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Abstract

Tissue repair after spinal cord injury (SCI) requires mobilization of immune and glial cells to form 

a protective barrier that seals the wound and facilitates debris clearing, inflammatory containment, 

and matrix compaction. This process involves corralling, wherein phagocytic immune cells 

become confined to the necrotic core surrounded by an astrocytic border. Here, we elucidate a 
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temporally distinct gene signature in injury-activated microglia/macrophages (IAM), which 

engages axon guidance pathways. Plexin-B2 is upregulated in IAM, which is required for 

motosensory recovery after SCI. Plexin-B2 deletion in myeloid cells impairs corralling, leading to 

diffuse tissue damage, inflammatory spillover, and hampered axon regeneration. Corralling begins 

early and requires Plexin-B2 in both microglia and macrophages. Mechanistically, Plexin-B2 

promotes microglia motility, steers IAM away from colliding cells, and facilitates matrix 

compaction. Our data thus establish Plexin-B2 as an important link that integrates biochemical 

cues and physical interactions of IAM with the injury microenvironment during wound healing.
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Introduction

After CNS injury, glial cells are mobilized to form a protective barrier that seals the wound 

and limits the extent of tissue damage. This barrier also facilitates debris clearing, contains 

inflammatory cytokines, and promotes wound compaction/matrix reorganization to 

minimize the scar size and maximize the repair area 1. Building such a barrier involves a 

process termed corralling wherein phagocytic immune cells become confined to the lesion 

core surrounded by a narrow rim of reactive astrocytes that separates the necrotic core from 

the surrounding healthy tissue 2. The corralling is an important step to mitigate secondary 

tissue injury fueled by inflammatory cytokines, proteases and free radicals released from the 

lesion core 3. Understanding the signaling pathways that regulate corralling is fundamental 

to improve neural repair after traumatic brain or spinal cord injury (SCI), as well as other 

CNS pathologies such as stroke or neurodegenerative disorders.

CNS injury triggers microglial activation within minutes, which is followed by an influx of 

blood-borne immune cells attracted to chemokines and facilitated by a breach of blood-

brain-barrier (BBB) 4. Blood-borne monocytes differentiate into phagocytic macrophages 5, 

which, together with microglia, constitute the innate immunity responsible for debris 

clearing and providing a source of trophic and anti-inflammatory factors to promote tissue 

repair 6,7; but they also release inflammatory cytokines to fuel secondary injury 8. Hence, the 

innate immune response can both resolve and exacerbate tissue injury. Thus far, the 

phagocytic and inflammatory functions of microglia and macrophages are better understood; 

whether they contribute to corralling and wound compaction is not clear, nor are the 

underlying signaling mechanisms.

Previously, we have demonstrated a role of transmembrane receptor Plexin-B2 during 

neuroprogenitor migration 9,10. Plexins were originally identified as axon guidance 

molecules, but subsequently shown to also regulate cell migration and cytoskeletal dynamics 

through small GTPases during development and in adult physiology 11. Plexin-B2 binds to 

class IV transmembrane semaphorin ligands (Sema4A-4D, 4F, and 4G) and regulates 

cellular interactions in a variety of contexts, including vascular development, bone 
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homeostasis, kidney injury, and immune activation 12–21. However, its role in CNS injury is 

unknown.

Here, we demonstrated that Plexin-B2 is upregulated in injury activated microglia and 

macrophages (which we termed IAM), and is required for motosensory recovery after SCI. 

Plexin-B2 regulates corralling and wound compaction by enhancing microglial dispersion, 

steering them away from colliding cells, and strengthening matrix compaction.

Results

Temporally distinct molecular signatures in activated microglia/macrophages after SCI

Microglia are activated within minutes after CNS injury 4. To accurately capture in vivo 

gene signatures in IAM, we employed the INTACT method (Isolation of nuclei tagged in 

specific cell types), based on affinity immunoprecipitation of Sun1-GFP-tagged nuclei (Sun1 

being a nuclear envelope protein), which minimizes ex vivo transcriptional artifacts from 

lengthy tissue dissociation and fluorescence-activated cell sorting (FACS) 22. We bred the 

INTACT mice with a Cx3cr1CreER allele that expresses tamoxifen (Tam)-inducible Cre 

recombinase in myeloid lineage 23 (Fig. 1a). We performed dorsal column transection at 

thoracic level T8, a well-established SCI model, while sham control animals underwent 

laminectomy only 24,25. To label myeloid cells, Tam was administered at 3 day and 1 day 

before SCI. Immunohistochemistry (IHC) of the spinal cord tissues at 3 days post-injury 

(dpi) confirmed the overlap of GFP with myeloid marker IBA1 (Fig. 1b). Spinal cord tissues 

from 5 mm rostral to 5 mm caudal of the lesion core were collected at 3, 7, and 14 dpi, 

followed by affinity immunoprecipitation of GFP+ nuclei and RNA extraction. 

Corresponding tissues from sham control were collected 7 days after surgery. Independent 

triplicate cDNA libraries were prepared for RNA sequencing (RNA-Seq).

INTACT RNA-Seq data revealed temporally distinct sets of differentially expressed genes 

(DEGs) in IAM as compared to homeostatic microglia/macrophages from the sham controls. 

ENRICHR gene ontology (GO) analysis of the DEGs showed that the early activated genes 

in 3 dpi IAM were involved in proliferation and motility, while DEGs at 7 dpi mainly 

concerned migration (e.g. axon guidance, axon chemoattraction, substrate-dependent cell 

migration, and ion channel activity), and DEGs at 14 dpi were enriched for cell-matrix 

adhesion and ECM organization GO terms (Fig. 1c). Thus, the molecular signatures of IAM 

suggested the potential importance of cell motility, axon chemoattraction, and matrix 

interaction for successful wound repair (Fig. 1d). Further detailed analyses of the IAM 

transcription programs will be published elsewhere (Wahane et. al., in preparation).

Given the enrichment for axon guidance GO terms in the IAM gene signatures, we examined 

the expression dynamics of semaphorin and plexin family members, and found high 

transcriptional levels of Sema4c, 4d, 4g, and Plxnb2 in homeostatic microglia/macrophages, 

which were further upregulated in IAM, except for Sema4g (Fig. 1e). In subsequent studies, 

we investigated the role of Plexin-B2 and Sema4c in the innate immunity after SCI.
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Upregulation of Plexin-B2 in microglia and macrophages after SCI

To further verify Plexin-B2 induction after SCI, we utilized a targeted gene trap line, termed 

Plxnb2B, which carries a lacZ reporter inserted after exon 6 of Plxnb2 26 (Fig. 2a). LacZ/X-

Gal staining revealed the robust expression of lacZ at the injury site 7 days after T8 dorsal 

column transection injury (Fig. 2b), but absence of X-gal signals in the littermate controls 

without the lacZ reporter (Supplementary Fig. 1a). Time course analysis by IHC confirmed a 

robust upregulation of Plexin-B2 in the lesion area at 3 dpi, which persisted at 7 and 14 dpi, 

but started to wane by 21 dpi (Fig. 2c).

We next performed co-immunostaining using cell type-specific markers and found that 

Plexin-B2 was predominantly induced in activated microglia and influxed blood-borne 

macrophages, as marked by IBA1 or CD11b (Fig. 2d and Supplementary Fig. 1b-d). 

Notably, these IAM assumed an amoeboid morphology in contrast to the ramified 

morphology of homeostatic microglia in the neighboring intact regions. We further utilized 

Cx3cr1GFP mice, a myeloid reporter line, which verified the upregulation of Plexin-B2 

specifically in amoeboid shaped Cx3cr1-GFP+ myeloid cells at 3, 7, and 14 dpi after T8 

transection (Supplementary Fig. 1c).

To investigate the functional significance of Plexin-B2 induction in IAM after SCI, we 

generated mutant mice with Tam-inducible Plxnb2 conditional knockout (cKO) in myeloid 

cells by crossing a floxed Plxnb2fl allele 10 with a functionally null Plxnb2B allele, as well 

as the Cx3cr1CreER allele (Fig. 2a). Immunostaining of primary microglia isolated from 

Plxnb2 cKO mice that also carried the Cx3cr1GFP reporter allele (i.e., Cx3cr1CreER/GFP 

Plxnb2fl/B) demonstrated Plexin-B2 ablation in Cx3cr1-GFP+ myeloid cells upon treatment 

with hydroxy-tamoxifen (OHT) (Fig. 2e). The primary cultures of microglia of control and 

Plxnb2 cKO mice revealed no apparent differences in cell survival, morphology, or growth 

rate between different genotypes. Stimulation of cultured microglia with lipopolysaccharide 

(LPS) induced Plexin-B2 upregulation (Supplementary Fig. 1e), indicating that Plexin-B2 

may belong to a general microglial gene response to pathological stimuli. In vivo Plexin-B2 

ablation was verified in homeostatic microglia (Supplementary Fig. 1f), as well as in IAM 7 

days after SCI using Plxnb2 cKO mice that received two Tam injections at 3 day and 1 day 

before SCI (Fig. 2f).

We first studied the impact of Plexin-B2 deletion on homeostatic microglia in adult mice in a 

non-injury setting. Immunostaining for Tmem119, a microglia-specific marker, did not 

reveal overt differences in microglial density in either cortex or spinal cord of adult Plxnb2 
cKO mice (Fig. 2g and Supplementary Fig. 1f). As microglia are known to maintain CNS 

homeostasis by surveying territorial domains through their highly motile processes 27, we 

compared cellular processes using super-resolution STED microscopy, which revealed less 

branching points in Plxnb2 cKO microglia by Sholl analysis, although the average length of 

the longest processes was unchanged from control microglia (Fig. 2g,h). Hence, Plexin-B2 

does not appear to be required for microglial survival or proliferation, but is indispensable 

for maintaining their motile processes in homeostatic state.
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Plexin-B2 ablation in myeloid cells impairs motosensory recovery after SCI

To investigate Plexin-B2’s function in IAM, we chose a moderate T8 contusion SCI model 

that allows spontaneous motosensory recovery over the course of 5 weeks. Specifically, after 

laminectomy at T8, a calibrated force of 45 kDyn was applied to the spinal cord. We first 

tested the effect of continuous Plexin-B2 ablation in both resident microglia and infiltrating 

macrophages by administering Tam every other day starting from 3 day before until 5 week 

after SCI (Fig. 3a). Plxnb2 cKO mice displayed a significantly worse recovery in walking, 

hindlimb movement, and hindpaw placement relative to the littermate controls throughout 

the 5-week recovery course, as quantified by Basso Mouse Scale (BMS) for locomotion 28 

(Fig. 3b and Supplementary Videos 1 and 2). Rotarod test for hindlimb and tail balance and 

ladder walking tests on both regular and irregular interval beams also revealed worse motor 

functional recovery for cKO mice. Furthermore, von Frey filament tests showed spontaneous 

recovery of tactile sensory function in control animals, but significant sensory deficits in 

mutants (Fig. 3c). Of note, both cohorts displayed similar baseline thresholds for tactile 

sensitivity before SCI (Fig. 3c), and similar body weight during recovery (Supplementary 

Fig. 2a). This battery of behavioral tests indicated that Plexin-B2 induction in innate 

immune cells plays a beneficial role for functional recovery after SCI.

Compromised recovery after SCI implies impaired axonal connectivity. Indeed, significantly 

fewer axon fibers were present in the dorsal column and the lesion core in cKO than in 

control mice when examined with neurofilament-H (NF-H) immunostaining at 35 dpi (Fig. 

3d). There were also fewer descending serotonergic (5HT) axon fibers in the raphespinal 

tract at the injury site (Fig. 3e). Strikingly, the lesion size appeared much enlarged in 

mutants, with diffuse deposition of chondroitin sulfate proteoglycans (CSPGs; detected with 

CS-56 antibody), a family of matrix proteins that can influence axon growth 1,29 (Fig. 3d 

and Supplementary Fig. 2b,c). We did not find tissue cavitation at the lesion sites in mutant 

animals, although the central canal in some sections appeared enlarged from tissue distortion 

due to diffuse injury (Fig. 3e and Supplementary Fig. 2b).

Plexin-B2 induction in IAM is required for corralling and inflammatory confinement

To investigate the underlying mechanisms, we characterized the response of IAM at the 

injury site. After 5 weeks of recovery, control mice showed signs of successful corralling 

and injury resolution, with IBA1+ immune cells confined to the lesion core surrounded by a 

narrow GFAP+ astrocytic border at the injury penumbra (Fig. 4a). There was a clear spatial 

segregation of these two populations and a well-established physical barrier separating the 

lesion (occupied by amoeboid-shaped IAM) from the surrounding uninjured neural tissue 

(containing ramified microglia). In contrast, Plxnb2 cKO mice displayed impaired 

corralling, with IAM and astrocytes intermingled at the lesion core and the injury penumbra, 

leading to a defective protective barrier with widespread IBA1+ immune cells well beyond 

the GFAP+ astrocytic border (Fig. 4a). Furthermore, in mutant mice, wound compaction was 

compromised, resulting in a larger lesion and unresolved injury (Fig. 4a). Along with 

disrupted border formation, cells expressing NG2 proteoglycan, i.e. oligodendrocyte 

precursor cells (OPCs) and pericytes (also PDGFRβ+), had also expanded their territories in 

mutants (Fig. 4b and Supplementary Fig. 2c). Additionally, whereas control mice showed 
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regressed capillaries (PECAM-1+) at the injury penumbra, mutants showed persistent 

engorged neo-vasculature in expanded territory at the injury site (Supplementary Fig. 2d).

The IAM gene signatures from our INTACT RNA-Seq data indicated the engagement of 

microglia-matrix interaction and ECM reorganization, particularly at 14 dpi (Fig. 1c,d). 

Thus, in addition to CSPGs, we also analyzed top upregulated matrix genes identified in 

IAM. In control mice at 35 dpi, tenascin (TNC) deposition was concentrated at the lesion 

core, whereas collagen IV (Col IV) was deposited largely at the dorsal wound and the injury 

penumbra. However, in Plxnb2 cKO mice, both TNC and Col IV were widespread and in 

disarray, mirroring the highly disorganized spatial pattern of IAM (Fig. 4c). Additionally, the 

secreted phosphoprotein SPP1 (also known as osteopontin), which is upregulated in 

microglia during aging and disease 30, was also widespread in cKO mutants (Fig. 4d). 

Animals with the Cx3cr1-GFP reporter further revealed diffuse distribution of amoeboid-

shaped IAM in cKO mutants, reflecting unresolved injury, in contrast to the ramified 

microglia at the injury penumbra seen in control mice, signifying injury resolution (Fig. 4d). 

In line with matrix disarray, vinculin, a component of the focal adhesion complex that 

regulates cell-matrix adhesion and actin polymerization 31, also appeared widespread in 

mutants, unlike the more confined pattern in control mice reflective of intensified matrix 

compaction at the lesion border (Supplementary Fig. 3a,b). We further analyzed the 

expression of 84 ECM genes at the injury site by qRT-PCR, which revealed altered 

expression profiles of multiple ECM genes in Plxnb2 cKO relative to controls, including 

Versican (Vcan, a member of the CSPGs), Tnc, Col4a1, Col4a2, Pecam1, and Spp1 
(Supplementary Fig. 3c). Altogether, Plexin-B2 induction in IAM facilitates corralling, 

matrix reorganization, and wound compaction.

Plexin-B2-mediated corralling is important to limit inflammatory spread and regulate 
cytokine milieu in SCI

Since cellular debris contains a large amount of membrane lipids that are cleared by 

phagocytotic cells, we performed Oil Red O staining, which revealed that lipid-rich debris 

was contained in the lesion core at 35 dpi in control animals, but widespread in mutants (Fig. 

5a,b and Supplementary Fig. 3d). Concordantly, CD68+ phagocytic cells were congregated 

at the lesion core in controls, but spilled over beyond the necrotic core in mutants (Fig. 

5c,d).

To compare local cytokines in the injury milieu, we performed ELISA-based proteomic 

array analyses, which showed upregulated cytokine levels in mutants as compared to 

controls, including CD40 and CXCL13, signifying an increased inflammatory milieu in 

mutants (Fig. 5e).

Plexin-B2 ablation did not appear to affect IAM proliferation as shown by EdU pulse studies 

in Cx3cr1GFP reporter mice (Supplementary Fig. 4a). Phagocytic activity of IAM was also 

maintained, as demonstrated by time-lapse videos of primary microglia cultures, where 

control and Plxnb2 cKO microglia phagocytosed fluorescent beads at similar rates and to 

similar extents (Supplementary Fig. 4b and Supplementary Videos 3 and 4). Plexin-B2 

deletion also did not affect upregulation of ApoE and lipoprotein lipase (LPL) in IAM 

(Supplementary Fig. 4c), two marker genes involved in lipid uptake and metabolism 
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required for microglial scavenging function 32. Finally, in cultures of mixed cortical cells 

from Plxnb2 cKO mice, treated with or without hydroxy-tamoxifen, the transcription levels 

of Tnf, Il1b, and C1qa, three cytokines shown to be microglia-derived inducers of 

inflammatory phenotypes of astrocytes 33, were largely comparable, except for Il1b, which 

showed a modest decrease in cultures containing Plxnb2 cKO microglia (Supplementary 

Fig. 4d). Taken together, Plexin-B2 ablation in IAM primarily impairs the spatial segregation 

of IAM from reactive astrocytes, leading to defective glial barrier and inflammatory 

spillover.

Functional importance of Plexin-B2 during early innate immune response in SCI

Our next question addressed the timing of Plexin-B2-mediated corralling after SCI. Our 

initial assumption was that corralling and wound compaction likely took place at a later 

stage after IAM had completed the main task of debris clearing. Interestingly, we observed a 

clear spatial segregation of the immune cells and astrocytes already at 7 dpi: IBA1+ cells 

formed a narrow rim that corralled the edematous, cell-poor necrotic core, and they in turn 

were surrounded by an outer rim of GFAP+ cells, thus forming a layered ringed structure 

(Fig. 5f). However, at 3 dpi, IBA1+ and GFAP+ cells were abundantly present at the injury 

site in close proximity to one another, but not yet spatially segregated (Supplementary Fig. 

5a,b).

To distinguish between microglia and macrophages, we used the microglial marker 

Tmem119, which revealed a delineated concentric pattern of microglia coinciding with that 

of IBA1+ cells at 7 dpi, indicating a large contribution of microglia in initiating corralling 

(Fig. 5f and Supplementary Fig. 5c). Remarkably, the concentric pattern of Tmem119+ cells 

also aligned well with the circumferential pattern of the neo-vasculature (PECAM-1+), with 

distinctive enlarged lumen size (Fig. 5f and Supplementary Fig. 5c). Concordantly, pericytes 

(PDGFRβ+) also formed a ringed pattern closely aligned with IBA1+ cells, both surrounded 

by CSPGs deposited at the injury penumbra (Supplementary Fig. 5d).

By 14 dpi, signs of progressive injury resolution were evident in control mice: IBA1+ cells 

had shifted towards the necrotic core, while GFAP+ cells remained at the outer rim, and neo-

vasculature had regressed with normalized lumen size (Supplementary Fig. 5e; 6a,b). 

Additionally, by 14 dpi, C1q and phagocytic cells (CD68+) were already contained in the 

lesion core, matrix proteins such as TNC, Col IV and CSPGs had been reorganized and 

compacted, and numerous axons (NF-H+) were present in the vicinity of the injury site 

(Supplementary Fig. 6b-e). Notably, β-catenin displayed a more concentrated pattern at the 

lesion border, likely reflecting strengthened intercellular adhesion for wound compaction 

(Supplementary Fig. 6e).

In contrast, the spatial segregation of IBA1+ and GFAP+ cells was severely perturbed in 

Plxnb2 cKO animals. At 3 dpi, even though IBA1+ cells were recruited to the injury site, 

their dispersion and physical contact with GFAP+ cells were impaired (Supplementary Fig. 

5b). By 7 dpi, IBA1+ or Tmem119+ cells intermingled without clear spatial segregation, and 

they failed to form a sealed physical barrier, with the dorsal wound completely open (Fig. 5f 

and Supplementary Fig. 5c,d). Remarkably, the neo-vasculature in the mutants appeared 

abundant and widespread, and their orientation mirrored the disorganized spatial pattern of 

Zhou et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IAM (Supplementary Fig. 5c,d). By 14 dpi, wound compaction was compromised, matrix 

proteins remained widespread and in disarray, and neo-vasculature showed no signs of 

regression (Supplementary Fig. 5e; 6a-e).

As our longitudinal analysis suggested that Plexin-B2 activity in the early stage of the innate 

immunity is critical to set the stage for corralling and vascular organization, we studied the 

mutant phenotypes with different time courses of Tam injection: i) Tam ON for the first 2 or 

3 weeks to ablate Plexin-B2 in both microglia and macrophages, followed by 3 or 2 weeks 

of Tam OFF to allow newly influxed monocytes/macrophages to express Plexin-B2 (Fig. 

6a,d), or ii) Tam OFF during the 1st week after injury to allow Plexin-B2 function, followed 

by Tam ON for the next 4 weeks (Fig. 6e). Of note, monocytes and macrophages exhibit 

rapid turnover 34 and are constantly replenished from bone marrow stem cells, which are 

Cx3cr1 negative and thus not affected by Tam treatment 35. Since Tam has a half-life of ~6–

12 hour in mice 36, newly influxed macrophages would express Plexin-B2 shortly after Tam 

withdrawal.

We conducted the same battery of motosensory tests, which showed that Plexin-B2 

deficiency during the first 3 weeks after injury severely impaired recovery. Likewise, IHC 

revealed that these mutants had compromised corralling, unsealed wound at the dorsal 

border, enlarged lesion size (GFAP+ or CSPG+), spillover of inflammatory cells (IBA1+), 

and fewer NF-H+ axons at the lesion center (Fig. 6a,b and Supplementary Fig. 7a,b). 

Additionally, lipid debris (Oil Red O+) appeared widespread, so were CD68+ phagocytic 

cells and matrix proteins, including fibronectin (FN), Col IV and TNC (Supplementary Fig. 

7a-c). Consistent with the Tam injection scheme (i.e. Tam 3 wk), at 35 dpi, a portion of the 

IBA1+ cells expressed high levels of Plexin-B2, representing newly infiltrated macrophages 

after 21 dpi, while the remaining were negative for Plexin-B2, representing resident 

microglia and early infiltrated macrophages that had arrived before 21 dpi (Supplementary 

Fig. 7d). Notably, the BMS scores of this mutant cohort after 21 dpi were improved over the 

cohort with continuous Plexin-B2 ablation (i.e. Tam 5 wk), although still underperforming 

relative to the control cohort (Fig. 6c). Hence, Plexin-B2 expression in newly influxed 

macrophages after 21 dpi partially compensated for the previous Plexin-B2 loss. Similar 

phenotypes were observed when Tam was delivered only during the first 2 weeks after SCI 

(Tam 2 wk), further confirming the importance of Plexin-B2 in the early innate immunity 

(Fig. 6d).

In contrast, mice with normal Plexin-B2 expression in IAM during the 1st week of recovery, 

followed by cKO in the following 4 weeks (Tam 2nd-5th wk), performed overall at par with 

control mice in motosensory assays, with even slightly better BMS scores after 14 dpi (Fig. 

6e). Consistently, this mutant cohort displayed successful corralling and injury resolution by 

35 dpi, and the spatial pattern of fibroblasts expressing reticulin at the injury penumbra was 

also similar to controls (Fig. 6f). Hence, the initial activity of Plexin-B2 in IAM is sufficient 

to initiate corralling, thereby setting the stage for subsequent wound compaction; 

suppressing Plexin-B2 function later had no major detrimental effects on injury resolution.
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Plexin-B2 activity in IAM regulates motility, contact inhibition of locomotion and matrix 
interaction during wound healing

We next investigated the underlying cellular mechanisms. As Plexin-B2 is known to regulate 

neuroprogenitor migration 9,37–39, we posited that Plexin-B2 might facilitate IAM 

infiltration and migration at the injury site, both important for initiating the physical contact 

of IAM with other glia cells, a prerequisite for corralling. To clearly define the injury core 

for analysis of the extent, timing, and spatial pattern of IAM infiltration, we used here the T8 

dorsal column transection SCI model.

Plexin-B2 ablation did not appear to affect recruitment of IAM to the injury site, but 

significantly reduced IAM dispersion at 3, 7 and 14 dpi, as measured by the spread of IBA1+ 

cells relative to the lesion border (Fig. 7a,b). The reduced microglial motility in the absence 

of Plexin-B2 was corroborated by time-lapse videography of co-cultures where primary 

Cx3cr1-GFP+ microglia were first isolated from Plxnb2 cKO mice and then added onto a 

lawn of mixed neural cells from the same animal labeled with fluorescent dye CellTracker 

Red (Fig. 7c). Videos were recorded to track the movement of Cx3cr1-GFP+ microglia with 

and without hydroxy-tamoxifen over 24 hours, which revealed reduced microglial motility 

with Plexin-B2 ablation (Supplementary Videos 5 and 6).

In a previous study of bone remodeling, Sema4D was established as a repulsive guidance 

cue that induces contact inhibition of locomotion in osteoblasts through its receptor Plexin-

B1 to steer cells away from osteoclasts 40. Contact inhibition of locomotion is a dynamic 

process that occurs on a minute-scale whereby a cell that collides with another cell ceases 

migration before repolarizing and migrating away. To test the hypothesis that Plexin-B2 may 

mediate contact inhibition of locomotion in IAM, we performed time-lapse videography of 

cortical cultures to track interactions of Cx3cr1-GFP+ microglia with other neural cells 

(Supplementary Videos 7 and 8). In control cultures, microglia were highly motile and 

extended dynamic processes, but upon contact with another cell, they retracted their 

processes and moved away within minutes (Fig. 7d). The Plxnb2 cKO microglia, on the 

other hand, displayed diminished propensity to retract their protrusions upon contact with 

other cells, and maintained contacts for much longer time periods (Fig. 7d).

To further corroborate the corralling defects, we examined the physical interactions between 

microglia and astrocytes in cortical cultures. After 2 weeks of culture, wildtype microglia 

and astrocytes exhibited spatial segregation; however, Plxnb2 cKO microglia and wildtype 

astrocytes remained intermingled (Fig. 7e).

Moreover, in the control animals, wound compaction resulted in cells densely packed at the 

lesion core, thus minimizing the lesion size while maximizing the repair area (Fig. 7f). In 

contrast, in Plxnb2 cKO mice, the cell density at the lesion core appeared lower and the 

average cell size larger, as outlined by phalloidin-stained filamentous actin (F-actin) 

network. As cell migration and contraction require engagement of focal adhesion, we 

compared the levels of phospho-focal adhesion kinase (pFAK) in primary microglia with 

and without LPS stimulation, and found reduced induction of pFAK in Plxnb2 cKO as 

compared to control cells upon LPS stimulation (Fig. 7g). In summary, Plexin-B2 regulates 
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cytoskeletal dynamics and physical interactions of IAM with other glial cells and with the 

matrix (Fig. 7h).

Microglia and macrophages both contribute to wound healing after SCI

Finally, we aimed to distinguish the cell-type specific role of Plexin-B2 in microglia vs. 

macrophages in wound repair. For this purpose, we employed a Tam injection regimen in 

which animals received three doses of Tam one month before SCI with no subsequent 

injections (Fig. 8a). As such, Plexin-B2 ablation only occurred in the microglial population 

but not in peripherally influxed macrophages. We found that this cohort (Tam pre-1m) 

initially exhibited worse BMS scores relative to control, but no subsequent differences after 

14 dpi; and by 35 dpi, rotarod and von Frey filament tests showed no differences in 

motosensory recovery relative to the control cohort (Fig. 8b). Consistently, IHC revealed that 

in control animals at 7 dpi, highly proliferative cells (Ki67+) largely overlapped with IBA1+ 

cells and formed a ring-like structure corralling the necrotic core, which in turn was 

surrounded by an astrocytic border; but in microglia-only Plxnb2 cKO mice, Ki67+ and 

IBA1+ cells were congregated in the necrotic core, reflecting reduced dispersion, impaired 

corralling, and defective glial barrier with unsealed wound at the dorsal surface (Fig. 8c). 

However, by 35 dpi, wound healing was comparable between the two cohorts (Fig. 8d). 

Hence, Plexin-B2 signaling in microglia is critical for the early stage of corralling, but 

Plexin-B2 activity in macrophages was able to largely compensate for the initial delay in 

wound healing.

To probe whether Plexin-B2’s function in macrophages is critical during the early stage of 

recovery, we further compared the microglia-only Plxnb2 cKO cohort with the cohort shown 

earlier in Fig. 6d that received Tam during the first 2 weeks after SCI (Tam 2 wk, i.e. Plexin-

B2 was ablated in both microglia and early infiltrating macrophages). The latter cohort 

overall performed worse by BMS score, particularly during the first 3 weeks, and by 35 dpi, 

they still lagged in motosensory recovery (Fig. 8e). Hence, Plexin-B2 activity in early 

influxed macrophages is important in the setting of Plexin-B2 deletion in microglia.

Finally, we investigated recovery and wound healing in mutant animals with deletion of 

Sema4C, a potential Plexin-B2 ligand. Sema4C KO mutants displayed no overall differences 

relative to their control littermates in recovery, albeit with slightly worse hindlimb and tail 

balance by rotarod testing at 35 dpi (Supplementary Fig. 8). These results suggested 

potentially redundant or compensatory roles of other class IV semaphorins.

Discussion

In CNS injury, microglia and macrophages are known for their phagocytic function and 

cytokine profiles. Here, we unveiled their additional roles in facilitating corralling and 

building a protective barrier to seal the wound, orient neo-vasculature, and compact matrix.

Tissue repair relies on coordinated responses from diverse cell types in overlapping phases: 

an inflammatory phase for debris clearing and cytokine release, a tissue formation phase 

with precise spatial arrangement of different cell types, and a remodeling phase with 

capillary regression and matrix compaction 2. The complexity makes it difficult to delineate 
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the sequence of events and distinguish specific roles of each glial population. Previously, 

reactive astrocytes were presumed to be the main driver for corralling, based on their 

location in the outer rim. Indeed, an earlier study revealed a requirement of STAT3 in 

astrocytes for the formation of an astroglial border and corralling 41. The striking 

phenotypes observed here unveiled an unexpected contribution of IAM for corralling. 

Clearly, the mutual physical interactions between IAM and astrocytes as mediated by Plexin-

B2 are important for their spatial segregation; whether the dysfunction of Plxnb2-deficient 

IAM would secondarily affect astrocyte reactivity awaits future studies.

Corralling after SCI begins surprisingly early and microglia are largely responsible for the 

initial formation of a concentric physical barrier, in line with their early activation after SCI, 

while the peak time of macrophage infiltration occurs at ~7–10 dpi 5. This also agrees with 

the timeframe of Plexin-B2 induction and its critical function in SCI, as well as previous 

reports that gliosis is largely completed by two weeks after SCI in adult mice 42. Plexin-B2 

does not appear to be required for IAM recruitment, proliferation, phagocytosis, or cytokine 

release; its main function is to facilitate IAM to form a concentric ring to corral the necrotic 

core, and to be corralled by an outer rim of reactive astrocytes.

Notably, the concentric ring-like microglial arrangement at the lesion border also influences 

spatial orientation of neo-vasculature, consistent with microglia being one of the first 

responders to hypoxia by secreting VEGF 43. The concentric neo-vascular orientation may 

in turn facilitate corralling by directing blood-borne immune cells towards the lesion core, 

thus ensuring contained scavenging activity and inflammatory reaction inside the protective 

barrier. Indeed, the initial cell-poor necrotic core was later replaced by densely packed 

macrophages filled with lipid debris.

Plexin-B2 regulates several important aspects of cell behavior in IAM, all related to 

cytoskeletal dynamics: i) cell motility to facilitate IAM dispersion and physical contact with 

other glial cells to set the stage for corralling, ii) contact inhibition of locomotion, which 

occurs on a minute-scale to steer IAM away from colliding cells, and iii) strengthening focal 

adhesions, which have known functions in cell migration, angiogenesis 44, and matrix 

reorganization/wound compaction. Plexin-B2 is also required for maintaining the motile 

cellular processes of homeostatic microglia, which is critical for their surveillance function 

for CNS homeostasis 27. In Drosophila sensory neurons, PlexB forms a complex with 

integrin β subunit to regulate self-avoidance and tiling of dendritic arbors through surface 

stabilization of integrin 45; whether Plexin-B2 regulates the tiling behavior of microglia 

during neurodevelopment awaits future investigation. Here, we only studied Plxnb2 cKO 

mice up to 4 month of age and did not observe overt behavioral changes, but examining the 

mutant mice in the context of neurodegeneration would be worthwhile. The cellular source 

and the specific semaphorins that activate Plexin-B2 in activated IAM remain to be defined. 

Constitutive Sema4C KO mice displayed comparable wound healing as control mice, 

indicating either redundant or compensatory mechanisms at play. Other cellular sources of 

class IV semaphorins should be considered, e.g. Sema4D expressed in oligodendrocytes and 

Sema4G expressed in neurons 46,47.
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Lastly, two recent studies showed that ablation of microglia leads to larger lesions after SCI 
48,49, which strengthens the notion that IAM play beneficial roles in wound healing and 

functional recovery. However, activated macrophages can also trigger axonal dieback or 

retraction of dystrophic axons through direct physical interaction 50, thus corralling IAM 

inside the astrocyte border is critical to mitigate their direct contact of with axons.

In summary, our study demonstrates an important role of IAM and Plexin-B2 signaling in 

promoting corralling and wound compaction. Insights into building a protective physical 

barrier may aid therapeutic designs for axon regeneration and neural repair after CNS injury.

Methods

Animals.

All animal procedures were performed according to protocols approved by the Institutional 

Animal Care and Use Committee (IACUC) at Icahn School of Medicine at Mount Sinai. 

Animals were housed in groups of 5 in a pathogen free barrier facility, in corn bedding lined 

cages, with pellet chow and water bottles. Tamoxifen was injected in doses of 100 mg/kg, 

i.p.

Cx3cr1CreER mice were obtained from Jackson Laboratory (B6.129P2(Cg)-

Cx3cr1tm2.1(Cre/ERT2)Litt/WganJ; JAX stock #021160). Rosa26-loxP-STOP-loxP-INTACT 

mice were obtained from Jackson Laboratory (B6;129-

Gt(ROSA)26Sortm5(CAG-Sun1/sfGFP)Nat/J; JAX stock #021039). Rosa26INTACT/+ 

Cx3cr1CreER/+ mice were healthy and fertile. The Cx3cr1GFP/+ reporter line was obtained 

from Jackson Laboratory (B6.129P-Cx3cr1tm1Litt/J; JAX stock # 005582). Mice with a 

Plxnb2 targeted trapping mutation with lacZ reporter (Plxnb2B), and mice with the Plxnb2fl 

conditional allele have been derived from the EUCOMM mouse line 

Plxnb2tm1a(EUCOMM)Wtsi in our laboratory 10,26. Mice were bred on a C57BL/6J genetic 

background.

Spinal cord injury model.

Six to eight week old mice of mixed gender of the indicated genotypes were used for our 

SCI studies. Mice were anesthetized by isofluorane inhalation (Baxter Healthcare, NDC 

10019–360-40). For dorsal column transection, the procedure was performed as previously 

described 24. Briefly, the lamina of T8 spinal segment was exposed and removed, and the 

dorsal column was transected bilaterally using iris microscissors (Fine Science Tools, 

15000–00), with maximum depth reaching ~0.8 mm. For sham control, only T8 

laminectomy was performed.

For T8 contusion injury, after T8 laminectomy, an infinite horizon impactor (IH-0400, 

Precision Systems and Instrumentation) was used to deliver an impact force of 45 kDyn to 

the spinal cord. All animals received subcutaneous injection of 1 ml of saline, 10 mg/kg of 

Baytril and 0.05 mg/kg of buprenorphine every day for the first week following surgery. 

Bladder expression was performed for animals undergoing T8 contusion injury twice a day 

for the duration of the experiments.
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Motosensory behavioral analysis.

Mice were housed on a 12 hr light/dark cycle with ad libitum access to food and water. All 

animals were acclimated to the testing room or apparatus for 1 hr prior to behavioral testing. 

Blind scoring was performed to ensure that observers were unaware of genotypes or 

treatments.

For BMS scoring, hindlimb locomotor performance was evaluated according to the open-

field Basso Mouse Scale (BMS) 51, with scores ranging from 0 (complete paralysis) to 9 

(normal mobility); each score represents a distinct motor functional state. Mice were 

randomly separated into groups without any preferences, while verifying that the average 

starting score was similar in all groups. Locomotor activity in an open field was monitored 

every other day by placing the mouse for 5 min at the center of an enclosure made of molded 

plastic with a smooth, non-slippery floor. Before each evaluation, mice were carefully 

examined for signs of peritoneal infection, wound in hindlimbs, tail or foot autophagia. 

Animals that showed a difference of more than 2 score points between left and right 

hindlimbs were excluded from the experimental analysis.

For rotarod test, an accelerating rotarod was used to measure gross motor capability and 

coordination by accelerating the rod from 0 to 40 rpm. Each animal was subjected to one 

practice trial, followed by two test trials, with an interval of 20 min between trials. The 

latency to fall was averaged from the two test trials per animal.

For regular/irregular horizontal ladder test, paw placement was assessed during walking 

while mice were placed on a horizontal ladder with regular/irregularly placed 3 mm 

diameter rungs. The mouse home cage was located at the end of the ladder. Mice were 

video-recorded for at least 6 consecutive runs for each trial (3 min). Side and bottom views 

of the animal (mirror and direct view) were used to detect foot-faults (drag, slip, foot-falls) 

and to analyze for hindlimbs coordination.

Von Frey filament test was used to determine tactile sensory recovery after SCI 52,53. Mice 

were placed on a metal mesh and the plantar surface (glabrous) of the hindpaw was 

stimulated with a set of calibrated von Frey filaments (0.004 – 8 g). Each filament was 

applied five consecutive times against the lateral area of the paw. Hindpaw withdrawal or 

licking was marked as a positive response. A positive response in three out of five repetitive 

stimuli was defined as the von Frey threshold. Mice were tested at baseline before surgery 

and at the indicated time points after SCI. For each animal, left and right hindpaws were 

tested separately.

Affinity immunopurification of GFP-tagged nuclei (INTACT).

Affinity immunopurification of SUN1-GFP-tagged nuclei was performed as previously 

described 22. Spinal cords (from 5 mm rostral to 5 mm caudal to the injury center) were 

rapidly dissected on ice, and pooled from three animals for each sample. Nuclei were 

separated from cellular debris using an iodixanol gradient, wherein nuclei were separated 

out at the interphase between the 30/40% phases. We obtained between 1.5 – 2 million 

nuclei per purification, which were then incubated with 10 μl of 0.2 mg/ml rabbit 

monoclonal anti-GFP antibody (Life Technologies G10362). ProteinG Dynabeads 
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(Invitrogen 10004D) were added to this mixture, incubated for 20 min for magnetic 

separation of GFP-positive nuclei, and the solution was then passed through a 20 μm filter 

(CellTrics, Sysmex Partec GmbH 04–0042-2315). All steps were performed at 4°C.

Total nuclei yields and the percentage of GFP+ nuclei were calculated as previously 

described 22. Specifically, from the initial ~2 million nuclei obtained per preparation, an 

aliquot was saved and stained with DAPI. About 9% nuclei from this fraction were GFP+, as 

counted by either fluorescence microscopy or using hemocytometer chambers. In the final 

bead-bound fraction, we obtained 95–98% purity of GFP+ cells. These nuclei were stored at 

−80°C for subsequent nuclear RNA extraction, qRT-PCR, and RNA-Seq.

RNA extraction, library preparation, and RNA-sequencing.

GFP+ bead-bound nuclei were resuspended in buffer RLT for RNA extraction using the 

RNeasy Micro Kit, along with the recommended on-column DNase digestion (Qiagen 

74004). RNA quality and concentrations were measured using an Agilent Bioanalyzer 

(Agilent RNA 6000 Pico, 5067–1513) and samples having RIN Scores higher than 7 were 

used. Total RNA was converted to cDNA and amplified using the Ovation RNA-Seq System 

V2 (Nugen 7102). All samples underwent SPIA Amplification (single primer isothermal 

amplification) (Ovation RNA-Seq System V2, NuGen, 7102–08) prior to library preparation 

(NEBNext Ultra DNA Library Prep Kit for Illumina, NEB, 7370S). Three independent 

samples for each condition were barcoded using the NEBNext Index primers (NEB 

E7335S), pooled together as one sample, and run on the Illumina platform HiSeq2500 

(Rapid Mode-2×50bp) (Macrogen). Next-generation RNA-sequencing generated 40–80 

million paired 50 base reads per library.

Quantitative RT-PCR.

For qRT-PCR, cDNA synthesis was performed using the SuperScript III First Strand 

Synthesis System (Invitrogen 18080–051). Quantitative PCR was performed using PerfeCTa 

SYBR Green FastMix Rox (QuantaBiosciences) in an ABI 7900HT qPCR system (Applied 

Biosystems). Gapdh was used as housekeeping gene. Primers used were as follows: Tnf-
forward: CCCTCACACTCAGATCATCTTCT, Tnf-reverse: 

GCTACGACGTGGGCTACAG; Il1b-forward: GAAATGCCACCTTTTGACAGTG, Il1b-

reverse: TGGATGCTCTCATCAGGACAG; C1qa-forward: 

AAAGGCAATCCAGGCAATATCA, C1qa-reverse: TGGTTCTGGTATGGACTCTCC.

Bioinformatics analysis for differential gene expression.

Quality of sequencing reads was assessed using fastQC 54. Reads were mapped against the 

mouse genome (GRCm38) and rRNA sequences using ContextMap version 2.7.9 55, using 

BWA 56 as short read aligner and default parameters. Number of read fragments per gene 

were determined from the mapped RNA-Seq reads using featureCounts (strand-specific for 

stranded libraries, non-strand-specific otherwise) 57. Gene expression was quantified in 

terms of fragments per kilobase of exons per million mapped reads (FPKM).

Differential gene expression analysis was performed using edgeR 58. For each pairwise 

differential gene expression analysis, only the genes with at least an average of 10 reads per 
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sample were evaluated. p-values were adjusted for multiple testing using the method by 

Benjamini and Hochberg 59 and genes with an adjusted p-value <0.01 were considered 

significantly differentially expressed.

ENRICHR GO analysis.

For gene ontology (GO) analyses, differentially expressed gene (DEG) lists were entered 

into the web-version of Enrichr software (http://amp.pharm.mssm.edu/Enrichr/) 60. All 

scales from the ENRICHR database are depicted as ‘Combined Score’ 61, computed by 

taking log of the p-value from the Fisher Exact Test and multiplying it with the z-score of 

the deviation from the expected rank.

Immunohistochemistry.

Animals were sacrificed and perfused using ice-cold 4% PFA (Thermo Scientific 

AC416785000). Spinal cords at the injury site were dissected, post-fixed overnight at 4°C, 

and embedded in OCT (Tissue-Tek) (Thermo Fisher 4585). 12 μm thick sagittal sections 

were collected on SuperFrost+ slides (VWR 48311–703) and stored at -20°C. The sections 

were washed with 1x PBS, incubated with blocking buffer with 5% normal donkey serum 

(Jackson Immunoresearch 017–000-121) and 0.3% Triton X-100 (Acros Organics 9002–

93-1) in PBS for one hour at room temperature prior to adding primary antibodies (details 

below) diluted in antibody-dilution buffer with 1% BSA (Fisher BioReagents BP9703100) 

and 0.3% Triton X-100 in PBS, and incubated overnight at 4°C. Subsequently, AlexaFluor 

488-, AlexaFluor 594-, AlexaFluor 647-conjugated secondary antibodies (1:300, Jackson 

ImmunoResearch) were added and DAPI (1:1000, Invitrogen D1306) was used for 

counterstaining.

Primary antibodies and their dilutions: anti-5-HT (Rabbit, 1:200, ImmunoStar 20080), 

aCaspase 3 (Rabbit, 1:200, RnD Systems AF835), ApoE (Goat, 1:1000, Millipore 178479), 

CD11b (Goat, 1:300, MyBioSource MBS420973), CD68/Macrosialin (Rat, 1:200, BioRad 

MCA1957GA), Collagen IV-a1 (Mouse, 1:800, Sigma C1926), CSPG (CS-56) (Mouse, 

1:100, Sigma C8035), DAPI (1:1000, Invitrogen D1306), Fibronectin (Rabbit, 1:400, EMD 

Millipore AB2033), GFAP (Mouse, 1:1000, EMD Millipore MAB360), GFP (Chicken, 

1:1000, Aves Lab GFP-1020), IBA1 (Rabbit, 1:500, Wako 019–19741), IBA1 (Goat, 1:500, 

Novus NB100–1028), IL-1a (Rabbit, 1:400, Abcam ab7632), Ki67 (Rabbit, 1:200, Abcam 

ab15580), Ki67 (Mouse, 1:200, BD Biosciences 556003), LPL (Rabbit, 1:500, Bioss 

bs-1973R), N-Cadherin (Mouse, 1:500, BD Biosciences 610920), NeuN (Mouse, 1:400, 

EMD Millipore MAB377), NeuN (Chicken, 1:400, Aves Lab NUN), NF-H (Chicken, 

1:1000, EMD Millipore AB5539), NG2 (Rabbit, 1:200, EMD Millipore AB5320), Olig2 

(Rabbit, 1:500, EMD Millipore AB9610), P2ry12 (Rat, 1:100, Biolegend 848002), PDGFRβ 
(Rabbit, 1:100, Abcam ab32570), PECAM-1/CD31 (Rabbit, 1:300, Abcam ab28364), pFAK 

(Tyr397) (Rabbit, 1:400, Thermo Fisher 44–624G), Phalloidin (1:200, Thermo Fisher 

A12380), Plexin-B2 (Armenian Hamster, 1:800, eBioscience eBio3E7), Reticulin (Rat, 

1:500, Abcam ab51824), SPP1/Osteopontin (Rabbit, 1:200, ProteinTech 25715–1-AP), β-

Catenin (Mouse, 1:300, BD Biosciences 610153), Tenascin (Rabbit, 1:100, Merck Millipore 

AB19011), Tmem119 (Rabbit, 1:500, Abcam ab209064), Vimentin (Chicken, 1:500, Novus 

Biologicals NB300–223), Vinculin (Mouse, 1:400, Thermo Fisher NB6001293).
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Images were captured with Zeiss microscopes (AxioCamMRc). Tiled images were merged 

using Photoshop CS6. Immunofluorescence intensity analyses were performed as described 
62. In brief, the mean intensity in microglia was calculated after subtracting background 

intensity.

For consistency, midline sagittal sections of the spinal cords were used for most analyses. To 

measure the distribution of microglia, the horizontal distance of each individual IBA1+ cells 

from the lesion border was measured in ImageJ software and plotted using violin plot 63 

(Python). To measure the scatter of CD68+ cells, a vertical line through lesion center was 

drawn, and the numbers of cells was counted in consecutive 100 μm areas from the midline.

LacZ staining.

β-galactosidase reporter expression was identified histochemically in spinal cord sections by 

X-Gal assay. X-gal staining solution was prepared by adding X-Gal (dissolved in 

dimethylformamide) at 1 mg/ml to staining buffer (0.02% Igepal, 0.01% sodium 

deoxycholate, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, and 2 mM 

MgCl2 diluted in 0.1 M PBS (pH 7.3)). Spinal cord sections were prepared as described 

above and incubated overnight in X-gal staining solution. Bright field images were captured 

with Zeiss microscopes (AxioCamMRc).

EdU pulse study.

EdU solution (10 mM, Click-iT EdU Alex Fluor 488 Imaging Kit, Invitrogen #C10337, 100 

μl /10 g body weight) was injected intraperitoneally 3 hours before tissue collection. Before 

EdU detection, slides were air-dried for 1 hour. Click-iT reaction cocktail (1x Click-iT 

reaction buffer, CuSO4, Alexa Fluor azide, and 1x reaction buffer additive) was prepared and 

applied to slides for 30 min, washed with PBS for 2 min, followed by IHC procedure for the 

indicated markers.

Lesion volume.

Sagittal 12 μm thick sections of injured spinal cords were stained for the indicated markers 

to estimate scar size. For each mouse, all sagittal spinal cord sections were collected, 

stained, imaged and measured. The positive area of every section for Oil Red O, CSPG, 

TNC, or Col IV were measured by ImageJ, respectively. To calculate lesion volume, the sum 

of positive areas was calculated and then multiplied by 12 μm: v = ∑ area * 12.

STimulated Emission Depletion Microscopy (STED).

Animals were perfused and tissues harvested, post-fixed and embedded in OCT as described 

above for immunofluorescence. Samples were cut at 25 μm thickness and collected on 

SuperFrost+ Slides. Samples were stained for immunofluorescence staining using anti-

TMEM119 (microglia-specific) and a secondary antibody recommended for STED imaging 

(anti-rabbit IgG Atto 594, Sigma, 77671–1ml-F). Counterstaining was performed with Pico-

Green (Quant-iT PicoGreen dsDNA Reagent, Invitrogen, P7581). Samples were mounted 

using the ProLong Diamond Antifade Mountant (Invitrogen P36965) and Micro Cover 

Glasses, Rectangular #1.5 (VWR, 48393–251). Sections were imaged using the Leica TCS 
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SP8 STED 3x microscope (Mount Sinai Microscopy core) and images were analyzed with 

ImageJ software.

Sholl analysis.

Sholl analysis was carried out as described 64,65. In brief, z-stack confocal images were 

condensed into a maximum intensity projection image (Zen software) over which concentric 

circles were drawn, centered on the soma with 100 μm interval for every circle (Sholl 

analysis, Image J). For each microglia, the number of intersections of microglia branches 

with each circle were plotted to create the Sholl plot. The length of the longest branch from 

each cell were also plotted.

RT2 Profiler PCR Arrays.

Fourteen days after surgery (laminectomy or SCI contusion), injured spinal cord regions 

were collected, and total RNA was extracted with the RNeasy Micro kit (Qiagen 74004). 

Total RNA was then converted to cDNA using the RT2 First Strand Kit, and cDNA derived 

from 10 μg of RNA was used for the RT2 Profiler PCR Arrays (QIAGEN, 

PAMM-013ZA-2). Heatmaps were plotted using GraphPad Prism 7.0.

Proteome profiler assay (Cytokine Array).

Fourteen days after surgeries (laminectomy or T8 contusion), injured regions of spinal cords 

were collected, and protein was extracted with Illustra triplePrep Kit (GE healthcare). 100 

μg of protein lysates were used for the cytokine array (Proteome Profiler antibody assays-

Mouse Cytokine Array, R&D Systems ARY028). Images were captured with a Gel Doc XR 

system (Bio-Rad), and analyzed with ImageJ.

Microglia culture.

Forebrains from Plxnb2 cKO P2 pups were harvested in DPBS on ice and tissue was minced 

using a scalpel blade. The tissue pieces were transferred into 15 ml tubes with 1 ml DPBS 

using sterile plastic transfer pipettes. Samples were spun down at 1,200 rpm for 5 minutes, 

the DPBS discarded and 1 ml of 0.25% Trypsin EDTA (Invitrogen 25200072) was added to 

the tissue pellet and gently mixed. The tube was incubated in a 37°C water bath for 8 

minutes, and tissue triturated gently using a 200 μl micropipette tip to obtain single cell 

solution. 10 ml of warm DMEM/F12 complete (DMEM/F12 supplemented with 10% FBS 

and 1x Pen-Strep (Thermo Fisher 15140122) was added to the pellet to dilute and inhibit the 

trypsin, cells were spun at 1,200 rpm for 5 minutes and resuspended again in DMEM. Cells 

were then seeded onto high attachment 6 well Primaria plates (Corning 08–772-4J) at a 

density of 1.5 million cells per well. Medium was changed once every week and cells were 

kept in culture for up to 4 weeks. Typically, 2-week old cultures were used for our 

experiments.

To separate microglia from neurons/astrocytes, 1 ml of 0.25% Trypsin-EDTA was added to 

the 6-well plate and incubated at 37°C for 5 minutes. Neurons and astrocytes would 

delaminate first, leaving the highly adherent microglia behind. Supernatant was removed and 

either used for subsequent experiments or discarded. Another 1 ml 0.25% Trypsin-EDTA 
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was added per well to detach microglia, by incubating cells at 37°C for 10 minutes. This 

method yielded ~90% pure microglia with minimal neural cell contamination.

Cortical cultures and in vitro corralling assay.

For mixed-cell cortical cultures, cortical tissues from neonatal Plxnb2fl/B Cx3cr1CreER/GFP 

pups were harvested and dissociated as single cells as described above. Mixed cell cultures 

were plated onto Primaria plates with DMEM/F12 supplemented with 10% FBS and 1% 

Pen-Strep.

For microglia motility assays, primary microglia (Cx3cr1-GFP+) were first cultured alone, 

and then detached and replated onto a lawn of Cx3cr1-GFP- cells (neurons, astrocytes) that 

were detached early during the preparation as described above and labeled with CellTracker 

Red. IncuCyte Zoom (Sartorius) was used for real time cell imaging, and cell motility was 

tracked using ImageJ.

For in vitro corralling assays, cortical cells were isolated from Plxnb2fl/B Cx3cr1CreER/GFP 

P2 pups and cultured as mixed cell cultures in laminin-coated 4-well chamber slides, in 

DMEM/F12 supplemented with 10% FBS and 1% Pen-Strep, with 50% media change once 

a week. At the end of 2 weeks, cultures were fixed with 4% formaldehyde, washed thrice 

with PBS, and subjected to immunocytochemistry.

Phagocytosis assay.

pHrodo Red Zymosan Bioparticles (Invitrogen P35364) were added at a concentration of 10 

μg/well to a lawn of primary microglia obtained as described above, and allowed to settle for 

30 minutes. Wells were imaged at 10x magnification for red fluorescence and phase contrast, 

every hour for 24 hours using IncuCyte Zoom.

MtrackJ for microglia motility.

To measure microglia motility, the Cx3cr1-GFP+ primary microglia were cultured in 

IncuCyte Zoom and time-lapse images were captured every 30min for 5 days. Individual 

microglia were tracked for their migration with the MTrackJ plugin of ImageJ 66. The 

velocity of individual microglial cell soma (μm/h) was calculated as the traveled distance 

(μm) divided by the observation period of 120 hours.

Contact inhibition of locomotion (CIL).

To determine probability of CIL of microglia, Cx3cr1-GFP-tagged primary microglia were 

tracked in cortical cultures in IncuCyte incubator and time-lapse images were captured every 

5 min for 5 hours. Visual inspection of microglial protrusion retraction upon colliding with 

other cell types were determined within ~30 min after contact 67,68. The CIL percentage was 

calculated by dividing the number of microglia showing retraction within 30 min after 

making contact by the total number of microglia that had made contact with other cells.

Statistical analysis.

All samples were randomly allocated into experimental groups at the start of each individual 

study. Mice of the same genotype were randomly assigned to each experiment at the 
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beginning of the study. Blind scoring was performed for in vivo studies. Data collection and 

analysis for in vitro experiments were not performed blind to the conditions of the 

experiments. No statistical methods were used to pre-determine sample sizes, but our sample 

sizes are similar to those reported in previous publications 24,25,69. For each data set, 

Shapiro-Wilk test (Prism 7, GraphPad Software) was performed to determine parametric (p> 

0.05) vs. non-parametric samples (p<0.05 in the Shapiro-Wilk test). For parametric data, F-

test was conducted to compare variances (Prism 7). For samples with similar variance 

(p>0.05 in the F-test), unpaired t-test (two-sided) was used. For samples with significantly 

different variances (p < 0.05 in the F-test), unpaired two-tailed t-test with Welch’s correction 

was performed. For statistical comparison between non-parametric vs. parametric data sets, 

or between 2 non-parametric data sets, Mann-Whitney test was performed, which does not 

require the assumption of normal distribution (Prism 7). For comparison of multiple groups, 

one-way ANOVA with Tukey’s multiple comparisons post-test were performed. For studies 

with repeated measures, two-way ANOVA repeated measures (RM) followed by post hoc 

Bonferroni test were performed. Outliers were excluded based on Grubbs’ outlier test 

(GraphPad, p<0.05). The mean values are presented along with standard error of the mean 

(SEM) as error bars. *, **, and *** denote p<0.05, p<0.01, and p<0.001, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Gene signatures in activated microglia/macrophages after SCI reveal engagement of axon 
guidance pathway.
a. Schematic diagram of RNA-Seq using the INTACT method. Animals were injected with 

tamoxifen at 3 day and 1 day before SCI and affinity immunopurification of GFP-tagged 

nuclei from spinal cord tissues was performed at three time points after SCI for 

transcriptome profiling.

b. IHC images show overlap of IBA1 and SUN1-GFP at the lesion site in Cx3cr1CreER 

INTACT animal 3 days after SCI. Dotted line demarcates the lesion center. Images from 3 

independent mice revealed similar results.

c. ENRICHR Gene Ontology (GO) analysis of temporally distinct DEGs in IAM vs. sham 

controls (n=3 independent mice per timepoint). X-axis represents combined ENRICHR 

score (log of p-value from Fisher Exact Test multiplied with z-score of deviation from 

expected rank). M, molecular function; B, biological process; and P, pathways (KEGG).

d. Diagram illustrates temporally distinct cellular processes of IAM in response to SCI as 

revealed by DEGs.
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e. Bar graphs show average expression levels of semaphorin and plexin family members at 

the indicated timepoints in IAM after SCI as compared to homeostatic microglia/

macrophages in sham controls. FPKM, fragments per kilobase of transcript per million 

mapped reads. Note the increased expression level of Sema4c, 4d, as well as Plxnb2 in IAM.
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Fig. 2. Upregulation of Plexin-B2 in myeloid cells after SCI.
a. Schematics of Plxnb2 mutant alleles. Top, targeted trap null allele (Plxnb2B) that carries 

an insertion of a lacZ reporter cassette. TM, transmembrane domain. Neo, neomycin 

resistance gene. Bottom, Plxnb2 conditional allele (Plxnb2fl) that carries loxP sites flanking 

coding exons 7–9. Grey boxes depict exons. Semi-circles depict FLP recombinase target 

(FRT) sequences. Red triangles depict loxP sites.

Zhou et al. Page 25

Nat Neurosci. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b. X-Gal staining of sagittal sections of thoracic spinal cords from Plxnb2B/+ mice show 

increased expression of lacZ reporter at 7 days after SCI as compared to sham control. 

Images from 3 independent mice for each condition showed similar results.

c. IHC shows robust upregulation of Plexin-B2 (PB2) at the lesion site after SCI at 3, 7 and 

14 dpi, which started to waned at 21 dpi. DAPI for nuclear counterstaining. n=4 independent 

mice per timepoint, with similar results obtained.

d. Images of co-immunostaining show co-localization of Plexin-B2 and IBA1 in the spinal 

cord tissues at baseline and at 7 days after SCI. Note the robust upregulation of Plexin-B2 in 

IBA1+ cells after SCI. Higher magnification images shown on the right highlight the 

morphological changes of IBA1+ cells from ramified at baseline to amoeboid after SCI. n=4 

independent mice per timepoint with similar results obtained.

e. ICC of primary microglia isolated from Plxnb2fl/B Cx3cr1CreER/GFP mice show Plexin-B2 

ablation with hydroxytamoxifen (OHT). Cx3cr1GFP reporter confirmed purity of the primary 

microglial culture. Right, scatter dot plots of fluorescence intensity for Plexin-B2, n=100 

cells for each condition quantified from 10 independent culture wells, unpaired two-tailed 

Student’s t test, *** p<0.0001. Data represent mean ± SEM.

f. IHC of injured spinal cord tissues at 7 dpi show Plexin-B2 ablation in IBA1+ cells in 

Plxnb2fl/B Cx3cr1CreER mice as compared to the high expression levels in littermate control 

(Plxnb2fl/+ Cx3cr1CreER). Animals were treated with tamoxifen from 3 day before until 7 

day after SCI. Right, scatter dot plots of fluorescence intensity for Plexin-B2, n=100 cells 

for each condition quantified from 3 independent mice, unpaired two-tailed Student’s t test, 

***p<0.0001. Data represent mean ± SEM.

g. Left, confocal images of cortical tissue of adult mice stained for microglia marker 

Tmem119. Animals received tamoxifen injection for 14 days (every other day, total 7 

injections). PicoGreen for nuclear counterstaining. Right, maximum intensity projection of 

STED microscopic images show microglia cellular processes. Images obtained from 3 pairs 

of mice showed similar results.

h. Quantifications show reduced branching points in Plxnb2 cKO microglia as compared to 

control. Sholl analysis was performed at 100 μm radius intervals (n=17 cells per genotype, 

from 3 independent pairs of mice). Two-way ANOVA with Bonferroni’s post hoc correction 

for repeated measures, ***p<0.001). F(DFn, DFd): F(1,640)=83.1 for column factor, 

F(159,640)=7 for row factor. Microglia from Plxnb2 cKO and control mice displayed 

comparable average length of the longest process (data were averaged for each animal, n=3 

mice for each genotype), Unpaired two-tailed Student’s t test, n.s., p=0.81. Data represent 

mean ± SEM.

Asterisks in b, c, f denote the lesion core.
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Fig. 3. Plexin-B2 induction in IAM is required for functional recovery after SCI.
a. Experimental scheme. Tamoxifen injection was started at 3 days before SCI and 

continued every other day until 5 weeks after SCI.

b. BMS scores during the 5 week recovery after T8 contusion injury demonstrate impaired 

functional recovery in Plxnb2 cKO mice as compared to littermate controls with the same 

tamoxifen regimen. n=12 animals per group, two-way ANOVA with Bonferroni post hoc 

correction for repeated measures, ***p<0.0001, ###p<0.001 for the entire recovery course, 
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F(DFn, DFd): F(1,374)=945.8 for column factor, F(16, 374)=52.11 for row factor. Data 

represent mean ± SEM.

c. Motosensory behavioral assays by rotarod and ladder walking (regular and irregularly 

spaced rungs) at 35 dpi demonstrate impaired functional recovery in Plxnb2 cKO mice as 

compared to littermate controls. Rotarod tests: n=12 animals per group, unpaired two-tailed 

Student’s t-test, **p=0.011. Ladder walking tests: n=15 animals per group, two-way 

ANOVA with Bonferroni post hoc correction, ***p<0.0001. For regular, F(DFn, DFd): 

F(1,140)=312 for column factor, F(4, 140)=106 for row factor. For irregular, F(DFn, DFd): 

F(1, 140)=369 for column factor, F(4, 140)=315 for row factor. Von Frey filament test was 

conducted at baseline and at 35 dpi, n=4 animals per group, left and right hindpaws were 

measured separately, Mann Whitney test, n.s. p=0.99, ***p=0.0005. Data represent mean ± 

SEM.

d. IHC of sagittal sections of thoracic spinal cords at 35 dpi show larger lesion volume 

revealed by CSPG and fewer axon fibers at the dorsal column and the lesion center (NH-F) 

in Plxnb2 cKO mice than littermate controls. n=3 animals per group, unpaired two-tailed 

Student’s t-test. For lesion volume by CSPG, **p=0.0042. For NF-H intensity, *p=0.027 for 

lesion core, *p=0.014 for dorsal column. Data represent mean ± SEM.

e. IHC of sagittal sections of thoracic spinal cords at 35 dpi show fewer serotonergic fibers 

(5HT) at the lesion site in Plxnb2 cKO mice than in littermate controls (white arrows). n=3 

for control and n=4 for cKO, unpaired two-tailed Student’s t-test. *p=0.014. Data represent 

mean ± SEM. R-rostral; C-caudal; D-dorsal; V-ventral; CC-central canal.
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Fig. 4. Impaired corralling and wound compaction in Plxnb2 cKO after SCI.
a. Top: experimental scheme. Tamoxifen was injected every other day from 3 days before 

until 5 weeks after SCI. Bottom: representative IHC images of sagittal sections of thoracic 

spinal cords show IBA1+ immune cells congregated at the lesion core and surrounded by an 

astrocytic (GFAP+) border in control animals, but in Plxnb2 cKO animals, they appeared 

widespread, with multiple gliosis foci in diffuse lesion area as outlined by dashed white 

lines. Bottom, enlarged images highlight spatial segregation of the two populations at the 

injury penumbra in control, but intermingling in cKO. R-rostral; C-caudal; D-dorsal; V-
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ventral; CC-central canal. Asterisks denote the lesion center. Quantifications are shown on 

right. For the size of GFAP+ area, n=4 mice for control and n=3 for cKO, unpaired two-

tailed Student’s t-test, *p=0.035. For the number of gliosis compartment foci, n=5 per 

genotype, Mann Whitney test, **p=0.0079. Data represent mean ± SEM.

b. IHC of sagittal sections of thoracic spinal cords show expanded territory of NG2+ cells in 

Plxnb2 cKO animal as compared to the more confined location in the dorsal lesion site in 

control animal. White arrows point to territory of NG2+ cells.

c. IHC of sagittal sections of thoracic spinal cords show diffuse deposition of matrix proteins 

at the lesion site in Plxnb2 cKO animals. White dashed lines delineate compacted lesion 

core in control mice, but multiple gliosis foci in cKO mice. Yellow arrows denote collagen 

IV deposition in areas surrounding the lesion core, which contains concentrated TNC. 

Quantification of the lesion volume by TNC and Col IV are shown on the right, n=3 animals 

per group, unpaired two-tailed Student’s t-test, *p=0.024, **p=0.0029. Data represent mean 

± SEM.

d. IHC images of sagittal sections of thoracic spinal cords reveal diffuse pattern of SPP1 at 

the injury site in Plxnb2 cKO animals. Cx3cr1-GFP reporter also revealed diffuse spread of 

IAM with amoeboid morphology in cKO mice, whereas in control mice, homeostatic 

microglia became abundant at the injury penumbra, signifying injury resolution. Images 

from 3 independent mice per group revealed similar results.
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Fig. 5. Impaired containment of phagocytic cells and altered cytokine milieu in Plxnb2 cKO after 
SCI.
a. Experimental scheme. Tamoxifen was injected every other day from 3 days before until 5 

weeks after SCI. IHC was performed at 7 and 35 dpi.

b. Sagittal sections of thoracic spinal cords at 35 dpi reveal widespread Oil Red O lipid 

staining in Plxnb2 cKO mice as compared to littermate controls, in which lipid debris was 

contained at the lesion core. Quantifications show calculated Oil Red O+ volume at the 
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injury site, n=3 mice per group, unpaired two-tailed Student’s t-test, **p=0.0015. Data 

represent mean ± SEM. R-rostral; C-caudal; D-dorsal; V-ventral.

c. Representative IHC images of sagittal sections of thoracic spinal cords show diffuse 

spread of CD68+ cells and prolonged phagocytosis phenotype of IAM (IBA1+) in Plxnb2 
cKO mice even at 5 weeks after SCI (white arrows). Also note impaired corralling of the 

immune cells and compromised wound compaction in Plxnb2 cKO mice. White line 

demarcates the lesion center. Images from 3 independent mice for each condition showed 

similar results.

d. Quantifications show the extent of the spread of phagocytotic cells measured by the 

prevalence of CD68+ cells among DAPI+ or IBA+ cells at the indicated locations from the 

lesion center. n=3 mice per group, two-way ANOVA with Bonferroni post hoc correction, 

***p<0.0001. For CD68+/DAPI, F(DFn, DFd): F(1, 84)=645.3 for column factor, F(20, 

84)=25.83 for row factor. For CD68+/IBA1+, F(DFn, DFd): F(1, 84)=203.4 for column 

factor, F(20, 84)=32.62 for row factor. Data represent mean ± SEM.

e. Proteome profiler assays show relative levels of upregulated (>2-fold) cytokines or 

secreted factors at the injury site in Plxnb2 cKO compared to control littermates at 14 dpi 

after T8 contusion injury. n=3 mice per group, two-way ANOVA with Bonferroni post hoc 

correction, ***p<0.0001 for the entire profile of 64 proteins on the array. Only proteins with 

relative levels above the cutoff of 2.0 are plotted. Data represent mean ± SEM.

f. IHC images of consecutive sagittal sections of thoracic spinal cords at 7 dpi (top and 

bottom panels) stained for the indicated markers reveal early stage corralling phenotype in 

Plxnb2 cKO animals. Higher magnification images are shown on the right. Top panels show 

necrotic core (white asterisk) corralled by an inner rim of IBA+ immune cells and an outer 

rim of GFAP+ astrocytes. White dashed lines delineate the border of spatial segregation 

between the two populations. Bottom panels show Tmem119+ microglia forming a 

concentric rim confining the necrotic core in control animals; blood vessels (PECAM-1+) 

with large lumen size displayed the same concentric orientation. In contrast, in Plxnb2 cKO 

animals, IBA1+ or Tmem119+ immune cells and GFAP+ astrocytes failed to form concentric 

rims, resulting in unsealed wound at the dorsal surface and diffuse neo-vasculature with 

random orientation. Images from 3 independent mice for each group showed similar results.
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Fig. 6. Plexin-B2 is required during the early stage of innate immune response after SCI.
a. Left, experimental scheme (Tam 3 wk). Tamoxifen was injected every other day from 3 

days before until 3 weeks after injury, followed by 2 weeks with no tamoxifen injection to 

allow infiltration of Plexin-B2-expressing macrophages. Right, BMS scores show overall 

worse recovery of Plxnb2 cKO as compared to the control cohort, n=4 per group, two-way 

ANOVA with Bonferroni post hoc correction for repeated measures, *p=0.050, ###p<0.001 

for the entire recovery course. F(DFn, DFd): F(1, 102)=75.25 for column factor, 

F(16,102)=7.71 for row factor. Rotarod and von Frey tests at 35 dpi show impaired 
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motosensory recovery for cKO. For rotarod tests: n=4 animals per group, unpaired two-

tailed Student’s t-test, *p=0.032 for duration, *p=0.022 for speed. For von Frey tests, n=4 

mice per group, left and right hindpaws measured separately, unpaired two-tailed Student’s 

t-test, **p=0.0059. Data represent mean ± SEM.

b. Left, IHC images of sagittal thoracic spinal cords show larger lesion volume by CSPG 

staining (outlined by dashed lines) and fewer axon fibers at the dorsal column by NH-F 

staining (arrows) in Plxnb2 cKO mice (Tam 3 wk) at 35 dpi. Right, IHC images of IBA and 

GFAP immunostaining show impaired corralling with open wound at the dorsal surface in 

the mutant animal. Asterisks denote the lesion core. R-rostral; C-caudal; D-dorsal; V-ventral. 

Images from 3 independent mice per group showed similar results.

c. BMS scores show that the mutant cohort with tamoxifen injection during the first 3 weeks 

after injury (Tam 3 wk) displayed a partial recovery after 21 dpi when compared to the 

mutant mice with continuous Tam injections during the entire 5 week duration (Tam 5 wk). 

n=12 for the Tam 5 wk cohort, n=4 for the Tam 3 wk cohort, two-way ANOVA with 

Bonferroni post hoc correction, *p=0.019, ###p<0.0001 for the entire recovery course. 

F(DFn, DFd): F(1, 238)=22.66 for column factor, F(16, 238)=26.56 for row factor. Data 

represent mean ± SEM.

d. Experimental scheme with tamoxifen injected from 3 days before until 2 weeks after SCI 

(Tam 2 wk). BMS scores, as well as rotarod and von Frey tests at 35 dpi show impaired 

motosensory recovery in the mutant relative to the control cohort. n=5 for control, n=4 for 

Plxnb2 cKO. For BMS, two-way ANOVA with Bonferroni post hoc correction, *p=0.018 

and 0.039, respectively, ###p<0.0001 for the entire recovery course. F(DFn, DFd): F(1, 

136)=79.72 for column factor, F(16, 136)=24.53 for row factor. For Rotarod tests, unpaired 

two-tailed Student’s t-test, *p=0.036 for duration, *p=0.035 for speed. For von Frey filament 

tests, Mann Whitney test, **p=0.0035. Data represent mean ± SEM.

e. Experimental scheme with tamoxifen injected from 2nd to 5th weeks after SCI (Tam 2nd–

5th wk). BMS sores, as well as rotarod and von Frey tests at 35 dpi show overall comparable 

motosensory recovery in both cohorts. n=5 for control, n=4 for Plxnb2 cKO. For BMS, two-

way ANOVA with Bonferroni post hoc correction, ##p<0.0099 for the entire recovery 

course. F(DFn, DFd): F(1, 77)=7.01 for column factor, F(10, 77)=40.51 for row factor. For 

Rotarod tests, unpaired two-tailed Student’s t-test, n.s., p=0.38 for duration, n.s., p=0.37 for 

speed. For von Frey filament tests, Mann Whitney test, n.s., p=0.96. Data represent mean ± 

SEM.

f. IHC images of thoracic spinal cords at 35 dpi for indicated markers show successful 

corralling in both control and Plxnb2 cKO (Tam 2nd–5th wk) cohorts. White dashed lines 

outline the lesion core. Note that in both cohorts, Tmem119+ microglia congregated at the 

injury penumbra, and fibroblasts expressing Reticulin concentrated at the dorsal wound. 

Images from 3 independent mice per group showed similar results.
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Fig. 7. Plexin-B2 promotes microglia dispersion, contact inhibition of locomotion, and focal 
adhesions.
a. IHC images of sagittal sections of thoracic spinal cords at 3 days after T8 dorsal column 

transection (SCI-T) show even spread of IBA1+ cells at peri-lesion area in control, but more 

clustered IBA1+ cells in Plxnb2 cKO mice (white arrow). Dashed lines outline lesion border. 

R-rostral; C-caudal; D-dorsal; V-ventral. Images from 4 independent animals per genotype 

showed similar results.
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b. Violin plots show the distance of IBA1+ cells from the lesion border in control and Plxnb2 
cKO mice at 3, 7, and 14 dpi. Quantification scheme is shown on the right. Unpaired two-

tailed Student’s t test. For 3 dpi, n=150 cells for control, n=280 cells for cKO, from n=4 

animals per group, ***p<0.0001. For 7 dpi, n= 150 cells for control, n=200 cells for cKO, 

from n=4 animals per group, ***p<0.0001. for 14 dpi: n=150 cells for control, n=200 cells 

for cKO, from n=3 animals per group, *p=0.020. White dots in violin plots represent median 

and markers indicate the interquartile range.

c. Frames from time-lapse videos of co-cultures with or without tamoxifen. Primary Cx3cr1-

GFP+ microglia were isolated from the cortex of neonatal Plxnb2fl/B Cx3cr1CreER/GFP mice 

and then added onto a lawn of Cx3cr1-GFP- neural cells from the same mice labeled with 

CellTracker Red. Red lines trace the movements of a representative microglia over 5 days. 

For velocity quantifications, n=10 cells from 4 independent animals per group, unpaired 

two-tailed Student’s t-test, **p=0.0015. Data represent mean ± SEM.

d. Frames from time-lapse videos of mixed cortical cultures from Plxnb2fl/B 

Cx3cr1CreER/GFP mice, with or without tamoxifen. Microglia were visualized by the Cx3cr1-

GFP reporter. Arrows point to microglia that moved away from colliding cells in control 

conditions, but not in Plxnb2 cKO conditions. Note the time scale between 0 to 25 min for 

control vs. 0 to 35 min for Plxnb2 cKO microglia. Graphs represent mean ± SEM. To 

calculate the probability of contact inhibition of locomotion, 60–180 cells were quantified 

per animal and averaged, n=3 independent animals per group, two-tailed Student’s t test, 

**p=0.0010. Diagram depicting contact inhibition of locomotion is shown at the bottom 

right.

e. ICC images of in vitro corralling in cortical cultures from neonatal Plxnb2fl/B 

Cx3cr1CreER/GFP mice. Microglia were visualized by Cx3cr1-GFP reporter and astrocytes by 

GFAP. Yellow and white arrows point to spatial segregation of these two populations in 

control cultures, but intermingling in cultures in which Plxnb2 cKO cKO in microglia was 

induced by hydroxy-tamoxifen. Quantification is shown on the right. n=3 independent 

cultures for each condition, unpaired two-tailed Student’s test, **p=0.0011. Data represent 

mean ± SEM.

f. Images of thoracic spinal cord sections at 14 dpi labeled with phalloidin for cortical F-

actin show higher density of glial cells at the lesion core in control as compared to Plxnb2 
cKO animals. Magnified images are shown in bottom panels. Quantifications show larger 

cell diameter at the lesion core in Plxnb2 cKO, n=156 cells for control, n=123 cells for cKO, 

from 3 independent mice per genotype, unpaired two-tailed Student’s t test, ***p<0.0001. 

Data represent mean ± SEM.

g. ICC of cortical cultures from neonatal Plxnb2fl/B Cx3cr1CreE/GFP mice, with or without 

hydroxy-tamoxifen (OHT) treatment. Microglia were visualized with Cx3cr1-GFP. LPS 

stimulation resulted in upregulation of pFAK in control microglia only. Magnified images of 

boxed area are shown on the right. Quantifications show fluorescence intensities of pFAK. 

For control, n=30 cells for -LPS and n=55 cells for + LPS; for cKO, n=45 cells for -LPS and 

n=93 cells for +LPS. One-way Anova with Tukey’s multiple comparisons post-test. 

***p<0.0001. n.s., p=0.12. F(DFn, DFd): F(3, 219)=22.4 for column factor. Data represent 

mean ± SEM.

h. Diagram depicting the importance of Plexin-B2 in IAM to promote corralling and wound 

compaction.
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Fig. 8. Plexin-B2 activity in both microglia and macrophages contributes to functional recovery 
after SCI.
a. Experimental scheme for microglia-specific Plxnb2 cKO with only three tamoxifen 

injections delivered one month before SCI (Tam pre-1m).

b. BMS scores show worse motor recovery during the first two weeks after injury in Plxnb2 
cKO cohort, but a subsequent catch up thereafter, n=8 per group, two-way ANOVA with 

Bonferroni post hoc correction, **p=0.008, **p=0.0022, and *p=0.031, respectively; 
###p<0.0001 for the entire recovery course. F(DFn, DFd): F(1, 156)=47.85 for column 
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factor, F(11, 156)=116.1 for row factor. Rotarod and von Frey tests show no significant 

differences between the two cohorts at 35 dpi. For Rotarod test, n=7 for each genotype, 

unpaired two-tailed Student’s t-test, n.s., p=0.59 for duration, n.s., p=0.59 for speed. For von 

Frey filament tests, n=4 mice per group, left and right hindpaws measured separately, Mann 

Whitney test, n.s., p=0.081. Data represent mean ± SEM.

c. IHC of sagittal sections of thoracic spinal cords at 7 dpi show sign of early corralling with 

Ki67+ cells forming a rim corralling cell-poor, necrotic core in control mice, whereas in 

microglia-specific Plxnb2 cKO mice, Ki67+ cells displayed less dispersion and congregated 

at the lesion core. DAPI nuclear counterstain highlights spatial pattern of cell density at the 

injury site. Images from 3 independent mice per group showed similar results.

d. IHC of thoracic spinal cords of both control or microglia-specific Plxnb2 cKO mice 

display successful corralling and wound compaction at 35 dpi. Images from 3 independent 

mice per group showed similar results.

e. Comparison of BMS scores during 5 week recovery, and rotarod and von Frey tests at 35 

dpi show better motosensory recovery for the cohort with microglia-specific Plxnb2 cKO 

cohort (Tam pre-1m, n=7, the same cohort as in Fig. 8b) as compared to the Tam 2 wk 

cohort (n=4, the same cohort as in Fig. 6d). Two-way ANOVA with Bonferroni post hoc 

correction, ***p=0.0002 for 5 dpi and p<0.0001 for subsequent three timepoints, 

**p=0.0010, ###p<0.0001 for the entire recovery course. F(DFn, DFd): F(1, 132)=158 for 

column factor, F(11, 132)=95.4 for row factor. For Rotarod test, n=7 for the Tam pre-1m 

cohort, n=4 for the Tam 2 wk cohort, unpaired two-tailed Student’s t-test, *p=0.038 for 

duration, *p=0.038 for speed. For von Frey filament tests, n=4 mice per group, left and right 

hindpaws measured separately, Mann Whitney test, ***p=0.00050. Data represent mean ± 

SEM.

f. Diagrams illustrate the importance of Plexin-B2 induction in IAM in mediating early 

corralling, thereby facilitating debris clearing, inflammation containment, and subsequent 

matrix reorganization and wound compaction.
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