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1 Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil, 2 Faculdade de Odontologia de Piracicaba, Universidade

Estadual de Campinas, UNICAMP, Piracicaba, Brazil, 3 Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil, 4 W. M. Keck

Biomedical Mass Spectrometry Lab. University of Virginia, Charlottesville, Virginia, United States of America, 5 Institute of Dentistry, University of Oulu, Oulu, Finland

Abstract

Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics,
effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic
profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based
proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin
cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues.
In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together,
this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.
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Introduction

Oral cancer is one of the most common malignancies worldwide

[1,2] and the third most frequent cancer, with a 5-year survival

rate less than 50% [3]. The development of oral squamous cell

carcinoma (OSCC) requires the accumulation of several genetic

alterations that are affected by genetic predisposition and

environmental conditions such as tobacco, alcohol, chronic

inflammation and viral infection [4]. Because cancer is a complex

and multifactorial disease, exploring the molecular pathways

involved in this process is necessary to achieve successful treatment

of each specific case and improve the understanding of pathogen-

esis [4–6].

Therefore, in order to investigate the mechanisms for oral

cancer development, this study focused on analyzing the

differential expression of proteins and peptides in OSCC

compared to normal tissue using an orthotopic murine model,

which recapitulates the local tumor microenvironment [7,8]. We

used a two-step approach by first injecting SCC-9 cells and the

respective control cells in the tongues of immunodeficient mice to

induce tumor development. After 20 days, tumor and control

tissues were isolated, and extracted proteins and peptides were

analyzed using mass spectrometry, followed by validation using

human OSCC tissues. We demonstrated that the strategies used

here enabled the identification of up-regulated focal adhesion-

mediated proteins for OSCC, such as filamins A and B, catenin

alpha-1 and talin-1 as potential proteins involved in OSCC

development.

Materials and Methods

Cell culture
The human OSCC cell line SCC-9 was obtained from

American Type Culture Collection (ATCC, Manassas, VA,

USA), and cultured as recommended. SCC-9 cells are originated

from human squamous carcinoma from the tongue. The HaCaT

cells, an immortalized but not transformed epithelial cell line [9],

was maintained in DMEM containing 10% fetal bovine serum

(FBS) and antibiotics at 37uC in a 5% CO2 air atmosphere.

HaCaT cells are human keratinocytes originated from skin.

Control cells were used to assure that all the animals were

subjected to the same procedures. Human Epidermoid Carcinoma

A431 (epidermoid carcinoma cell line originated from skin) was

grown in Roswell Park Memorial Institute (RPMI) 21640

medium supplemented with 10% FBS and antibiotics at 37uC in

a 5% CO2 air atmosphere. Metastatic SCC-9 cells were isolated

from lymph nodes (LN) originating the cell line SCC-9 LN1 [10].

This cell line was cultured as recommended for SCC-9 cells.
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Tissue sample preparation
HaCaT and SCC-9 cells were grown until 75% confluence and

2.56105 cells in 20 ml of phosphate-buffered saline were implanted

into the right lateral portion of the tongue of 6- to 8-week-old male

Balb/c nude mice, using a syringe with a 30 gauge disposable

needle (BD Biosciences). This procedure was approved by the

Institutional Committee for Ethics in Animal Research of the

University of Campinas. Mice were sacrificed 20 days after

implantation and the control and tumor tissues were immediately

removed and frozen in dry ice. A small piece of each tumor was

fixed in formalin and embedded in paraffin for histopathological

examination after H&E staining. We performed three independent

experiments for the analysis of the protein and peptide expression

in control and tumor tissues. Each sample is composed of a pool of

three mouse tissues, either from control or tumor tissues. The

samples were named as Control 1 (experiment 1, n = 3), Control 2

(experiment 2, n = 3), Control 3 (experiment 3, n = 3) and Tumor

1 (experiment 1, n = 3), Tumor 2 (experiment 2, n = 3) and Tumor

3 (experiment 3, n = 3). The control and tumor tissues were

homogenized with liquid nitrogen using mortar and pestle. Tissue

protein from each of the three mice were separately resuspended

with 50 ml of extraction buffer in urea containing protease

inhibitors [11] and incubated at room temperature for 30 min.

After centrifugation at 12,0006g for 10 min at 4uC, the

supernatant was quantified using the Bradford method reagent

(BioRad) as previously described [12]. Then the same protein

amount was pooled from three mouse samples, either from control

tissues or from tumor tissues, to be analyzed by LC-MS/MS.

Three independent experiments were performed.

Sample preparation for LC-MS/MS
The extracted proteins were reduced (5 mM ditiotreitol, 25 min

at 56uC), alkylated (14 mM iodoacetamide, 30 min at room

temperature in the dark) and digested with trypsin (Promega), the

peptides were desalinized using the column Sep-pak C18 cartridge

(Waters), dried down in a vacuum concentrator and reconstituted

in 0.1% formic acid.

Regarding the identification of endogenous cleavage peptides by

LC-MS/MS, 672 mg of extracted protein from tissues as described

before were precipitated with the final concentration of 10 mM

HCl. After centrifugation, the supernatant was collected, the

peptides were desalinized using the column Sep-pak C18 cartridge

(Waters) and the peptides were dried down in a vacuum

concentrator and resuspended in 20 ml of 0.1% formic acid.

LC-MS/MS analysis
The protein derived samples (2 mg) and endogenous cleavage

peptides were analyzed on an ETD enabled LTQ Velos Orbitrap

instrument (Thermo Fisher Scientific) connected to nanoflow

liquid chromatography tandem mass spectrometry (LC-MS/MS)

on an EASY-nLC system (Proxeon Biosystem) through a Proxeon

nanoelectrospray ion source. The resulting peptides were separat-

ed by 2–90% acetonitrile gradient in 0.1% formic acid using a pre-

column EASY-Column (2 cm6 ID100 mm, 5 mm particle size,

Thermo Fisher Scientific) and the a PicoFrit Column (20 cm6
ID75 mm, 5 mm particle size, New Objective), at a flow rate

300 nl/min over 135 min. The nanoelectrospray voltage was set

to 2.5 kV and the source temperature was 200uC. All instrument

methods for the Orbitrap Velos were set up in the data dependent

acquisition mode. The full scan MS spectra (from m/z 300–1600)

were acquired in the Orbitrap analyzer after accumulation to a

target value of 1e6 in the linear ion trap. Resolution in the

Orbitrap system was set to r = 60,000 and the 20 most intense

peptide ions with charge states $2 were sequentially isolated to a

target value of 10,000 and fragmented in high-pressure linear ion

trap by low-energy CID (collision-induced dissociation) normal-

ized collision energy of 35%. The signal threshold for triggering a

MS/MS event was set to 1000 counts. Dynamic exclusion was

enabled with exclusion size list of 200 and exclusion duration of

60 s. An activation q of 0.25 and activation time of 10 ms were

used [13].

For the identification of endogenous cleavage peptides by LC-

MS/MS, the samples (4.5 ml) were analyzed on an ETD enabled

Orbitrap Velos instrument as described before, except for gradient

run that was performed over 45 min. All instrument methods for

the LTQ Velos Orbitrap were set up in the data dependent

acquisition mode in ETD (electron transfer dissociation), HCD

(higher-energy collisional dissociation) and CID fragmentations.

For CID fragmentation mode, the same method used for digested

proteins was performed. For HCD mode, resolution in the

Orbitrap system was set to r = 60,000 and the 5 most intense

peptide ions with charge states $2 were sequentially isolated to a

target value of 50,000 and fragmented in HCD with normalized

collision energy of 40%, resolution in the Orbitrap system was set

to r = 7,500. The signal threshold for triggering a MS/MS event

was set to 100,000 counts. Dynamic exclusion was enabled with

exclusion size list of 200 and exclusion duration of 20 s and

activation time of 10 ms was used. For ETD, resolution in the

Orbitrap system was set to r = 60,000 and the 5 most intense

peptide ions with charge states $2 were sequentially isolated to a

target value of 50,000 and fragmented in high-pressure linear ion

trap and readout in the Orbitrap system with r = 7,500 for MS/

MS. The signal threshold for triggering an MS/MS event was set

to 500,000 counts. Dynamic exclusion was enabled with exclusion

size list of 200 and exclusion duration of 20 s. An activation q of

0.25 and activation time of 100 ms were used, with supplemental

activation.

All mass spectrometric raw files associated with this study may

be available for downloading via FTP from the PeptideAtlas data

repository by accessing the following link: http://www.

peptideatlas.org/PASS/PASS00365.

Data analysis, bioinformatic analysis and statistical
analysis

Peak lists (msf) were generated from the raw data files using

Proteome Discoverer version 1.3 (Thermo Fisher Scientific) with

Sequest search engine and searched against Human and Mouse

International Protein Databases (IPI) v. 3.86 (IPI Human: 91,522

sequences; 36,630,302 residues, release July 2011 and IPI Mouse:

58,667 sequences, 26,399,545 residues, release July 2011) with

carbamidomethylation as fixed modification, oxidation of methi-

onine as variable modifications, one trypsin missed cleavage and a

tolerance of 10 ppm for precursor and 1 Da for fragment ions.

The data were analyzed against Human and Mouse databases,

considering the orthotopic model, in which the tumor developed

in mouse tongue is originated from human cells and the control

tissue is originated from mouse tissues.

Regarding the analysis of endogenous cleavage peptides by LC-

MS/MS, they were performed as described above, except for the

parameters: no enzyme was specified for cleavage and a tolerance

of 10 ppm for precursor and 1 Da for fragment ions for top 20

CID (collision-induced dissociation); and for top 5 HCD (higher-

energy collisional dissociation) and top 5 ETD (electron-transfer

dissociation) fragmentations, a tolerance of 10 ppm for precursor

and 0.02 Da for fragment ions were used. All datasets of proteins

and endogenous cleavage peptides were processed using the

workflow feature in Proteome Discoverer software and the msf files

were analyzed in ScaffoldQ+v.3.3.2 (Proteome Software), filtered
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using xcorr cutoffs (+1.1.8, +2.2.2, +3.2.5 and +4.3.5). The

scoring parameters in ScaffoldQ+ were set to obtain a false

discovery rate less than 1%.

For the analysis of protein and peptide expression, the average

number of unique peptides from tumor and control samples was

compared directly to obtain the fold-change ratio (FC). To avoid

division by zero caused by samples with no unique peptides we

added 1 on both averages. The statistical significance of the

peptides for each protein was assessed by a two-tailed Fisher’s

exact test calculated by R [14,15]. Proteins and peptides with

FC.2.0 and p-value ,0.05 were selected for the Tables A and B.

Heat map of differential expressed proteins given by Fisher’s

exact test was performed in Perseus software [16] using Z-score

applied on spectral counts.

To explore in-depth the biological significances of up-regulated

and down-regulated proteins, the biological processes of GO terms

and KEGG (Kyoto Encyclopedia of Genes and Genomes) [17]

pathway annotation were analyzed simultaneously using DAVID

Gene Functional Classification Tool [18] with the p-value set at

0.05.

Differentially expressed proteins were uploaded into the

Ingenuity Pathways (IPA; Ingenuity Systems, Redwood City,

CA) Knowledge Base as a tab-delimited text file of IPI accession

numbers. Biological networks were generated using their Knowl-

edge Base for interactions between mapped Focus Genes (user’s

list) and all other gene objects stored in the knowledge base. In

addition, functional analysis of the networks was performed to

identify the biological functions and/or canonical pathway that

were most significant to the genes in the network. The significance

of functional enrichment was computed by a Fisher’s exact test

(p,0.05). A detailed description of IPA can be found on the

Ingenuity Systems website.

Immunoblotting
To validate talin-1 expression, 30 mg of proteins extracted from

control and tumor tissues were separated by 4–15% SDS-PAGE

and transferred onto nitrocellulose membrane (GE Healthcare).

The nitrocellulose membrane was incubated with anti-talin-1

(1:1000, Abcam), and anti-GAPDH (1:5000, Bioethyl) specific

antibodies for 2 h. After incubation with secondary antibodies,

visualization of talin-1 and GAPDH was achieved by chemilumi-

nescence with the ECL kit (Amersham Biosciences).

Human tissue sample preparation
This study analyzed 12 pairs of fresh samples, each pair from

the same patient, of OSCC and adjacent histologically normal oral

mucosa. Fresh samples were divided into two parts: one was fixed

in formalin and embedded in paraffin for hematoxylin and eosin

staining and immunohistochemistry, while the other was imme-

diately stored at 280uC for real-time quantitative PCR experi-

ment. Before conducting the experiments, the frozen sections were

stained with hematoxylin/eosin and evaluated by a pathologist. All

of the tissue samples were collected from patients who had signed

informed consent forms prior to participation in the study, which

was approved by the Research Ethics Committee of the Piracicaba

Dental School, University of Campinas, Brazil. After the diagnosis,

all patients were referred to head and neck surgeons for treatment.

Immunohistochemistry
Briefly, slides of normal oral mucosa and oral squamous cell

carcinoma (n = 10) were incubated with monoclonal mouse anti-

talin-1 (Abcam, Cambridge, MA, USA) diluted 1:500 followed by

the Advance detection system (Dako). The control reactions were

performed by the exclusion of the primary antibodies. Talin-1

expression was assessed with the aid of the Aperio ScanScope CS

and the ImageScope software (Aperio Technologies Inc., Vista,

CA).

Real-time quantitative PCR
Total RNA from 24 fresh tissues samples, 12 from OSCC and

12 from normal oral mucosa, was isolated with TRIzol reagent

according to the manufacturer’s protocol (Invitrogen). Following

DNase I treatment, in order to eliminate genomic DNA

contamination, 2 mg of total RNA per sample were used to

generate cDNA using Oligo-dT (Invitrogen) and a superscript

enzyme (Superscript II RT enzyme, Invitrogen). The resulting

cDNAs were subjected to qRT-PCR using SYBR Green PCR

Master Mix (Applied Biosystems) in the StepOnePlus Real Time

PCR System (Applied Biosystems). Gene expressions were

determined by the standard curve method with normalization to

the housekeeping gene GAPDH. Primer sequences were to

GAPDH 59 GAAGGTGAAGGTCGGAGTC 39 (forward) and

59 GAAGATGGTGATGGGATTTC 39 (reverse), to Talin-1 59

CTGTATGTGCAGGCACGAGATGAC-39 (forward) and 59-

AGCGGACCTTGGCCTCAATCTCA-39 (reverse), to filamin A

59-GATCACGGATCCCGAAGGCAAG-39 (forward) and 59-

AATCTGAATGGTGGGGCCGATG-39 (reverse), to catenin

alpha-1 59-GCCCAGCTAGCCGCAGAAATGA-39 (forward)

and 59-TGCAGCCAAAACATGGGCCTTC-39 (reverse), to

filamin B 59-AGCAGACGCCAAAGCAGAGG -39 (forward)

and 59- TCAGGAGTGATGACCTGTGGGAC-39 (reverse).

Small interfering RNA transfection
For silencing of talin-1, SCC-9, A431 and SCC-9 LN1 cells

were grown to a confluence of 40–50% and transfected with

50 nM Small Interfering RNA (siRNA) duplex (sc-36610, Santa

Cruz) using Lipofectamine 2000. Random Stealth siRNA duplexes

coding for nonfunctional RNAs served as control (sc-37007, Santa

Cruz) and submitted to cell adhesion, migration and invasion

assays. The SCC-9 cells were processed for immunoblotting and

real-time quantitative PCR (three independent experiments were

performed with three replicates) to confirm talin-1 knockdown.

A431 cells and SCC-9 LN1 cells were also processed for real-time

quantitative PCR (one independent experiment was performed

with three replicates) to confirm talin-1 knockdown in these cells.

Cell adhesion assay
SCC-9, A431 and SCC-9 LN1 cells transfected with control

(scrambled) and siRNA against talin-1 were submitted to adhesion

assay. Briefly, 36105 cells were plated in 6 well-plate and after

24 h the oligos (Scramble and against TLN-1, Santa Cruz) were

transfected with lipofectamine 2000 according to the manufacturer

instructions (Invitrogen). After 48 h of transfection, cells were

trypsinised and seeded in a Matrigel (2 mg per well; BD

Biosciences) coated 96-well plate, previously washed three times

with PBS and blocked with 3% BSA (bovine serum albumin)

during 2 h. The adhesion was evaluated during 1 h in serum-free

media supplemented with 3% BSA, the wells were washed 3 times

and cells were fixed with 10% formaldehyde. Cells were stained

with 1% toluidine blue containing 1% borax for 5 min. The dye

was eluted using 100 ml 1% SDS and the absorbance was

measured at 620 nm. Three independent experiments were

performed with triplicates for SCC-9, A431 and SCC-9 LN1 cells.

Transwell migration assay
SCC-9, A431 and SCC-9 LN1 cells transfected with control

siRNA and siRNA against talin-1 were plated in the upper
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chambers of 8 mm pore transwells (HTS Transwell-96 Well Plate,

Corning). After 48 h of transfection, the cells were submitted to a

starvation period of 4 h. The cells were allowed to migrate towards

the lower chamber containing 1% FBS supplemented media. After

24 h, cells at the top chamber were removed with a cotton swab

and the cells at the bottom of the insert filter were fixed with 10%

formaldehyde for 10 min, washed with PBS and stained with 1%

toluidine blue solution in 1% borax for 5 min. The dye was eluted

using 1% SDS and the absorbance was measured at 620 nm.

Three independent experiments were performed with triplicates.

Cell invasion assay
For the invasion assay, SCC-9, A431 and SCC-9 LN1 cells

transfected with control siRNA and siRNA against talin-1. After

48 h of transfection, the cells were submitted to a starvation period

of 24 h. The cells were plated in the top chamber of the transwell

(HTS Transwell-96 Well Plate, Corning) with a matrigel-coated

polycarbonate membrane (BD matrigel, Basement Membrane

Matrix) and the medium with 10% FBS was added to the lower

chamber as a chemoattractant. After 72 h, cells on the lower

surface of the membrane were fixed with 10% formalin and

stained with 1% toluidine blue solution in 1% borax for 15 min. A

cotton swab mechanically removed cells that did not migrate

through the pores. The dye was eluted using 1% SDS and the

absorbance was measured at 620 nm. Two independent experi-

ments were performed with duplicates.

Statistical analysis for validation experiments
For immunohistochemistry, qRT-PCR, cell adhesion and cell

migration assays, statistical analyses were performed using Prism

Statistics Software (GraphPad, La Jolla, CA) and the p-values,

0.05 were set as statistically significant. Student’s t-test was used

after the assumptions for normality data verified by Kolmogorov–

Smirnov test.

Results

An in vivo model for human squamous cell carcinoma
development

Before characterizing the proteome difference between normal

and tumor tissues, we confirmed the tumorigenicity of cells. As

expected, SCC-9 cells were able to develop tumors in immuno-

compromised mice after 20 days (Figures 1a and 1b). Microscop-

ically, the tumors were located in the connective tissue with no

contact to the surface epithelium, invading the surrounding muscle

fibers of the tongue (Figure 1c). Tumors were composed by

pleomorphic epithelial cells, which exhibited mitotic figures

(Figure 1d).

MS-based proteomic and peptidomic analyses in control
and tumor tissues obtained from the orthotopic murine
model

We carried out a label-free proteomic and peptidomic analysis

to quantify the proteins and peptides present in control and tumor

Figure 1. Development of OSCC in the tongue of an immunodeficient mouse. (a) Shows the tumor developed in the oral cavity of BALBc/
nude mouse by SCC-9 cells injection. (b) Shows the tumor dissected from the oral cavity of the BALBc/nude mouse. (c) Microscopical features of the
OSCC included pleomorphic epithelial cells invading the muscle fibers of the tongue (50X, H&E). (d) Mitotic figures (arrows) were also observed (200X,
H&E).
doi:10.1371/journal.pone.0098208.g001
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tissues (Figure A in File S1). Briefly, the control and tumor tissues

isolated from mouse tongue were extracted and for the proteome

analysis, the extractions were digested by trypsin followed by

peptide analysis on a high-resolution mass spectrometer. Since the

tumor tissue is originated from human cells and the control tissue

is originated from mouse tissues, only unique peptides that were

present in both mouse and human databases were considered for

the comparison of protein and peptide expression between control

and tumor tissues (the only exception allowed was an exchange of

isoleucine to leucine residues and vice-versa). The Fisher’s exact

test was used with a significance level at 5% (Tables C-G in File

S1). The proteins and endogenous peptides with a fold-change of

2.0 that reached statistical significance (Fisher’s exact test, p,0.05)

were considered to be differentially expressed between control and

tumor tissues (Table A in File S1 for identified proteins, and Table

B in File S1 for identified endogenous peptides).

After considering the unique peptides that were present in both

databases, we identified 734 and 743 proteins against human and

mouse databases, respectively (Tables C and D in File S1). We

identified 29 up-regulated and 23 down-regulated proteins that

were differentially expressed in tumor tissues compared with

control tissues using a 2.0-fold-change cutoff (Table A in File S1,

Fisher’s exact test, p,0.05). Hierarchical clustering of significantly

changing proteins was performed using the Z-score calculation on

spectral counting values and represented as a heat map (Figure 2).

Figure 2. Bioinformatics analysis of differential expressed proteins in OSCC and control tissues identified by MS. Clustering of
significantly up- and down-regulated proteins (Fisher’s exact test, p,0.05) in OSCC tissues compared to control tissues is shown as a Heat map,
applying the Euclidian distance method and average linkage.
doi:10.1371/journal.pone.0098208.g002
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The endogenous cleaved peptides were evaluated in control and

tumor tissues using CID, HCD and ETD fragmentation methods.

As shown in Table B in File S1, CID and HCD fragmentation

methods identified 14 and 6 down-regulated proteins, respectively,

based on identification of endogenous peptides that were

differentially expressed in tumor tissues compared with control

tissues (Fisher’s exact test, p,0.05). The endogenous protein

fragments identified using ETD fragmentation did not show

statistically significant differences between control and tumor

tissues (Fisher’s exact test, p.0.05). The fragments identified by

CID and HCD fragmentation originated mainly from ribosomal

proteins, histones, actin, transgelin-2, myosin and vimentin.

Validation of the protein signature in OSCC tumor tissues
using immunoblotting, qRT-PCR and
immunohistochemistry

Among the identified proteins, we first validated by immuno-

blotting the higher expression of talin-1 in tumor tissues compared

with control tissues obtained from the orthotopic murine model

(Figure 3a, Student’s t-test, p,0.05). We also validated the higher

expression of talin-1, catenin alpha-1, filamin A and filamin B in

human OSCC by qRT-PCR (Figure 3b, Student’s t-test, p,0.05).

By immunohistochemistry, we validated the higher expression of

talin-1 (Students’ t-test, p,0.0001) in human OSCC compared

with human normal oral mucosa (Figure 4). The clinicopatholog-

ical variables of OSCC patients are shown in Table J in File S1.

Biological network analysis reveals different biological
processes for up-regulated and down-regulated proteins
in tumor tissues

To further characterize the identified proteins, we mapped the

pathway annotations and the functional relationships of the

differentially expressed proteins identified by MS. The enrichment

GO terms revealed significant biological processes involved in

actin cytoskeleton organization and cell-cell junction assembly for

up-regulated proteins (p,0.05, Table 1) and energetic metabolism

Figure 3. Talin-1 showed higher protein expression in OSCC tissues compared to control tissues in orthotopic murine model by
immunoblotting (a). The proteins (30 mg) were submitted to 1-D electrophoresis on 4–15% SDS-polyacrylamide gels, they were transferred onto
nitrocellulose membrane and incubated with anti-talin-1 antibody. Anti-GAPDH antibody was used as loading control. The graph represents the
normalized optical density of the average data of three immunoblotted samples (n = 3, * indicates p,0.05, Student’s t-test). Talin-1, filamins A and B
and catenin alpha-1 showed higher mRNA expression levels in human OSCC tumor tissues compared to control tissues by qRT-PCR (n = 12) (b).
Relative mRNA expression levels were measured by the real-time quantitative PCR. The data were normalized with glyceraldehyde-3- phosphate
dehydrogenase gene. Columns represent mean and SD (n = 12; Student’s t-test, * indicates p,0.05).
doi:10.1371/journal.pone.0098208.g003
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and cellular respiration for down-regulated proteins (p,0.05,

Table 1). The complete results are shown in the Tables H and I in

File S1.

We also examined functional pathway enrichment in the

differentially expressed proteins by using Ingenuity Pathway

Analysis (IPA). Of the 52 query molecules, 43 were eligible for

network analysis (focus molecule) based on the IPA Knowledge

Figure 4. Expression of talin-1 in the human normal oral mucosa and OSCC tissues by immunohistochemistry (n = 10). Talin-1
demonstrated a weak and restrict cytoplasmic immunoreactivity in the basal and suprabasal layers of the normal oral tissue (a), whereas broad
positivity with variable intensity was found in the neoplastic cells (b). As expected, some immune and inflammatory cells expressed talin-1. Panel c
represents the negative control. The graphics represent the % of positive expression cells and expression intensity between the normal and OSCC
tumor tissues (n = 10, Student’s t-test, * indicates p,0.05).
doi:10.1371/journal.pone.0098208.g004

Table 1. List of the significant Gene Ontology annotation enriched in the differentially expressed proteins using DAVID Gene
Functional Classification Tool.

Functional Annotation p-value Proteins (gene name)

Up-regulated proteins

GO:0030036: actin cytoskeleton
organization

8.93E-06 Ezrin (EZR), Plastin-3 (PLS3), Talin-1 (TLN1), Fascin (FSCN1), Isoform 1 of Filamin-B (FLNB) Isoform 2 of
Filamin-A (FLNA)

GO:0008104: protein localization 7.10E-04 Rab GDP dissociation inhibitor beta (GDI2), Ezrin (EZR), Transitional endoplasmic reticulum ATPase (VCP),
Talin-1 (TLN1), 14-3-3 protein eta (YWHAH), Isoform 1 of Filamin-B (FLNB) Isoform 2 of Filamin-A (FLNA)

GO:0022614: membrane to membrane
docking

0.006 Ezrin (EZR), Moesin (MSN)

GO:0007043: cell-cell junction assembly 0.023 Isoform 1 of Catenin alpha-1 (CTNNA1), Talin-1 (TLN1)

GO:0007159: leukocyte adhesion 0.036 Ezrin (EZR), Moesin (MSN)

Down-regulated proteins

GO:0015980: energy derivation by
oxidation of organic compounds

2.42E-04 Isocitrate dehydrogenase [NAD] (IDH3G), Isoform 1 of NADH dehydrogenase [ubiquinone] flavoprotein 1|
mitochondrial (NDUFV1), glycogen [starch] synthase| muscle isoform 2 (GYS1), Calcium-binding
mitochondrial carrier protein Aralar1 (SLC25A12)

GO:0045333: cellular respiration 0.003 Isocitrate dehydrogenase [NAD] (IDH3G), Isoform 1 of NADH dehydrogenase [ubiquinone] flavoprotein 1|
mitochondrial (NDUFV1), Calcium-binding mitochondrial carrier protein Aralar1 (SLC25A12)

GO:0055085: transmembrane transport 0.012 Isoform SERCA1B of Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (ATP2A1), ADP/ATP translocase
2 (SLC25A5) Mitochondrial 2-oxoglutarate/malate carrier protein (SLC25A11), Calcium-binding
mitochondrial carrier protein Aralar1 (SLC25A12)

doi:10.1371/journal.pone.0098208.t001
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Base criteria. The top network was selected and included 23 of the

43 focus molecules (score 61). The network revealed 15 proteins in

the context of cancer (gene names: FSCN1, MYH2, SLC24A5,

LCP1, NCL, ATP2A2, ATP2A1, PLEC, FLNA, FLNB, TTN,

TLN1, EZR, CTNNA1, TGFB1) at p = 3.0961025. Pathways

derived from the network are shown in the Figure 5a, such as actin

cytoskeleton signaling (p = 2.2761025), integrin signaling

(p = 1.6261022) and FAK signaling (p = 2.161021). The top

canonical signaling pathway (p = 2.2761025), actin cytoskeleton

signaling, is displayed in Figure 5b.

Talin-1 knockdown decreased cell adhesion, migration
and invasion

SCC-9, A431, and SCC-9 LN1 cells treated with control siRNA

and siRNA against talin-1 were evaluated in cell adhesion assay in

matrigel and in migration assay in 96-well transwell plates.

Knockdown of talin-1 is confirmed by immunoblotting in SCC-9

cells (Figure 6a) and by qRT-PCR in SCC-9 (Figure 6b), A431 and

SCC-9 LN1 cells (Figure B in File S1). As observed in Figure 6c,

talin-1 knockdown decreased adhesion of SCC-9, A431, SCC-9

LN1 cells compared to control siRNA (n = 3, Student’s t-test, p,

0.05). In migration, SCC-9 cells treated with control siRNA and

siRNA against talin-1 were seeded in 96-well transwell plates in

the upper chambers containing serum-free media. The cells were

allowed to migrate towards the lower chamber containing 1% FBS

supplemented media. After 24 h, migration to the lower chamber

was measured by colorimetric assay. SCC-9, A431 and SCC-9

LN1 cells treated with control siRNA against talin-1 showed a

decrease in migration (Figure 6d, n = 3, Student’s t-test, p,0.05).

In invasion assay, SCC-9, A431 and SCC-9 LN1 cells treated with

control siRNA and siRNA against talin-1 were seeded in transwell

plates in the upper chambers containing serum-free media. The

cells were allowed to invade towards the lower chamber

containing 10% FBS supplemented media. After 72 h, invasion

to the lower chamber was measured by colorimetric assay. SCC-9,

A431 and SCC-9 LN1 cells treated with siRNA against talin-1

showed a decrease in invasion (Figure 6e, n = 2, Student’s t-test,

p,0.05).

Discussion

OSCC is the most common malignant tumor of the oral cavity

[19], but the molecular mechanisms and factors that lead to the

cancerous transformation of normal oral mucosa are not well

understood. Proteomic analysis allows us to evaluate the dynamic

changes of protein patterns that occur in the tumor to better

understand the pathogenesis and contribute to the discovery of

oral cancer associated proteins. We applied proteomic label-free

approaches in OSCC using an orthotopic murine model of tongue

squamous cell carcinoma, which mimics both local tumor growth

and invasion and the process of metastatic spread to the cervical

lymph nodes [20–22].

Focal adhesion-mediated proteins were found to be
up-regulated in OSCC tissues

Recently, it has been reported that multiple cancer cell lines

display degradation of the extracellular matrix (ECM) at focal

adhesion sites, thereby contributing to two essential steps in the

metastatic process: tumor cell migration and the concomitant

degradation of the ECM [23]. In fact, we found several proteins

possibly involved in actin cytoskeleton organization and cell-cell

junction assembly, including talin-1, ezrin, plastin-3, fascin,

catenin alpha-1, filamins A and B to be up-regulated in tumor

tissues compared to control tissues (Table 1, Figure 5 and Table A

in File S1). Among the proteins involved in statistically significant

biological processes and functional pathways (Table 1 and

Figure 5, p,0.05) a set of proteins that mediate focal adhesion

and were concomitantly identified up-regulated in OSCC, such as

talin-1, catenin alpha-1, filamins A and B were chosen for further

validation.

Figure 5. Pathway analysis of differentially expressed proteins. (a) The highest score network generated by IPA comprised 23 differentially
expressed proteins (up-regulated proteins are displayed in red, whereas the down-regulated proteins are in green) plus additional interacting
molecules that were not identified in this study (white). The network revealed 15 proteins in the context of cancer. Actin cytoskeleton signaling,
integrin signaling and FAK signaling represent canonical pathways with 13, 10 and 6 identified proteins of the network, respectively. The proteins
were grouped according to the canonical pathway or function. Fx: function and Cp: canonical pathway. (b) Representation of the top canonical
pathway of actin cytoskeleton signaling.
doi:10.1371/journal.pone.0098208.g005
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Talin-1 demonstrated the highest fold-change in tumor tissues

(Table A in File S1, Fisher’s exact test, p,0.05) and its expression

was validated by immunoblotting (Figure 3a, Student’s t-test, p,

0.05), qRT-PCR (Figure 3b, Student’s t-test, p,0.05) and

immunohistochemistry in OSCC human tissues (Figure 4, Stu-

dents’ t-test, p,0.0001). This protein is considered a key adaptor

protein able to regulate integrin conformation and cell migration

[24]. Cell junction proteins such as catenin alpha-1 and filamins A

and B were also found to be up-regulated in our MS study (Table

A in File S1, Fisher’s exact test, p,0.05). These results were

validated by qRT-PCR in OSCC human tissues (Figure 3b,

Students’ t-test, p,0.0001).

GO enrichment analysis showed that catenin alpha-1 and

filamins A and B are involved in cell-cell junction assembly and

actin cytoskeleton organization, respectively (Table 1). As expect-

ed, the significant pathways related to actin cytoskeleton signaling

and integrin signaling are linked to cancer, and the network wiring

proteins recapitulate the dynamic protein signaling that can be

involved in cancer development (Figure 5a). Actin cytoskeleton

signaling as the top canonical pathway (p-value = 2.5761025)

reflects the major event underscored by this study (Figure 5b).

Figure 6. Talin-1 knockdown decreased cell adhesion, migration and invasion of SCC-9, A431 and SCC-9 LN1 cells. (a) Talin-1 showed
lower protein expression in SCC-9/siRNA TLN-1 cells compared to SCC-9/control (scrambled) by immunoblotting. The total proteins (30 mg) were
submitted to 1-D electrophoresis on 12% SDS-polyacrylamide gels, they were transferred onto nitrocellulose membrane and incubated with anti-
talin-1 antibody. Anti-GAPDH antibody was used as loading control. The graph represents the normalized optical density. (b) Talin-1 mRNA
expression levels in SCC-9/siRNA TLN-1 cells compared to SCC-9/control (scrambled) by qRT-PCR (n = 3, Student’s t-test, p,0.05). The data were
normalized with GAPDH gene. (c) SCC-9/control (scrambled) and SCC-9/siRNA TLN-1 cells, A431/control (scrambled) and A431/siRNA TLN-1 cells, SCC-
9 LN1/control (scrambled) and SCC-9 LN1/siRNA TLN-1 cells were seeded in Matrigel coated 96-well plates. After 1 h, cells were stained and the cell
adhesion was measured (n = 3, * indicates p,0.05, Student’s t-test for each comparison). (d) SCC-9/control (scrambled) and SCC-9/siRNA TLN-1 cells,
A431/control (scrambled) and A431/siRNA TLN-1 cells, SCC-9 LN1/control (scrambled) and SCC-9 LN1/siRNA TLN-1 cells were seeded in serum-free
media in the upper chamber of transwell plates and were allowed to migrate towards the lower chamber containing 1% FBS supplemented media
(n = 3, * indicates p,0.05, Student’s t-test). (e) SCC-9/control (scrambled) and SCC-9/siRNA TLN-1 cells, A431/control (scrambled) and A431/siRNA
TLN-1 cells, SCC-9 LN1/control (scrambled) and SCC-9 LN1/siRNA TLN-1 cells were seeded in serum-free media in the upper chamber of matrigel-
coated transwell plates and were allowed to invade towards the lower chamber containing 10% FBS supplemented media (n = 2, * indicates p,0.05,
Student’s t-test).
doi:10.1371/journal.pone.0098208.g006
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Catenin alpha-1 binds not only to E-cadherin-beta-catenin but

also to actin filaments. Thus, it may play a role in local regulation

of actin assembly and organization at sites of cadherin-mediated

cell-cell adhesion [25].

Interestingly, filamin A and talin-1 have also been shown to play

roles in actin-membrane assembly as well as cell-cell junction

maintenance. Filamins are able to connect several transmembrane

and signaling proteins to actin, allowing the assembly of complex

networks. Talin-1 and filamins bind to integrin adhesion receptor

in the same position and affect integrin activation by competing

for binding to integrin [26]. In fact, the network of actin

cytoskeleton signaling revealed proteins named filamin, focal

adhesion kinase (FAK) and paxilin (Figure 5b). Interestingly, these

proteins play a role in cell motility, proliferation and survival [23],

all essential pathways for cancer development. Filamin A, for

example, has been reported as a target for DNA damage-based

cancer therapy [27]. The fact that filamin A acts in DNA damage

repair suggests that the lack of filamin A confers cancer cells more

sensitive to DNA damage treatment and allows better prognosis

[27].

The adhesion proteins organize the epithelial cell-cell junction

and the actin cytoskeleton, which is considered to be a stable

structure that maintains the structural integrity of tissues, a critical

feature that is affected during cancer development [23]. In order

to investigate the functional relevance of talin-1 in OSCC

adhesion, migration and invasion, we induced a knockdown of

talin-1 in SCC-9 cells (Figure 6a and b). In fact, we observed a

decrease in cell adhesion and migration (Figure 6c and 6d), which

strengthen the role talin-1 might play in oral cancer development.

We also investigated the importance of talin-1 for invasion, and we

observed a decrease in the invasion in talin-1 knockdown cells

(Figure 6e). To demonstrate that this role is not cell specific but

rather independent of the carcinoma cell type, we also induced

knockdown of talin-1 in A431 and SCC-9 LN1 cell lines (Figure B

in File S1) and observed a decrease in cell adhesion, migration and

invasion (Figure 6c, 6d and 6e).

A previous study demonstrated that the genetic gain and

overexpression of talin-1 in OSCC correlated with a poor clinical

outcome [24]. They further evaluated the effect of dominant-

negative mutant, which is able to decrease integrin activation, in

low and high talin-1 expressing cells. Interestingly, a significant

reduction of cell growth and invasiveness was observed only in

high talin-1 expressing cells. Therefore, together with our data, we

can suggest that talin-1 might have a role in OSCC development

and it can be considered a potential therapeutic target in OSCC.

Down-regulated proteins in OSCC reflect metabolic
changes

Another characteristic of cancer was evidenced in our study; we

observed a clear down-regulation of key enzymes involved in

energy metabolism (Table 1 and Table A in File S1). The

rearrangement in energy metabolism largely towards glycolysis is

known to be one of the adjustments cancerous cells undergo to

grow and divide [28]. Even in the presence of oxygen, cancer cells

can reprogram their metabolism towards glycolysis, as opposed to

mitochondrial oxidative phosphorylation, by regulating specific

metabolic enzymes and allowing a greater intake of glucose by the

cell. This aerobic glycolysis is considered an emerging hallmark of

cancer associated with activated oncogenes such as Ras [29–31].

Our results identified the lower expression of mitochondrial

proteins involved in energy metabolism in the tumor compared to

the control tissues. This deregulation is possibly due to the

accentuated use of glycolysis by oral cancer cells. The effect

observed in the metabolic regulation pathway is a selective

advantage for tumor cells because it allows cancer cells to

proliferate and survive in an environment that fluctuates in

nutrients and oxygen [30,32].

Lower abundance of protein fragments in OSCC
orthotopic murine model is revealed by
peptidomics-degradomics

To further explore the OSCC tissues, the endogenous cleavage

peptides resulted from proteolysis and/or degradation were

identified using complementary MS approaches to improve

identification rates for peptidomic-degradomic analyses [33].

Interestingly, we observed a decrease in endogenous cleavage

peptides in tumor tissues when the same amount of extracted

proteins from the tissues was precipitated (Table B in File S1).

Among the proteins, we found fragments of proteins originated

from actin, transgelin-2, myosin regulatory light chain 2 and

vimentin. Not only their fragments were identified in a similar

fashion but also the proteins have a close relationship with actin

cytoskeleton and focal adhesion dynamics [34,35]. However, the

primary complex mechanisms that direct the proteolysis and/or

protein degradation in tumor tissues are still not clear, and there

are several new frontiers to be overcome in this field to explain the

balance between synthesis and degradation [36–38].

In summary, our study captures specific processes that are

altered upon oral tumorigenesis and highlights the parallel up-

regulation of cell junction proteins. Identifying underlying

mechanisms that regulate the cell adhesion proteins may lead to

more comprehensive understanding of oral cancer development

and open novel avenues for OSCC-targeting approaches.

Supporting Information

File S1 Contains the following Supporting Information files:

Table A: Up-regulated and down-regulated proteins identified by

LC-MS/MS according to the number of unique peptides Only

statistically significant proteins are shown in this table (Fisher’s

exact test, p,0.05). Table B: Endogenous peptides identified by

LC-MS/MS according to the number of unique peptides. Only

statistically significant proteins are shown in this table (Fisher’s

exact test, p,0.05). Table C: List of total proteins with the

number of unique peptides found in both Human and Mouse

Databases after searching against Human database. For the

comparison of the expression of proteins and peptides between

control and tumor tissues, the Fisher’s exact test was applied at

significance level at 5%. Table D: List of total proteins with the

number of unique peptides found in both Human and Mouse

Databases after searching against Mouse database. For the

comparison of the expression of proteins and peptides between

control and tumor tissues, the Fisher’s exact test was applied at

significance level at 5%. Table E: List of total proteins with the

number of unique endogenous peptides obtained from CID

fragmentation method. For the comparison of the expression of

proteins and peptides between control and tumor tissues, the

Fisher’s exact test was applied at significance level at 5%. Table
F: List of total proteins with the number of unique endogenous

peptides obtained from HCD fragmentation method. For the

comparison of the expression of proteins and peptides between

control and tumor tissues, the Fisher’s exact test was applied at

significance level at 5%. Table G: List of total proteins with the

number of unique endogenous peptides obtained from ETD

fragmentation method. For the comparison of the expression of

proteins and peptides between control and tumor tissues, the

Fisher’s exact test was applied at significance level at 5%. Table
H: Functional Annotation Chart for the Up-regulated Proteins
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using DAVID Gene Functional Classification Tool. Table I:

Functional Annotation Chart for the Down-regulated Proteins

using DAVID Gene Functional Classification Tool. Table J:

Clinicopathological variables of OSCC patients. Figure A:

Experimental workflow of the proteomic, peptidomic and

bioinformatic analyses, and validation performed in this study.

Figure B: Talin-1 mRNA expression levels in (a) A431/siRNA

TLN-1 cells compared to A431/control (scrambled) and (b) in

SCC-9 LN1/siRNA TLN-1 cells compared to SCC-9 LN1/

control (scrambled) (n = 1, with three replicates). The data were

normalized with GAPDH gene.
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