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Abstract: Microbial larviciding can be an effective component of integrated vector management
malaria control schemes, although it is not commonly implemented. Moreover, quality control
and evaluation of intervention activities are essential to evaluate the potential of community-based
larviciding interventions. We conducted a process evaluation of a larval source management
intervention in rural Tanzania where local staff were employed to apply microbial larvicide to mosquito
breeding habitats with the aim of long-term reductions in malaria transmission. We developed
a logic model to guide the process evaluation and then established quantitative indicators to
measure intervention success. Quantitative analysis of intervention reach, exposure, and fidelity
was performed to assess larvicide application, and interviews with larviciding staff were reviewed
to provide context to quantitative results. Results indicate that the intervention was successful in
terms of reach, as staff applied microbial larvicide at 80% of identified mosquito breeding habitats.
However, the dosage of larvicide applied was sufficient to ensure larval elimination at only 26% of
sites, which does not meet the standard set for intervention fidelity. We propose that insufficient
training and protocol adaptation, environment and resource issues, and human error contributed to
low larvicide application rates. This demonstrates how several small, context-specific details in sum
can result in meaningful differences between intervention blueprint and execution. These findings
may serve the design of other larval source management interventions by demonstrating the value of
additional training, supervision, and measurement and evaluation of protocol adherence.

Keywords: process evaluation; malaria; vector control; larval source management; implementation
assessment; microbial larvicide; Tanzania

1. Introduction

Of the more than 200 million cases of malaria occurring annually worldwide, 90% take place in
sub-Saharan Africa, and 5% of global malaria deaths in 2018 were concentrated in the United Republic of
Tanzania [1]. Due to structural constraints within communities and the biological interactions between
parasite, vector, and environment, it is difficult to determine best practices for malaria control [2].
Popular malaria reduction strategies, such as deployment of insecticide-treated mosquito nets (ITN)
and indoor residual spraying, often result in unintended downstream outcomes such as mosquito
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avoidance behaviors and vector resistance [3,4]. Larval source management (LSM), though an
effective component of integrated vector management (IVM) [5], is largely neglected in malaria
control schemes [6]. Encompassing habitat modification, habitat manipulation, biological control,
and larviciding, LSM is recommended as a supplementary method for malaria control when breeding
sites are “few, fixed and findable” [7] (p. 1). Given concerns about antimalarial drug and insecticide
resistance, further progress on the global campaign against malaria requires a wider, more diverse set
of approaches, including, potentially, larval source management.

Larval source management interventions may utilize biological control agents, such as
Bacillus thuringiensis var. israelensis (Bti). This bacterium produces toxins that have proven effective in
suppressing larval and pupae production when sufficiently applied to larval breeding habitats [8,9].
Unlike synthetic pesticides, bacterial-origin larvicides do not have negative side effects on human
health [10]. In addition, Bti is target species-specific, inexpensive, and environmentally safe; has a low
probability of developing resistance; does not require human behavioral change; and does not result in
vector avoidance behaviors [3,6,10–13]. A study in The Gambia showed that Bti application in large
sites (i.e., rice paddies) resulted in “consistent suppression of larval development” after treatment
with the minimum dosage, and application in small sites (i.e., open pits, puddles) killed all Anopheles
gambiae larvae within 48 h [8] (p. 7). Combined with ITN use, one group of researchers found that
use of Bacillus-based larvicides resulted in a twofold reduction in new malaria infections compared
to exclusive ITN use [12]. Findings demonstrating a significant decrease in mosquito colonization
in man-made aquatic sites also suggest that LSM could be appropriate for urban populations with
seasonal larvae populations when incorporated with other malaria control measures [6]. Furthermore,
given the relative ease with which the larvicide can be applied, this methodology may be well-suited
for community-based programs [6]. Given the apparent benefits of Bti application, it is important to
evaluate the feasibility of utilizing this approach to determine what role larval source management
should play in integrated vector management.

For public health interventions, the extent to which activities are implemented according to protocol
is critical to the intervention’s efficacy. Program evaluation collects and analyzes information about a
project’s efficacy in order to determine whether a program is valuable, cost-efficient, and better than
alternatives at producing intended outcomes. Process evaluation is a component of program evaluation
that assesses a program’s implementation rather than focusing on its impacts [14]. To determine
strengths and weaknesses of programs and their underlying theory and aid in the design of future
interventions, process evaluations compare intervention protocol to its real-world actualization [15].
Examining whether elements of programs were delivered according to or deviating from the plan
can help explain study results and help differentiate between theory failure and implementation
failure [14,15]. If implementation differs greatly from the intended plan, a lack of effect may be
explained by implementation error [16]. However, if no significant difference is detected between the
original plan and its implementation, there may be an underlying theoretical error if objectives were
not realized. Avoiding type III errors–i.e., differences between protocol and implementation–ensures
that conclusions regarding an intervention’s effectiveness are accurate [14].

Process evaluation of a malarial larviciding intervention enables a distinction to be made between
failure to successfully implement a larvicide application program and failure of a successfully
implemented larvicide intervention to reduce malaria prevalence in the human population. This study
uses the process evaluation approach to examine the implementation of a larviciding intervention for
malaria control in rural Tanzania. Given the complexity of context-specific factors that contributed
to implementation of this intervention, this paper focuses on the larviciding activities performed by
community health workers across 12 villages in Tanzania. This evaluation consists of three components:
development of a logic model to identify intervention protocol, quantitative analysis of larviciding
activities, and review of interviews with larviciding staff. The focus on assessing the larviciding teams’
ability to apply the correct amount of larvicide enables us to determine whether the program was
implemented appropriately, informing future integrated vector management programs.
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2. Materials and Methods

2.1. Study Setting

In order to discern the best strategies to combat malaria and reduce its burden, the Mvomero
Project in rural Tanzania, named for its location in the Mvomero District, used an implementation
science approach by training and deploying community health workers (CHWs) to perform rapid
diagnostic testing and treatment for malaria in households (see Kramer et al., 2014 [2]). As an additional
component of the Mvomero project, teams of 2 community members (hereafter, larviciding staff) in
each village were trained to apply the microbial larvicide Bacillus thuringiensis var. israelensis (Bti) to
potential mosquito breeding habitats to suppress mosquito populations [2]. The overall intervention
was conducted across 24 randomly selected villages and split into 4 arms, with 6 villages receiving
the following intervention activities: control, rapid testing and treatment, larviciding, and both
larviciding and testing/treatment [2]. Larviciding took place during the rainy season of 2012 and 2013
(February–May and January–May, respectively) [5]. This process evaluation focused only on the 12
villages included in the larviciding intervention (see Figure 1). In each of these 12 villages, 2 community
members were recruited by local leaders and trained by entomologists and a larvicide specialist to both
identify mosquito species and apply an appropriate amount of larvicide to the site [2,5]. Following the
identification of larval habitats—such as ponds, rice paddies, brick pits, and temporary sites from
rainfall—larviciding staff recorded larvae and pupae counts and habitat size, then applied microbial
larvicide at a dosage specific to the biological control agent Bti: 5 kg per hectare. Larviciding staff were
instructed to revisit sites every 7 to 10 days. Trained entomologists served as supervisors who were
instructed to visit each of the villages roughly every 2 weeks to conduct quality control checks and
restock supplies when necessary [2].
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After larviciding staff identified a breeding habitat, they were instructed to dip a 350 mL mosquito
dipper at 1 to 5 locations across the site. Larviciding teams were given reference materials (in Kiswahili)
to refer to at each site to determine site area, the corresponding amount of larvicide necessary to
eliminate larval populations at the site, and the matching number of handfuls or cups to apply.
When larvae or pupae were present, larviciding staff were instructed to apply the manufacturer
recommended level of 5 kg per hectare of larvicide by hand for small sites or via a sprayer machine
for large sites. To document their efforts, staff were instructed to fill out a larviciding site form
(see Figure 2, translated to English) at each site visit. The form included pertinent information such as
site location (GPS coordinates), site description, the designation of natural versus manmade, the number
of larvae/pupae found for each dip (divided into Anopheles early and late instar, Culex early and late,
and pupae), site size (in square meters), and larvicide application method and amount (in various
units). Data from the larviciding forms are available upon request from the authors.
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2.2. Logic Model

Logic models, also known as program theories, visually depict the underlying rationale driving an
intervention [17]. These systematic displays help determine structural and financial needs, link inputs
to products, and communicate theory to potential investors [17,18]. A logic model, as the first step in
this process evaluation, was developed (Figure 3) to detail the theory and components of the Mvomero
Project larviciding intervention. The Mvomero Project was designed to test if vector management
and reduction subsequently result in parasitic reduction and reduced malarial burden. Creation of
the logic model enabled post-hoc analysis of the consistency between the intervention’s blueprint
and the intervention’s implementation [19]. The ensuing process evaluation examines the realization
of inputs and activities detailed in the logic model, primarily supervisory staff, larviciding staff

training, larvicide application, and activity recording. Then, inferences can be made with respect
to how intervention implementation may have contributed to the resulting outputs, and thus how
discrepancies between the logic model and the actualized larviciding intervention could result in
outcomes other than those anticipated. This visualization aids recognition of intervention assumptions
and where links may have been expected and not realized, and, following evaluation, helps guide
intervention refinement [16].

2.3. Data Analysis

Although implementation evaluation can have multiple objectives according to the priorities
of stakeholders involved [14], we follow the approach outlined by Steckler and Linnan (2002) [14].
In this study, we focus on reach, exposure, fidelity, and resources. Three quantitative indicators shown
in Table 1 were developed to reflect these components to assess the intervention’s implementation
as a whole and in each of the 12 villages. Indicators were established using data compiled from the
larviciding sheet forms filled out by larviciding staff. Data cleaning was performed to correct erroneous
errors in site size and larvicide application amounts when context was available, as well as to convert
larvicide application amounts to kilograms.
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Table 1. Indicators and analysis methods.

Indicator Analysis Metrics Standard

Reach Quantitative Percentage of breeding habitats identified with
subsequent larvicide application >75%

Exposure Quantitative Mean and median larvicide application dosage ≥5 kg per hectare

Fidelity Quantitative
Percentage of breeding habitats identified
receiving an adequate dosage of larvicide

(≥5 kg/ha)
≥50%

Resources Qualitative Review of supervisor reports and in-depth
interviews with larviciding staff

Not applicable

2.3.1. Quantitative Indicators

The percentage of all sites visited that received larvicide, both with and without larval presence
reported, was calculated as a measure of intervention reach. This was calculated by dividing the
number of breeding habitats where larvicide was applied by the total number of breeding sites visited.
To analyze exposure, we calculated the average and median dosage of larvicide applied to each breeding
site for each village and across the intervention. For each site, we divided the amount of larvicide
applied in kilograms by the size of the breeding habitat in hectares to determine dosage in kilograms
per hectare. The average and median dosage was calculated at the village level and the average
and median dosage of larvicide applied at each breeding site was computed across all breeding
habitats. Lastly, the percentage of breeding habitats receiving an adequate dosage (as defined by
the manufacturer as ≥ 5 kg per hectare) of larvicide per village and overall were computed to assess
intervention fidelity.

In advance of analysis, the authors determined standards for distinguishing between component
success and failure as per process evaluation best practices [14]. Success on the quantitative indicators
was defined as

• Greater than 75% of breeding habitats receiving larvicide application (reach);
• At least 5 kg per hectare of larvicide being applied at each site (exposure);
• At least 50% of sites receiving an adequate dosage according to manufacturer instructions (fidelity).

Data from the second year of the intervention (2013) were selected for this evaluation.
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2.3.2. Qualitative Indicators

Other components of the intervention were considered qualitatively, given the variety of
experiences and settings across the 12 villages included in the intervention. Qualitative analysis of
in-depth interviews conducted with larviciding staff in 2 villages and supervisor reports was performed
to provide additional context to quantitative results.

3. Results

3.1. Quantitative Analysis

3.1.1. Overall Larviciding Activity

Across the 12 villages, larviciding staff reported visiting 4498 sites identified as potential mosquito
breeding habitats during the study period. Of all sites visited, larviciding staff recorded that 3007 (67%)
had mosquito larvae or pupae presence.

3.1.2. Reach: Percentage of Visits with Larvicide Application

Larvicide was applied at 3636 of the 4498 sites visited (81%). At the village level, the percentage
of all sites visited that were larvicided ranged from 27% (Makuyu) to 100% (Hembeti). Of the 3007
visits where there was larval presence reported, staff applied larvicide at 2840 of them (94%). Village by
village frequencies of larvicide application when larvae or pupae were reported as present ranged
from 79% (Mbogo) to 100% (Dibamba and Hembeti). For the 1491 site visits that did not report larval
presence, 761 received larvicide (51%). Village percentages for sites without larval presence receiving
larvicide ranged from 3% (Mziha) to 100% in Hembeti. Figure 4 displays the percentage of site visits
where larvicide was applied for sites with and without larval presence in comparison to the 75%
success standard established prior to data analysis.Int. J. Environ. Res. Public Health 2020, 17, x  7 of 13 

 

 
Figure 4. Percentage of sites visited receiving larvicide application of any amount for sites with and 
without reported larval presence. The green dashed line depicts the success standard of 75%. 

3.1.3. Exposure: Mean and Median Larvicide Dosage Applied 

Adequate application was defined as applying at least 5 kilograms per hectare of larvicide 
material per visit as per staff instruction and manufacturer requirements [20]. Mean and median 
larvicide application dosage by village, alongside the instructed success standard of 5 kg per hectare, 
is displayed in Figure 5. The mean larvicide application rate across the 12 villages was 4.70 kg per 
hectare. The average dosage of larvicide applied per village ranged from 1.10 kg/ha in Makuyu to 
7.67 kg/ha in Dakawa. The median larvicide application dosage across the intervention was 2.87 kg 
per hectare. The difference between the average and the median dosages suggests that the 
distribution of larviciding dosage was positively skewed, and over-application of larvicide occurred 
at some habitats. Whereas sites at 4 out of 12 villages met or exceeded the instructed dosage using 
the mean statistic, only one village did so when using the median. The latter metric is more 
appropriate given evidence of outliers in larvicide application.  

Figure 4. Percentage of sites visited receiving larvicide application of any amount for sites with and
without reported larval presence. The green dashed line depicts the success standard of 75%.

3.1.3. Exposure: Mean and Median Larvicide Dosage Applied

Adequate application was defined as applying at least 5 kg per hectare of larvicide material per visit
as per staff instruction and manufacturer requirements [20]. Mean and median larvicide application
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dosage by village, alongside the instructed success standard of 5 kg per hectare, is displayed in Figure 5.
The mean larvicide application rate across the 12 villages was 4.70 kg per hectare. The average
dosage of larvicide applied per village ranged from 1.10 kg/ha in Makuyu to 7.67 kg/ha in Dakawa.
The median larvicide application dosage across the intervention was 2.87 kg per hectare. The difference
between the average and the median dosages suggests that the distribution of larviciding dosage was
positively skewed, and over-application of larvicide occurred at some habitats. Whereas sites at 4
out of 12 villages met or exceeded the instructed dosage using the mean statistic, only one village
did so when using the median. The latter metric is more appropriate given evidence of outliers in
larvicide application.Int. J. Environ. Res. Public Health 2020, 17, x  8 of 13 
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3.1.4. Fidelity: Percentage of Sites Receiving an Adequate Application Dosage

Of all the sites receiving any amount of larvicide in 2013, 26% (936 out of 3636 sites) received
an adequate dosage of at least 5 kg per hectare. Village by village adequate application percentages
(shown in Figure 6) ranged from 0% in Makuyu and Dibamba to 70% in Dakawa. The frequency of
adequate application for sites larvicided with larval presence reported was 25%. Given the small
difference between the overall adequate larviciding frequency and the adequate larviciding frequency
when larvae were reported as present, precautionary larviciding when larvae were not present likely
did not negatively skew overall adequate larviciding frequency.

3.1.5. Additional Analysis of Application Adequacy

Given the results above suggesting low levels of adequate larvicide application, we performed
additional analysis to determine factors influencing larviciding dosage, including site size and
application method. Analysis of larvicide application adequacy (≥5 kg/ha) across different breeding
habitat sizes revealed that the frequency of adequate application of larvicide increased significantly
for sites over 0.035 hectares, particularly for sites between a quarter and a half of a hectare large
(approximately the largest 20% of sites). Breeding habitats of different sizes necessitated different
larvicide application techniques—larger sites were typically treated using machine sprayers operated
by the larviciding staff, whereas smaller sites received treatment via hand application. Larval habitats
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treated by machine sprayers received adequate dosages of larvicide at 43% of visits, whereas habitats
treated with larvicide by hand received an adequate dosage at only 15% of visits, a nearly 30% difference.Int. J. Environ. Res. Public Health 2020, 17, x  9 of 13 
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3.2. Qualitative Analysis

In-depth interviews were conducted with larviciding staff in 2 of the 12 villages where the
larviciding intervention took place. Emerging themes from the interviews with larviciding staff

suggest that there was a need for greater communication with supervisory staff. Larviciding
staff reported that they believed the number of mosquito larvae had decreased since the start of
the intervention. Additionally, larviciding staff expressed confidence in their larviciding abilities,
and believed their work was manageable though dependent on issues with rain and their larviciding
partner. Finally, staff suggested that a lack of reference sheets—which the job aids used on site to
determine the amount of larvicide necessary for a site of a particular size—may have caused issues in
instance when they had forgotten their training.

4. Discussion

Larval presence clearly triggered action by larviciding staff, as evidenced by overall larviciding
frequency across the study villages, suggesting the intervention was successful on the reach indicator of
the process evaluation. In terms of the exposure component of evaluation, the difference in larviciding
frequency between sites with and without larval presence demonstrates that staff largely responded
appropriately to larval presence and administered larvicide when necessary. However, results suggest
that some staff may have been applying larvicide to all sites on a precautionary basis, irrespective of
larval presence. Over-larviciding reduces overall efficiency in terms of resource and time management.
The larviciding intervention failed to meet standards set along the fidelity component of this process
evaluation, as an insufficient dosage of larvicide was applied at most breeding sites. This is problematic
given that inadequate larvicide application may have consequences for malaria vector populations
and downstream transmission. We also found that larvicide dosage was associated with larvicide
application method, as larger sizes more frequently received a higher dose where machine sprayers
were used to disperse larvicide. We posit that this association is in part due to the difficulty of
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estimating the appropriate larvicide amount to apply when using a non-standard size cup or mug for
measurement, as was the case when staff applied larvicide by hand for small sites.

Given quantitative findings and qualitative assessment/context provided by intervention
administrators and staff, we propose three factors that contributed to low intervention fidelity:
human error, insufficient training and protocol modification, and environment and resource issues.
Data management and cleaning in advance of and during this process evaluation uncovered recording
errors in forms filled out by larviciding staff—ranging from evidently incorrect site size estimation
to incorrect larvicide unit notation—highlighting how individual-level human error can affect
intervention-level outcomes. Further, training sessions may not have sufficiently prepared larviciding
staff for the breadth of work they were expected to complete. Job aids (such as site size to larvicide
amount conversion sheets) may have been too difficult to utilize at each site visit and filling out
the site form posed a significant burden for the staff. Finally, issues with sprayer pumps and
transportation during rainy periods may have limited larviciding abilities. These small factors, in sum,
likely contributed to differences between the intervention blueprint and its eventual implementation.

Recommendations to Improve Future Interventions

Other evaluations of malarial larviciding interventions have similarly found that these programs
are highly complex and context-specific, requiring acute attention to detail. For large-scale larviciding
programs, coordination with Ministries of Health, local community leaders, and research groups is
essential to achieve widespread success in rolling out activities [21]. Although this requires extensive
planning and arrangement in advance, the day-to-day activities of larviciding teams and supervisors
must be somewhat flexible to account for unanticipated changes such as weather events or issues with
machine sprayers [21,22]. The need for close supervision of larviciding staff to ensure quality control
of the intervention, coupled with budgetary concerns and other factors, demonstrates the high level
of complexity involved in implementing these programs. However, evaluation of these complexities
is lacking. Measuring and reporting on the gap between intervention protocol and implementation
enables researchers and administrators to better understand intervention delivery and helps them
discover unforeseen factors limiting or contributing to achievement of short- and long-term program
impacts. For example, for hand application of smaller sites, larviciding staff should be provided with
a measured cup inscribed with larvicide corn granule amounts (in grams or in site size). Using a
measuring cup would increase the accuracy of larviciding staff as they would not have to estimate
fractions of handfuls and gram amounts in their hand, and it would provide a standard form of
measurement across larvicide spray teams. It may also negate the need to refer to complex job aids.
These efforts should occur throughout the intervention process—as issues commonly identified after
the fact are unpredictable and should be addressed fluidly—and post-hoc [22].

It is important to consider the geographic and environmental conditions that foster larval
population growth when determining locations that might be appropriately targeted by larviciding
interventions. For example, heavy rainfall was common in Dakawa and Mkindo, resulting in the
proliferation of large potential breeding grounds in these villages, while other villages remained dry
for some periods during the intervention. Given the difficulty in ensuring an adequate amount of
larvicide is applied to breeding habitats in order to reduce larval populations capable of transmitting
malaria, larviciding activities could focus less on temporary sites and more on continually productive,
long-term larval habitats. Targeting dry season habitats, which are present throughout the year and are
continually productive sources of larval abundance, could be made a higher priority in further larval
source management efforts. Although it is necessary to consider every possible breeding site as posing
a risk of malaria transmission, this strategy may increase intervention efficacy, and reducing vector
populations during the dry season could also reduce population growth during the rainy season [23].
This would be both more manageable for larviciding staff—reducing the number of breeding sites
they visit—as well as for supervisors and intervention administrators, while potentially achieving
comparable or more tangible impacts. If larval populations are receiving adequate dosages of larvicide
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more frequently, there is a higher likelihood that they will be unable to proliferate and pose the threat
of malarial transmission to communities in the area. In addition, intervention administrators could
consider adjusting the timing of larviciding activities. Larviciding earlier in the rainy season might
reduce mosquito populations such that mosquito prevalence would be limited later in the season.

5. Conclusions

This paper has shown that the implementation of larviciding activities in the Mvomero Project
differed from protocol in several important ways. Although larvicide application was widespread
and frequent, application dosage was inappropriately low, and the vast majority of sites received less
larvicide than necessary to optimally eliminate larval populations. Larvicide was found to be adequately
applied less frequently when applied by hand than by machine. Further training of larviciding staff

for hand application or increased use of machine sprayers for small sites is necessary to increase the
adequacy of larvicide dosing. Furthermore, more cadenced supervision and monitoring of larviciding
teams’ activities may decrease the disjuncture between intervention protocol and implementation.
Future larviciding interventions may benefit from this evaluation, which underscores the importance
of training, supervision, and intervention adaptation to local resource or environmental constraints.
Recommendations proposed here should be considered for future LSM interventions, which may be
of increasing importance due to concerns with other malarial control strategies. More generally, this
process evaluation emphasizes the importance of measuring and reporting on protocol adherence in
order to meaningfully measure and interpret intervention impact.
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