruction accelerates
protein trafficking. Inhibition of stacking by microinjecting
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GRASP65 antibodies resulted in accelerated CD8 trafficking
(Wang et al., 2008). Golgi destruction by depletion of both
GRASPs enhanced trafficking of the vesicular stomatitis virus
G glycoprotein (VSV-G), the cell adhesion protein integrin,
and the lysosomal enzyme cathepsin D (Xiang et al., 2013).
How could Golgi unstacking enhance protein trafficking? A
plausible explanation is that unstacking increases the accessibility
of coat proteins to Golgi membranes for vesicle budding
and fusion, thereby increasing the rate of protein transport
(Figure 2). Indeed, Golgi unstacking increased the rate and
efficiency of COPI vesicle formation in vitro (Wang et al.,
2008), while GRASP-depletion enhanced membrane association
of coat proteins in cells (Xiang et al., 2013). In a similar
study, the Rothman group reported that GRASP55/65 depletion
increased CD8 transport (Lee et al., 2014). In Alzheimer’s disease,
Golgi fragmentation resulted from GRASP65 phosphorylation
by activated Cdk5 enhances APP trafficking and increases
Aβ production, which could be reversed by expressing non-
phosphorylatable GRASP proteins (Joshi et al., 2014, 2015; Joshi
and Wang, 2015).

Golgi destruction impairs accurate protein glycosylation and
sorting. GRASP depletion resulted in decreased sialic acid on the
cell surface, but the expression level and localization of Golgi
enzymes did not significantly change (Xiang et al., 2013). This
effect was confirmed by analysis of individual glycoproteins,
flow cytometry of cells surface-stained by fluorescent lectins,
and glycomic studies. In addition, GRASP depletion also caused
missorting of cathepsin D precursor to the extracellular space
(Xiang et al., 2013). These results indicate that Golgi structure

formation is required for accurate protein glycosylation and
sorting. One reasonable explanation is that stacking controls
the sequence and speed of protein transport through the Golgi,
allowing the cargo to remain in each sub-compartment for a
sufficient time period to ensure proper glycosylation in the
stack and proper sorting at the TGN; unstacking increases the
membrane surface for vesicle formation and protein transport,
but causes glycosylation and sorting defects (Figure 2).

An alternative explanation for the glycosylation defects
caused by GRASP depletion is Golgi ribbon unlinking. It
has been reported that acute inactivation of GRASP65 or
GRASP55 led to a loss of cis- or trans-Golgi integrity,
respectively. When one GRASP protein was substituted by the
other, the Golgi ribbon was intact, but the membranes were
decompartmentalized and glycosylation became defective. Thus,
each GRASP plays a cisterna-specific role in linking ministacks
to ensure Golgi compartmentalization, enzymes localization, and
proper glycosylation (Jarvela and Linstedt, 2014). Additionally,
cells from the GRASP65 knockout mouse also showed defects
in cis-Golgi integrity and glycosylation in the plasma membrane
(Veenendaal et al., 2014).

In addition to the role in Golgi structure formation, GRASPs
have been implicated in transport of specific cargo, such as TGFα
(Kuo et al., 2000), p24 (Barr et al., 2001), CD83 (Stein et al., 2015),
CD8α, and Frizzled4 (D’Angelo et al., 2009). These proteins
contain a C-terminal hydrophobic tail in which a critical valine
residue interacts with the PDZ domain of the GRASP proteins.
Here GRASPs function as cargo receptors or chaperones for these
transmembrane proteins.

FIGURE 2 | Golgi destruction accelerates protein trafficking and impairs accurate glycosylation and sorting. When Golgi cisternae are fully stacked (A),

vesicles can only form and fuse at the rims. This slows down trafficking, but enforces accurate glycosylation. Once the cisternae are unstacked (B), more membrane

surface area becomes accessible for vesicle budding and fusion, thereby increasing cargo transport. This, however, causes glycosylation and sorting defects (adapted

and modified from Xiang et al., 2013).
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CONCLUSIONS AND FUTURE
DIRECTIONS

Significant progress has been made in the last few years on
the GRASP proteins, including their biochemical properties,
phosphorylation regulation, crystal structures, and interacting
partners, which support GRASPs as the best candidates for
Golgi stacking factors. However, there have been discrepancies
on their roles in Golgi structure formation mostly resulting
from RNAi depletion experiments. A complete knockout of
both GRASPs is needed to evaluate their functions. Regardless
of the discrepancies, it is generally agreed that (1) GRASPs
are important Golgi structural proteins, (2) GRASP proteins
may have multiple functions, and (3) there may be other
proteins involved in Golgi structure formation. The use of
GRASPs as tools to manipulate Golgi stacks has made it
possible to assess the biological significance of stack formation.
Significantly, there has been an increasing number of human
diseases in which Golgi fragmentation has been observed,
including autoimmune diseases (Fritzler et al., 1984; Bizzaro
et al., 1999), congenital disorders of glycosylation (CDGs)
(Durand and Seta, 2000; Freeze and Ng, 2011), cancer

(Dennis et al., 1999; Ono and Hakomori, 2004; Tang et al.,
2011), as well as Huntington’s (Hilditch-Maguire et al., 2000),
Parkinson’s (Mizuno et al., 2001), and Alzheimer’s (Joshi
et al., 2014) diseases. Very few studies have attempted to
correlate GRASP expression and modifications with Golgi
structure and function in different tissues and diseases. Thus,
further investigation of the mechanism and significance of
Golgi structure formation and the role of GRASPs in Golgi
structure assembly may provide meaningful insights into disease
therapy.

ACKNOWLEDGMENTS

We thank Dr. Ursula Goodenough (Washington University,
St. Louis) for providing us the EM image of the Golgi
apparatus in Figure 1A, and members in the Wang lab for
insightful discussions. This work was supported in part by the
National Institutes of Health (Grants GM087364, GM105920,
and GM112786), the American Cancer Society (Grant RGS-
09-278-01-CSM), MCubed and the Fastforward Protein Folding
Disease Initiative of the University of Michigan, and an
anonymous donation to YW.

REFERENCES

Bachert, C., and Linstedt, A. D. (2010). Dual anchoring of the GRASP

membrane tether promotes trans pairing. J. Biol. Chem. 285, 16294–16301. doi:

10.1074/jbc.M110.116129

Barr, F. A. (2005). Purification and functional interactions of GRASP55 with Rab2.

Meth. Enzymol. 403, 391–401. doi: 10.1016/S0076-6879(05)03034-X

Barr, F. A., Nakamura, N., and Warren, G. (1998). Mapping the interaction

between GRASP65 and GM130, components of a protein complex

involved in the stacking of Golgi cisternae. EMBO J. 17, 3258–3268. doi:

10.1093/emboj/17.12.3258

Barr, F. A., Preisinger, C., Kopajtich, R., and Körner, R. (2001). Golgi matrix

proteins interact with p24 cargo receptors and aid their efficient retention in

the Golgi apparatus. J. Cell Biol. 155, 885–891. doi: 10.1083/jcb.200108102

Barr, F. A., Puype, M., Vandekerckhove, J., and Warren, G. (1997). GRASP65,

a protein involved in the stacking of Golgi cisternae. Cell 91, 253–262. doi:

10.1016/S0092-8674(00)80407-9

Behnia, R., Barr, F. A., Flanagan, J. J., Barlowe, C., and Munro, S. (2007). The

yeast orthologue of GRASP65 forms a complex with a coiled-coil protein

that contributes to ER to Golgi traffic. J. Cell Biol. 176, 255–261. doi:

10.1083/jcb.200607151

Bizzaro, N., Pasini, P., Ghirardello, A., and Finco, B. (1999). High anti-golgi

autoantibody levels: an early sign of autoimmune disease? Clin. Rheumatol. 18,

346–348. doi: 10.1007/s100670050115

Chiu, R., Novikov, L., Mukherjee, S., and Shields, D. (2002). A caspase cleavage

fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis.

J. Cell Biol. 159, 637–648. doi: 10.1083/jcb.200208013

Cluett, E. B., and Brown, W. J. (1992). Adhesion of Golgi cisternae

by proteinaceous interactions: intercisternal bridges as putative adhesive

structures. J. Cell Sci. 103, 773–784.

D’Angelo, G., Prencipe, L., Iodice, L., Beznoussenko, G., Savarese, M., Marra, P.,

et al. (2009). GRASP65 and GRASP55 sequentially promote the transport of C-

terminal valine-bearing cargos to and through the Golgi complex. J. Biol. Chem.

284, 34849–34860. doi: 10.1074/jbc.M109.068403

Dennis, J. W., Granovsky, M., and Warren, C. E. (1999). Glycoprotein

glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34. doi:

10.1016/S0304-4165(99)00167-1

Diao, A., Rahman, D., Pappin, D. J., Lucocq, J., and Lowe, M. (2003). The coiled-

coil membrane protein golgin-84 is a novel rab effector required for Golgi

ribbon formation. J. Cell Biol. 160, 201–212. doi: 10.1083/jcb.200207045

Duran, J. M., Kinseth, M., Bossard, C., Rose, D. W., Polishchuk, R., Wu, C. C.,

et al. (2008). The role of GRASP55 in Golgi fragmentation and entry of cells

into mitosis.Mol. Biol. Cell 19, 2579–2587. doi: 10.1091/mbc.E07-10-0998

Durand, G., and Seta, N. (2000). Protein glycosylation and diseases: blood and

urinary oligosaccharides as markers for diagnosis and therapeutic monitoring.

Clin. Chem. 46, 795–805.

Feinstein, T. N., and Linstedt, A. D. (2007). Mitogen-activated protein kinase

kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the

G2/M cell cycle transition. Mol. Biol. Cell 18, 594–604. doi: 10.1091/mbc.E06-

06-0530

Feinstein, T. N., and Linstedt, A. D. (2008). GRASP55 Regulates Golgi Ribbon

Formation.Mol. Biol. Cell 19, 2696–2707. doi: 10.1091/mbc.E07-11-1200

Feng, Y., Yu,W., Li, X., Lin, S., Zhou, Y., Hu, J., et al. (2013). Structural insight into

Golgi membrane stacking by GRASP65 and GRASP55 proteins. J. Biol. Chem.

288, 28418–28427. doi: 10.1074/jbc.M113.478024

Franke, W. W., Kartenbeck, J., Krien, S., Vanderwoude, W. J., Scheer, U., and

Morre, D. J. (1972). Inter- and intracisternal elements of the Golgi apparatus.

A system of membrane-to-membrane cross-links. Z. Zellforsch. Mikrosk. Anat.

132, 365–380. doi: 10.1007/BF02450714

Freeze, H. H., and Ng, B. G. (2011). Golgi glycosylation and human

inherited diseases. Cold Spring Harb. Perspect. Biol. 3:a005371. doi:

10.1101/cshperspect.a005371

Fritzler, M. J., Etherington, J., Sokoluk, C., Kinsella, T. D., and Valencia, D.

W. (1984). Antibodies from patients with autoimmune disease react with a

cytoplasmic antigen in the Golgi apparatus. J. Immunol. 132, 2904–2908.

Heuser, J. E. (2011). The origins and evolution of freeze-etch electron microscopy.

J. Electron. Microsc. (Tokyo) 60(Suppl. 1), S3–S29. doi: 10.1093/jmicro/dfr044

Hilditch-Maguire, P., Trettel, F., Passani, L. A., Auerbach, A., Persichetti, F., and

MacDonald, M. E. (2000). Huntingtin: an iron-regulated protein essential for

normal nuclear and perinuclear organelles. Hum. Mol. Genet. 9, 2789–2797.

doi: 10.1093/hmg/9.19.2789

Ho, H. H., He, C. Y., De Graffenried, C. L., Murrells, L. J., and Warren, G. (2006).

Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc. Natl.

Acad. Sci. U.S.A. 103, 7676–7681. doi: 10.1073/pnas.0602595103

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 January 2016 | Volume 3 | Article 84

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Zhang and Wang GRASPs and the Golgi

Hu, F., Shi, X., Li, B., Huang, X., Morelli, X., and Shi, N. (2015). Structural basis

for the interaction between the Golgi reassembly-stacking protein GRASP65

and the Golgi matrix protein GM130. J. Biol. Chem. 290, 26373–26382. doi:

10.1074/jbc.M115.657940

Jarvela, T., and Linstedt, A. D. (2014). Isoform-specific tethering links the Golgi

ribbon to maintain compartmentalization. Mol. Biol. Cell 25, 133–144. doi:

10.1091/mbc.E13-07-0395

Jesch, S. A., Lewis, T. S., Ahn, N. G., and Linstedt, A. D. (2001). Mitotic

phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated

protein kinase ERK2.Mol. Biol. Cell 12, 1811–1817. doi: 10.1091/mbc.12.6.1811

Ji, G., Ji, H., Mo, X., Li, T., Yu, Y., and Hu, Z. (2013). The role of GRASPs in

morphological alterations of Golgi apparatus: mechanisms and effects. Rev.

Neurosci. 24, 485–497. doi: 10.1515/revneuro-2013-0020

Joshi, G., Bekier, M. E. II, andWang, Y. (2015). Golgi fragmentation in Alzheimer’s

disease. Front. Neurosci. 9:340. doi: 10.3389/fnins.2015.00340

Joshi, G., Chi, Y., Huang, Z., and Wang, Y. (2014). Abeta-induced Golgi

fragmentation in Alzheimer’s disease enhances Abeta production. Proc. Natl.

Acad. Sci. U.S.A. 111, E1230–1239. doi: 10.1073/pnas.1320192111

Joshi, G., and Wang, Y. (2015). Golgi defects enhance APP amyloidogenic

processing in Alzheimer’s disease. Bioessays 37, 240–247. doi:

10.1002/bies.201400116

Klausner, R. D., Donaldson, J. G., and Lippincott-Schwartz, J. (1992). Brefeldin A:

insights into the control of membrane traffic and organelle structure. J. Cell Biol.

116, 1071–1080. doi: 10.1083/jcb.116.5.1071

Klute, M. J., Melançon, P., and Dacks, J. B. (2011). Evolution and

diversity of the Golgi. Cold Spring Harb. Perspect. Biol. 3:a007849. doi:

10.1101/cshperspect.a007849

Kondylis, V., Spoorendonk, K. M., and Rabouille, C. (2005). dGRASP localization

and function in the early exocytic pathway in Drosophila S2 cells.Mol. Biol. Cell

16, 4061–4072. doi: 10.1091/mbc.E04-10-0938

Kornfeld, R., and Kornfeld, S. (1985). Assembly of asparagine-

linked oligosaccharides. Ann. Rev. Biochem. 54, 631–664. doi:

10.1146/annurev.bi.54.070185.003215

Kuo, A., Zhong, C., Lane, W. S., and Derynck, R. (2000). Transmembrane

transforming growth factor-alpha tethers to the PDZ domain-containing, Golgi

membrane-associated protein p59/GRASP55. EMBO J. 19, 6427–6439. doi:

10.1093/emboj/19.23.6427

Lee, I., Tiwari, N., Dunlop, M. H., Graham, M., Liu, X., and Rothman, J. E. (2014).

Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc.

Natl. Acad. Sci. U.S.A. 111, 1849–1854. doi: 10.1073/pnas.1323895111

Levi, S. K., Bhattacharyya, D., Strack, R. L., Austin, J. R. II, and Glick, B. S.

(2010). The yeast GRASP Grh1 colocalizes with COPII and is dispensable for

organizing the secretory pathway. Traffic 11, 1168–1179. doi: 10.1111/j.1600-

0854.2010.01089.x

Lu, L., Tai, G., and Hong, W. (2004). Autoantigen Golgin-97, an effector of Arl1

GTPase, participates in traffic from the endosome to the trans-golgi network.

Mol. Biol. Cell 15, 4426–4443. doi: 10.1091/mbc.E03-12-0872

Lupashin, V., and Sztul, E. (2005). Golgi tethering factors. Biochim. Biophys. Acta

1744, 325–339. doi: 10.1016/j.bbamcr.2005.03.013

Maag, R. S., Mancini, M., Rosen, A., andMachamer, C. E. (2005). Caspase-resistant

Golgin-160 disrupts apoptosis induced by secretory pathway stress and ligation

of death receptors. Mol. Biol. Cell 16, 3019–3027. doi: 10.1091/mbc.E04-11-

0971

Misteli, T., and Warren, G. (1995). Mitotic disassembly of the Golgi apparatus

in vivo. J. Cell Sci. 108, 2715–2727.

Mizuno, Y., Hattori, N., Kitada, T., Matsumine, H., Mori, H., Shimura, H., et al.

(2001). Familial Parkinson’s disease. Alpha-synuclein and parkin. Adv. Neurol.

86, 13–21.

Moyer, B. D., Allan, B. B., and Balch, W. E. (2001). Rab1 interaction with a GM130

effector complex regulates COPII vesicle cis–Golgi tethering.Traffic 2, 268–276.

doi: 10.1034/j.1600-0854.2001.1o007.x

Munro, S. (2011). The golgin coiled-coil proteins of the Golgi apparatus. Cold

Spring Harb. Perspect. Biol. 3, 1–14. doi: 10.1101/cshperspect.a005256

Nakamura, N. (2010). Emerging new roles of GM130, a cis-Golgi matrix

protein, in higher order cell functions. J. Pharmacol. Sci. 112, 255–264. doi:

10.1254/jphs.09R03CR

Ohtsubo, K., and Marth, J. D. (2006). Glycosylation in cellular mechanisms of

health and disease. Cell 126, 855–867. doi: 10.1016/j.cell.2006.08.019

Ono, M., and Hakomori, S. (2004). Glycosylation defining cancer

cell motility and invasiveness. Glycoconj. J. 20, 71–78. doi:

10.1023/B:GLYC.0000018019.22070.7d

Orci, L., Tagaya, M., Amherdt, M., Perrelet, A., Donaldson, J. G., Lippincott-

Schwartz, J., et al. (1991). Brefeldin A, a drug that blocks secretion, prevents the

assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64, 1183–1195.

doi: 10.1016/0092-8674(91)90273-2

Puthenveedu, M. A., Bachert, C., Puri, S., Lanni, F., and Linstedt, A. D.

(2006). GM130 and GRASP65-dependent lateral cisternal fusion allows

uniform Golgi-enzyme distribution. Nat. Cell Biol. 8, 238–248. doi: 10.1038/n

cb1366

Ramirez, I. B., and Lowe, M. (2009). Golgins and GRASPs: holding the Golgi

together. Semin. Cell Dev. Biol. 20, 770–779. doi: 10.1016/j.semcdb.2009.03.011

Roth, J. (2002). Protein N-glycosylation along the secretory pathway: relationship

to organelle topography and function, protein quality control, and cell

interactions. Chem. Rev. 102, 285–303. doi: 10.1021/cr000423j

Seemann, J., Jokitalo, E., Pypaert, M., and Warren, G. (2000). Matrix proteins

can generate the higher order architecture of the Golgi apparatus. Nature 407,

1022–1026. doi: 10.1038/35039538

Sengupta, D., Truschel, S., Bachert, C., and Linstedt, A. D. (2009). Organelle

tethering by a homotypic PDZ interaction underlies formation of the Golgi

membrane network. J. Cell Biol. 186, 41–55. doi: 10.1083/jcb.200902110

Short, B., Preisinger, C., Körner, R., Kopajtich, R., Byron, O., and Barr, F. A. (2001).

A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic.

J. Cell Biol. 155, 877–883. doi: 10.1083/jcb.200108079

Shorter, J., and Warren, G. (2002). Golgi architecture and inheritance. Annu. Rev.

Cell Dev. Biol. 18, 379–420. doi: 10.1146/annurev.cellbio.18.030602.133733

Shorter, J., Watson, R., Giannakou, M. E., Clarke, M., Warren, G., and Barr, F.

A. (1999). GRASP55, a second mammalian GRASP protein involved in the

stacking of Golgi cisternae in a cell-free system. EMBO J. 18, 4949–4960. doi:

10.1093/emboj/18.18.4949

Slusarewicz, P., Nilsson, T., Hui, N., Watson, R., and Warren, G. (1994). Isolation

of a matrix that binds medial Golgi enzymes. J. Cell Biol. 124, 405–413. doi:

10.1083/jcb.124.4.405

Stein, M. F., Blume, K., Heilingloh, C. S., Kummer, M., Biesinger, B., Sticht, H.,

et al. (2015). CD83 and GRASP55 interact in human dendritic cells. Biochem.

Biophys. Res. Commun. 459, 42–48. doi: 10.1016/j.bbrc.2015.02.057

Struck, N. S., Herrmann, S., Langer, C., Krueger, A., Foth, B. J., Engelberg,

K., et al. (2008). Plasmodium falciparum possesses two GRASP proteins

that are differentially targeted to the Golgi complex via a higher- and

lower-eukaryote-like mechanism. J. Cell Sci. 121, 2123–2129. doi: 10.1242/jcs.

021154

Sütterlin, C., Polishchuk, R., Pecot, M., and Malhotra, V. (2005). The Golgi-

associated protein GRASP65 regulates spindle dynamics and is essential for cell

division.Mol. Biol. Cell 16, 3211–3222. doi: 10.1091/mbc.E04-12-1065

Tang, D., Mar, K., Warren, G., and Wang, Y. (2008). Molecular mechanism of

mitotic Golgi disassembly and reassembly revealed by a defined reconstitution

assay. J. Biol. Chem. 283, 6085–6094. doi: 10.1074/jbc.M707715200

Tang, D., andWang, Y. (2013). Cell cycle regulation of Golgi membrane dynamics.

Trends Cell Biol. 23, 296–304. doi: 10.1016/j.tcb.2013.01.008

Tang, D., Xiang, Y., De Renzis, S., Rink, J., Zheng, G., Zerial, M., et al. (2011). The

ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell

cycle. Nat. Commun. 2, 501. doi: 10.1038/ncomms1509

Tang, D., Yuan, H., Vielemeyer, O., Perez, F., and Wang, Y. (2012). Sequential

phosphorylation of GRASP65 during mitotic Golgi disassembly. Biol. Open 1,

1204–1214. doi: 10.1242/bio.20122659

Tang, D., Yuan, H., and Wang, Y. (2010). The role of GRASP65 in Golgi cisternal

stacking and cell cycle progression. Traffic 11, 827–842. doi: 10.1111/j.1600-

0854.2010.01055.x

Tang, D., Zhang, X., Huang, S., Yuan, H., Li, J., and Wang, Y. (2016). Mena-

GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

Mol. Biol. Cell 27, 137–152. doi: 10.1091/mbc.E15-09-0650

Truschel, S. T., Sengupta, D., Foote, A., Heroux, A., Macbeth, M. R., and Linstedt,

A. D. (2011). Structure of the membrane-tethering GRASP domain reveals a

unique PDZ ligand interaction that mediates Golgi biogenesis. J. Biol. Chem.

286, 20125–20129. doi: 10.1074/jbc.C111.245324

Turner, F. R., and Whaley, W. G. (1965). Intercisternal Elements of the Golgi

Apparatus. Science 147, 1303–1304. doi: 10.1126/science.147.3663.1303

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 January 2016 | Volume 3 | Article 84

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Zhang and Wang GRASPs and the Golgi

Varki, A. (1998). Factors controlling the glycosylation potential of the Golgi

apparatus. Trends Cell Biol. 8, 34–40. doi: 10.1016/S0962-8924(97)01198-7

Veenendaal, T., Jarvela, T., Grieve, A. G., van Es, J. H., Linstedt, A. D., and

Rabouille, C. (2014). GRASP65 controls the cis Golgi integrity in vivo. Biol.

Open 3, 431–443. doi: 10.1242/bio.20147757

Vinke, F. P., Grieve, A. G., and Rabouille, C. (2011). The multiple facets

of the Golgi reassembly stacking proteins. Biochem. J. 433, 423–433. doi:

10.1042/BJ20101540

Wang, Y. (2008). “Golgi apparatus inheritance,” in The Golgi apparatus. State of the

art 110 years after Camillo Golgi’s discovery, eds A. Mironov, M. Pavelka, and A.

Luini. (New York, NY: Springer), 580–607.

Wang, Y., Satoh, A., and Warren, G. (2005). Mapping the functional domains

of the Golgi stacking factor GRASP65. J. Biol. Chem. 280, 4921–4928. doi:

10.1074/jbc.M412407200

Wang, Y., and Seemann, J. (2011). Golgi biogenesis. Cold Spring Harb. Perspect.

Biol. 3:a005330. doi: 10.1101/cshperspect.a005330

Wang, Y., Seemann, J., Pypaert, M., Shorter, J., and Warren, G. (2003). A direct

role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 22,

3279–3290. doi: 10.1093/emboj/cdg317

Wang, Y., Wei, J. H., Bisel, B., Tang, D., and Seemann, J. (2008). Golgi cisternal

unstacking stimulates COPI vesicle budding and protein transport. PLoS ONE

3:e1647. doi: 10.1371/journal.pone.0001647

Wei, J. H., and Seemann, J. (2010). Unraveling the Golgi ribbon. Traffic 11,

1391–1400. doi: 10.1111/j.1600-0854.2010.01114.x

Weisz, O. A., and Rodriguez-Boulan, E. (2009). Apical trafficking in epithelial cells:

signals, clusters and motors. J. Cell Sci. 122, 4253–4266. doi: 10.1242/jcs.032615

Wildt, S., and Gerngross, T. U. (2005). The humanization of N-glycosylation

pathways in yeast. Nat. Rev. Microbiol. 3, 119–128. doi: 10.1038/nrmicro1087

Wong, M., and Munro, S. (2014). Membrane trafficking. The specificity of vesicle

traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science

346:1256898. doi: 10.1126/science.1256898

Xiang, Y., and Wang, Y. (2010). GRASP55 and GRASP65 play complementary

and essential roles in Golgi cisternal stacking. J. Cell Biol. 188, 237–251. doi:

10.1083/jcb.200907132

Xiang, Y., and Wang, Y. (2011). New components of the Golgi matrix. Cell Tissue

Res. 344, 365–379. doi: 10.1007/s00441-011-1166-x

Xiang, Y., Zhang, X., Nix, D., Katoh, T., Aoki, K., Tiemeyer, M., et al. (2013).

Regulation of cargo sorting and glycosylation by the Golgi matrix proteins

GRASP55/65. Nat. Commun. 4, 1659. doi: 10.1038/ncomms2669

Yelinek, J. T., He, C. Y., and Warren, G. (2009). Ultrastructural study of Golgi

duplication in Trypanosoma brucei. Traffic 10, 300–306. doi: 10.1111/j.1600-

0854.2008.00873.x

Yoshimura, S. I., Nakamura, N., Barr, F. A., Misumi, Y., Ikehara, Y., Ohno, H., et al.

(2001). Direct targeting of cis-Golgi matrix proteins to the Golgi apparatus.

J. Cell Sci. 114, 4105–4115.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Zhang and Wang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 January 2016 | Volume 3 | Article 84

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

	GRASPs in Golgi Structure and Function
	Introduction
	GRASPs and Golgi Structure Formation
	GRASPs and Golgi Function
	Conclusions and Future Directions
	Acknowledgments
	References


