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Abstract
Objectives  This study aimed to investigate the effectiveness of deep convolutional neural network (CNN) in the diagnosis 
of interproximal caries lesions in digital bitewing radiographs.
Methods and materials  A total of 1,000 digital bitewing radiographs were randomly selected from the database. Of these, 
800 were augmented and annotated as “decay” by two experienced dentists using a labeling tool developed in Python pro-
gramming language. The 800 radiographs were consisted of 11,521 approximal surfaces of which 1,847 were decayed (lesion 
prevalence for train data was 16.03%). A CNN model known as you only look once (YOLO) was modified and trained to 
detect caries lesions in bitewing radiographs. After using the other 200 radiographs to test the effectiveness of the proposed 
CNN model, the accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area 
under the receiver operating characteristic curve (AUC) were calculated.
Results  The lesion prevalence for test data was 13.89%. The overall accuracy of the CNN model was 94.59% (94.19% for 
premolars, 94.97% for molars), sensitivity was 72.26% (75.51% for premolars, 68.71% for molars), specificity was 98.19% 
(97.43% for premolars, 98.91% for molars), PPV was 86.58% (83.61% for premolars, 90.44% for molars), and NPV was 
95.64% (95.82% for premolars, 95.47% for molars). The overall AUC was measured as 87.19%.
Conclusions  The proposed CNN model showed good performance with high accuracy scores demonstrating that it could be 
used in the diagnosis of caries lesions in bitewing radiographs.
Clinical significance  Correct diagnosis of dental caries is essential for a correct treatment procedure. CNNs can assist dentists 
in diagnosing approximal caries lesions in bitewing radiographs.
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Introduction

Dental caries is one of the most common chronic diseases 
worldwide and the accurate diagnosis of caries is highly 
important in clinical practice. For diagnostic purposes, vis-
ual-tactile examination is the standard method for detecting 
dental caries lesions. However, the visual-tactile method may 
not always detect dental caries lesions in the interproximal 
region due to wide contact surfaces [1]. To overcome this, 

bitewing radiographs can be used as an additional method 
to determine the diagnosis in the interproximal region [2].

Bitewing radiography has higher sensitivity than the vis-
ual-tactile method and panoramic radiographs [3–5]. Addi-
tionally, digital radiographic systems result in less X-ray 
exposure [6]. However, accurate caries detection requires 
at least one clinician to carefully evaluate the radiographic 
image.

Recently, computer-aided assistance (CAA) systems for 
dental radiographic imagery has become a popular research 
area. CAA systems may help dentists, especially those 
who are less experienced, to make more reliable and accu-
rate assessments of dental caries in bitewing radiographic 
images. In addition, CAA systems will shorten the time 
needed for assessment and accelerate the progression to the 
treatment process.
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Machine learning (ML) is a subfield of artificial intel-
ligence and consists of powerful algorithms. ML is suc-
cessfully used in computer-aided diagnosis and assessment 
systems. However, deep learning, which is a type of artifi-
cial neural network, has emerged as a subfield of machine 
learning in recent years and has replaced classical machine 
learning methods in computer-aided diagnosis and support 
systems. Especially, convolutional neural networks (CNNs), 
which are a type of neural network that inspired by the mam-
malian visual cortex, have achieved satisfactory results in 
addressing a variety of medical issues [7, 8]. Unlike clas-
sical ML algorithms such as support vector machines [9], 
K-nearest neighbors [10], and decision trees [11], CNNs can 
automatically learn hierarchical and contextual features from 
the dataset through the training procedure [12].

In recent years, CNNs have been successfully employed 
to clarify various health care problems that use different 
types of medical imaging. For example, skin lesion seg-
mentation [13], skin cancer classification from dermoscopic 
images [14], diagnosis of breast cancer from mammograms 
[15], diagnosis of Alzheimer’s from MRI scans [16], and 
automatic detection and quantization of COVID-19 from 
chest computed tomography images [17] represent a few 
recent approaches involving CNNs.

In dentistry, radiology plays an important role in clinical 
diagnosis. Every year a large number of images are obtained 
in dental radiology including panoramic, bitewing, periapi-
cal, and cephalometric radiographs [18]. Given this vast 
amount of image data, CNNs seem to have great potential 
for clinical assessment and diagnosis. Recently, deep learn-
ing researchers have started to explore this potential in the 
field of dental radiology. CNNs have been successfully used 
to detect periodontal bone loss in periapical radiographs 
[19], diagnose carious lesions in bitewing radiographs [20], 
and detect apical lesions in panoramic radiographs [21]. A 
detailed review describes the use of CNNs in dental radiol-
ogy [18]. In addition, it is possible to see how the use of arti-
ficial intelligence in dentistry could lead to satisfying results, 
especially in the field of caries diagnosis [20, 22, 23].

The use of CNNs in the field of dentistry and especially in 
caries diagnosis is a new approach. To the best of our knowl-
edge, there is only one study that uses CNNs and bitewing 
radiographs [20]. Besides, there are also studies in the field 
of caries diagnosis using deep learning with near-infrared 
transillumination method [23–25] and digital periapical 
radiographs [22, 26]. There are also studies investigating the 
diagnosis of white spot lesions and dental caries lesions in 
oral photographs using deep learning [27, 28]. Studies in this 
area can allow for faster and more accurate caries diagnosis 
in the future. Also, CNNs can contribute as an assistant to 
the dentist during caries diagnosis [22]. CNNs may also help 
to prevent possible false or lacking diagnoses in cases that 
escape the attention of the dentist due to intensive workload 

or lack of experience [29]. In addition, although it has not 
been reported in the literature thus far, these applications 
may contribute to the clinical education of dental students. 
This is a novel topic in the field of dentistry and all of these 
issues are waiting to be investigated.

Unlike previous studies utilized classification [22] and 
segmentation [20] based CNN models, we modified and 
trained a real-time object localization and classification 
CNN model to detect the lesion location and class prob-
ability in bitewing radiographs. The aim of this study was 
to investigate the effectiveness of deep convolutional neural 
networks (CNNs) in the diagnosis of interproximal caries 
lesions in digital bitewing radiographs. For this purpose, 
we trained a YOLO-based CNN model to detect decays in 
bitewing images.

Materials and methods

Dataset

This study was performed in the Department of Restorative 
Dentistry, Faculty of Dentistry, Kirikkale University after eth-
ical approval of Kirikkale University Ethics Committee (Date: 
08/07/2020, Decision No: 2020.06.21). A total of 1,000 bite-
wing radiographic images of permanent teeth created between 
January 2018 and December 2019 were obtained from the 
faculty’s database. The radiographs have been obtained from 
the Turkish society, mainly in the Central Anatolian Turkish 
population. Patients’ age, gender, and the date of radiographs 
were also available in the database. However, we did not con-
sider the metadata in classification. All bitewing radiographs 
were obtained with the same periapical X-ray devices avail-
able in our dental clinics at 65 kVp, 7 mA (Gendex Expert 
DC, Gendex Dental Systems, IL, USA). There is no clear 
information about the X-ray machine-film distance and the 
exposure times. It is possible that these parameters are likely 
different for each radiograph because the radiographs were 
taken by different staff in different departments. Some bitew-
ing samples from the dataset are shown in Fig. 1. Both dental 
arches were clearly observed on bitewing images. More than 
50% of the crown part of the visible teeth were included in the 
calculation, while the others were not. Since it was aimed to 
diagnose primary approximal caries, full crowns, restorations 
in the approximal surface of the teeth, and mesial or distal 
sides of third molar teeth were not calculated. The resolution 
of the obtained bitewing images had varying sizes. There-
fore, all resolutions were arranged to 640 × 480 pixels. After 
this process, the dataset was split as follows: 80% for train-
ing (800 bitewings) and 20% for testing and validation (200 
bitewings). Initially, the training dataset (800 bitewings) was 
consisted of 11,521 approximal surfaces of which 1847 were 
decayed (lesion prevalence was 16.03%). We did not use any 
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image enhancement or pre-processing methods to improve 
the bitewing images. The 800 bitewing radiographs were 
augmented four times using rotation, scaling, zooming, and 
cropping operations. As a result of augmentation, we obtained 
3,200 bitewing radiographs that were used for in the training 
of the YOLO-based CAA system. Any formal sample size 
was not calculated in this exploratory descriptive study such 
as a previous study [27].

Study design

A schematic representation of the proposed CAA system is 
shown in Fig. 2. The proposed YOLO-based CAA system 

for the detection of dental caries in the bitewing radiographs 
consists of three main stages: feature extraction via convo-
lutional layers, caries detection with a confidence score, and 
fully connected layers for output of the location of caries 
lesion.

Data labeling

The caries lesions in the sample bitewing radiographs in the 
study were labeled by two expert dentists via consensus to 
create a fuzzy gold standard (reference standard). Each of 
the expert dentists performing the labeling had more than 
10 years of working experience in the restorative dentistry 

Fig. 1   Representative bitewing radiographs from the dataset

Fig. 2   Scheme of the proposed YOLO-based CAA system
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department. During labeling, both expert dentists sat next 
to each other and after the labeling decision, the area to be 
labeled was marked by Y.B. In the labeling process, a bound-
ing box was drawn by the experts around each caries lesions 
to provide YOLO training process requirements. This labe-
ling process was carried out using a tagging tool developed 
using Python programming language. There are five label 
parameters for each bounding box. The box parameters are 
provided in Fig. 3.

YOLO architecture

You only look once (YOLO) is a successful deep learn-
ing model with real-time object detection tasks [30]. It can 
detect multiple objects simultaneously in real time from an 
image or image sequences. In classical object detection algo-
rithms such as R-CNN [31], the image is divided into a cer-
tain number of regions and different CNNs are used to clas-
sify each region. However, YOLO uses a single CNN and the 
entire image to calculate the class possibilities of the objects 
in the image and the potential ROIs of related classes. The 
design architecture of YOLO, even though it has a much 
simpler structure, can achieve very fast and accurate object 
detection and classification results. There are improved ver-
sions of YOLO such as YOLOV2 [32], YOLOV3 [33], and 
YOLOV4 [34]. In this study, we utilized a modified version 
of YOLOV3 to detect dental caries in bitewing images.

It will be useful to briefly describe YOLO’s detection 
steps to understand the success of the study. The detec-
tion process of YOLO starts by dividing the input image 
into N × N non-overlapping grid cells. Every grid cell 
is responsible for detecting possible objects in the input 
image where the center of the object falls. Therefore, each 
grid cell creates a number of bounding boxes (B) around 
the possible object area and a box confidence score for 

whether these boxes contain objects. The box confidence is 
obtained by multiplying the probability that the area in the 
related grid cell is an object by the value of intercession 
over union (IOU) as in the following formula:

The box confidence represents the absence or presence 
of an object in the suspected area in the bounding box. If 
the box confidence score value is zero, it means there is no 
object in the relevant grid cell. So, bounding boxes with 
zero confidence are excluded. In addition to the box confi-
dence score, each bounding box has four other parameters. 
These are the center points (x,y) and width, height (w,h) 
values of the bounding box. Also, YOLO calculates the 
class probabilities of objects (C). Each grid cell predicts C 
conditional class probabilities ( Prob(Classi|object) ). After 
adding the class probabilities to the output vector, the new 
output vector is N × N × (B × 5 + C) . The conditional 
probability obtained for classes is calculated according to 
the formula below.

In this study, YOLOV3 was trained using the entire 
bitewing image and its ROI information. For the training 
phase, we prepared the training data with their bounding 
box information. The bounding box information contains 
the center coordinates (x, y), width, height (w, h) values, and 
class label of dental caries in the bitewing images. We use 
106 convolutional layers architecture with different kernel 
sizes, residual blocks, skip connections, activation functions, 
and fully connected layers for caries detection in bitewing 
images. YOLOV3 uses DarkNet-53 CNN model for feature 
extraction and stacked with 53 more layers for detection 
operation. Instead of using pooling layers, additional convo-
lutional layers with a stride of 2 are used to downsample the 
feature maps. In this way, low-level features are preserved 
in the feature maps. The low-level features help improve 
the ability to detect small caries lesions in bitewings. We 
set the input size of the network as 608 × 608 pixels. In our 
experiments, we divided the bitewing image into 19 × 19 
(N) grid cells with a size of 32 × 32 pixels. The detections 
in YOLOV3 are obtained at layers 82, 94, and 106 for vari-
ous lesion scales such as large, medium, and small. Thus, 
we modified the original detection kernels at the 82nd, 94th, 
and 106th layers according to the (b*(5 + c)) formula for our 
problem. YOLOV3 predicts 3 bounding boxes (B) for each 
grid cell. The b in the formula represents the bounding box 
count, while the c represents the number of classes that will 
be detected. So, we set the output kernels as 18 at layers 82, 
94, and 106. The architecture details are presented in Fig. 4.

Confidence = Prob(object) × IOU
ground truth

predicted

Confidence score = Prob(Classi|object) × Confidence

= Prob(Classi) × IOU
ground truth

predicted

Fig. 3   Labeling of decays for YOLO training
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Training and testing

In this study, we trained our proposed CAA model with an 
augmented dataset. The dataset was randomly divided into 
training (80%) and testing-validation (20%) groups. We used 
the holdout validation method throughout the training pro-
cess. The separated data for the training were augmented 
using online and offline augmented strategy. The model 
parameters were optimized by using only training data to 
avoid any bias. Then, the final model performance was cal-
culated using only the test dataset (20% of the data). Transfer 
learning strategy is very effective and useful in training deep 
neural networks [35]. The initial weights of the model were 
obtained from the pre-trained DarkNet-53 on ImageNet. The 
weights in the layers are updated utilizing the back-prop-
agation algorithm used during the training. The modified 
YOLOV3 model trained through to 5,000 epochs (24 h) with 
64 batch size and 0.001 learning rate. The entire process was 

conducted using a workstation with Nvidia 1080Ti graphics 
card, two Xenon processor, and 32 GB RAM. All implemen-
tations were developed using Python and C +  + program-
ming languages on the Ubuntu 14.04 operating system.

Caries detection process and performance 
evaluation metrics

In the study, we used objective evaluation metrics to evaluate 
the performance of our YOLO-based CAA system. Figure 5 
shows our evaluation strategy during the testing phase of 
the system. As shown in Fig. 5, if the box class probability 
score of detected bounding boxes was less than a determined 
threshold value (0.50), the related boxes were considered 
undetected caries lesions. In contrast, if the box class score 
was an equal or higher probability than the threshold, it was 
regarded in the detection step. In the detection step, if the 
IOU value of bounding boxes was greater than 50%, the 
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related boxes were considered true detections; otherwise, it 
was considered a false detection.

To evaluate the proposed model quantitatively, the true 
positive (TP), false positive (FP), true negative (TN), and 
false negative (FN) diagnosis of the CNNs were calcu-
lated for each bitewing image. Then, the accuracy, sensi-
tivity, specificity, PPV, NPV, and AUC of the CNN were 
calculated.

Results

A total of 2700 approximal surfaces were tested (1323 for 
premolars, 1377 for molars) in 200 bitewing radiographs. 
The 375 of the approximal surfaces had carious lesions (195 
for premolars, 180 for molars), while 2325 were sound (1130 
for premolars, 1195 for molars). The lesion prevalence for 
testing dataset was 13.89%. However, the training dataset 
consisted of 800 radiographs with 11,521 approximal sur-
faces (5648 for premolars, 5873 for molars). The 1847 of the 
approximal surfaces had carious lesions (936 for premolars, 
911 for molars). The lesion prevalence for training dataset 
was 16.03%.

The overall accuracy of the model was 94.59% (94.19% 
for premolars, 94.97% for molars), the sensitivity was 
72.26% (75.51% for premolars, 68.71% for molars), the 
specificity was 98.19% (97.43% for premolars, 98.91% 
for molars), the PPV was 86.58% (83.61% for premolars, 
90.44% for molars), and the NPV was 95.64% (95.82% for 
premolars, 95.47% for molars). The diagnosing performance 
of the CNN is shown in Table 1.

The ROC curve of the CNN is shown in Fig. 6. The area 
under the curve (AUC) was measured as 87.19 (Fig. 6).

Discussion

In this study, the effectiveness of the proposed CNN model 
for the diagnosis of interproximal caries lesions in digital 

Fig. 5   Evaluation approach of 
the proposed system

Table 1   The accuracy, sensitivity, specificity, PPV, and NPV values 
of the CNN

Accuracy Sensitivity Specificity PPV NPV

Overall 94.59% 72.26% 98.19% 86.58% 95.64%
Premolar 94.19% 75.51% 97.43% 83.61% 95.82%
Molar 94.97% 68.71% 98.91% 90.44% 95.47%

Fig. 6   The ROC curve of the proposed model
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bitewing radiographs was evaluated. Bitewing radiography 
is a more useful method than other radiographic techniques 
for diagnosing approximal caries lesions [3]. Additionally, 
the use of CNNs in dental caries diagnosis is a new field 
in dentistry. To the best of our knowledge, presently there 
is only one report on the diagnosis of approximal caries 
lesions in bitewing radiographs using deep learning. In 
that study, the overall accuracy was 80%, sensitivity was 
75%, and specificity was 83%. The PPV and NPV were 
70% and 86%, respectively [20].

The current study demonstrated promising results in 
terms of the evaluated parameters. While the sensitivity 
results of the premolar teeth were higher than molar teeth, 
an opposite effect was observed in terms of specificity. The 
overall specificity value was also found to be higher than the 
other parameters. Bitewing radiography can detect sound 
approximal surfaces more successfully [36]. According 
to findings of this study, the use of CNNs in diagnosis of 
approximal caries lesions in bitewing radiographs demon-
strates a higher specificity value than sensitivity, similar to 
the study by Cantu et al. [20]. The higher specificity values 
of bitewing radiography were also reported in previous stud-
ies [3, 36, 37]. In a previous study, Lee et al. [22] reported 
higher sensitivity and lower specificity values for premolars 
in periapical radiographs in contrast to findings of our study. 
In the study by Lee et al., the periapical radiographic images 
were cropped, and the cropped images consisted of only one 
tooth for classification. In our study, no cropping procedure 
was applied to the bitewing radiographs.

Cantu et al. [20] reported higher accuracy and sensitiv-
ity of the CNN than the mean results of seven dentists. The 
accuracy scores of the CNN and the dentists were 0.80 and 
0.71, respectively. The CNN was reported as more sensi-
tive than the dentists (0.75 and 0.36, respectively). Besides, 
dentists showed lower sensitivity values in diagnosing ini-
tial enamel lesions. Although the sensitivity values of den-
tists increased for advanced lesions, none of them could 
reach a higher sensitivity score than CNN [20]. However, 
the mean specificity value of the seven dentists (91%) was 
higher than the specificity value (83%) of the CNN. In our 
study, the evaluated parameters, except the sensitivity value, 
were found to be higher than the study mentioned above. 
However, it should be clearly known that the segmentation 
method used by Cantu et al. and our real-time decay locali-
zation approach are different problems in computer vision. 
We observed that the values in this study were higher than 
the average values of the seven dentists in the study men-
tioned. On the other hand, clinical experience of the dentist 
directly affects the accuracy of the caries diagnosis [38]. 
Using CNNs in caries diagnosis can provide high accuracy 
regardless of the dentist’s clinical experience. However, high 
accuracy score may not indicate that a method is always use-
ful. If deep learning interprets each approximal surface as 

“decayed,” it is possible to reach 100% accuracy. However, 
this is unacceptable. Therefore, the sensitivity and specific-
ity scores have been reported in this study as reported in 
previous studies [20, 23].

Although not in bitewing radiographs, there are also stud-
ies in which deep learning is used in the diagnosis of car-
ies [23–26]. In a previous study about caries detection in 
near-infrared light transillumination images using CNNs, 
Schwendicke et al. reported satisfying results to detect car-
ies lesions [23]. Casalegno et al. reported that deep learn-
ing showed promising results to increase accuracy in caries 
detection and to support dentists’ diagnoses [25]. Askar et al. 
also reported satisfying accuracy about detecting white spot 
lesions on dental photography using deep learning [27]. In 
another study conducted on oral photographs, Zhang et al. 
reported that the deep learning model showed promising 
results in detecting dental caries [28]. The results of our 
study on bitewing radiographs are also promising. Holtkamp 
et al. reported that deep learning models trained and tested 
in vivo for caries detection in near-infrared light transillu-
mination images showed higher accuracy (0.78 ± 0.04) than 
in vitro (0.64 ± 0.15) [24]. The study of Holtkamp et al. is 
important in terms of training criteria of CNNs that directly 
affect the results. Considering the studies above, it can be 
said that using deep learning to detect dental caries shows 
promising results.

The AUC was measured as 87.19% in this study. The 
results are found to be promising and CNNs can be used for 
the diagnosis of caries in bitewing radiographs. CNNs can 
also assist dentists in diagnosing caries and can even be used 
in dental education.

In this study, two experienced dentists with expertise in 
restorative dentistry labeled carious lesions according to a 
fuzzy gold standard method [39]. Since the validity of the 
results cannot be evaluated with a histological “gold stand-
ard,” the decisions and possible mistakes of the annotators 
affect the results in such a designed study. The diagnostic 
performance of the CNN and dentists was not compared. 
Also, this was a relatively small dataset. These are the limi-
tations of the study.

In Fig.  7, some of the successful and unsuccessful 
detections are shown. Deep learning-based methods need 
large amounts of training data to achieve successful results 
[40]. More bitewing radiographic images could be used 
in this study. However, obtaining large-scale data in the 
medical field is a laborious, time-consuming process with 
some ethical challenges [41]. Therefore, in this study, the 
data augmentation method was used to increase the train-
ing data. The data augmentation method acquires new data 
from raw data with the help of various image processing 
methods (rotation, histogram equalization, scaling, crop-
ping, etc.). Using large datasets could yield near-perfect 
results in terms of caries diagnosis using CNNs. However, 

629Clinical Oral Investigations (2022) 26:623–632



1 3

in this study, carious lesions were not classified as “enamel 
caries” or “dentin caries.” This is one of the limitations 
of the study.

Conclusion

In this paper, we proposed a YOLO-based CAA system for 
the detection of caries lesions in bitewing images. Our test 
results show promising and feasible outcomes in terms of 
detecting caries lesions in bitewing images. The proposed 
CAA system achieved an accuracy of more than 90% in 
diagnosing approximal caries lesions without the need for 
a dentist. The next step is to collect more bitewing images 
and improve the model detection accuracy. Within the 
limitations of this study, we conclude that:

–	 The CNNs can be used in the diagnosis of caries lesions 
in bitewing radiographs.

–	 Using CNNs provides more than 90% accuracy in diag-
nosing approximal caries lesions without the need for 
a dentist.
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